1 |
|
/****************************************************************************** |
2 |
|
* Top contributors (to current version): |
3 |
|
* Andrew Reynolds, Haniel Barbosa, Aina Niemetz |
4 |
|
* |
5 |
|
* This file is part of the cvc5 project. |
6 |
|
* |
7 |
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS |
8 |
|
* in the top-level source directory and their institutional affiliations. |
9 |
|
* All rights reserved. See the file COPYING in the top-level source |
10 |
|
* directory for licensing information. |
11 |
|
* **************************************************************************** |
12 |
|
* |
13 |
|
* Implementation of module for processing proof nodes. |
14 |
|
*/ |
15 |
|
|
16 |
|
#include "smt/proof_post_processor.h" |
17 |
|
|
18 |
|
#include "expr/proof_node_manager.h" |
19 |
|
#include "expr/skolem_manager.h" |
20 |
|
#include "options/proof_options.h" |
21 |
|
#include "options/smt_options.h" |
22 |
|
#include "preprocessing/assertion_pipeline.h" |
23 |
|
#include "smt/smt_engine.h" |
24 |
|
#include "smt/smt_statistics_registry.h" |
25 |
|
#include "theory/builtin/proof_checker.h" |
26 |
|
#include "theory/rewriter.h" |
27 |
|
#include "theory/theory.h" |
28 |
|
|
29 |
|
using namespace cvc5::kind; |
30 |
|
using namespace cvc5::theory; |
31 |
|
|
32 |
|
namespace cvc5 { |
33 |
|
namespace smt { |
34 |
|
|
35 |
3600 |
ProofPostprocessCallback::ProofPostprocessCallback(ProofNodeManager* pnm, |
36 |
|
SmtEngine* smte, |
37 |
|
ProofGenerator* pppg, |
38 |
3600 |
bool updateScopedAssumptions) |
39 |
|
: d_pnm(pnm), |
40 |
|
d_smte(smte), |
41 |
|
d_pppg(pppg), |
42 |
|
d_wfpm(pnm), |
43 |
3600 |
d_updateScopedAssumptions(updateScopedAssumptions) |
44 |
|
{ |
45 |
3600 |
d_true = NodeManager::currentNM()->mkConst(true); |
46 |
3600 |
} |
47 |
|
|
48 |
2690 |
void ProofPostprocessCallback::initializeUpdate() |
49 |
|
{ |
50 |
2690 |
d_assumpToProof.clear(); |
51 |
2690 |
d_wfAssumptions.clear(); |
52 |
2690 |
} |
53 |
|
|
54 |
10116 |
void ProofPostprocessCallback::setEliminateRule(PfRule rule) |
55 |
|
{ |
56 |
10116 |
d_elimRules.insert(rule); |
57 |
10116 |
} |
58 |
|
|
59 |
2319929 |
bool ProofPostprocessCallback::shouldUpdate(std::shared_ptr<ProofNode> pn, |
60 |
|
const std::vector<Node>& fa, |
61 |
|
bool& continueUpdate) |
62 |
|
{ |
63 |
2319929 |
PfRule id = pn->getRule(); |
64 |
2319929 |
if (d_elimRules.find(id) != d_elimRules.end()) |
65 |
|
{ |
66 |
99445 |
return true; |
67 |
|
} |
68 |
|
// other than elimination rules, we always update assumptions as long as |
69 |
|
// d_updateScopedAssumptions is true or they are *not* in scope, i.e., not in |
70 |
|
// fa |
71 |
4440968 |
if (id != PfRule::ASSUME |
72 |
6378662 |
|| (!d_updateScopedAssumptions |
73 |
2220484 |
&& std::find(fa.begin(), fa.end(), pn->getResult()) != fa.end())) |
74 |
|
{ |
75 |
3875388 |
Trace("smt-proof-pp-debug") |
76 |
1937694 |
<< "... not updating in-scope assumption " << pn->getResult() << "\n"; |
77 |
1937694 |
return false; |
78 |
|
} |
79 |
282790 |
return true; |
80 |
|
} |
81 |
|
|
82 |
442796 |
bool ProofPostprocessCallback::update(Node res, |
83 |
|
PfRule id, |
84 |
|
const std::vector<Node>& children, |
85 |
|
const std::vector<Node>& args, |
86 |
|
CDProof* cdp, |
87 |
|
bool& continueUpdate) |
88 |
|
{ |
89 |
885592 |
Trace("smt-proof-pp-debug") << "- Post process " << id << " " << children |
90 |
442796 |
<< " / " << args << std::endl; |
91 |
|
|
92 |
442796 |
if (id == PfRule::ASSUME) |
93 |
|
{ |
94 |
|
// we cache based on the assumption node, not the proof node, since there |
95 |
|
// may be multiple occurrences of the same node. |
96 |
565580 |
Node f = args[0]; |
97 |
565580 |
std::shared_ptr<ProofNode> pfn; |
98 |
|
std::map<Node, std::shared_ptr<ProofNode>>::iterator it = |
99 |
282790 |
d_assumpToProof.find(f); |
100 |
282790 |
if (it != d_assumpToProof.end()) |
101 |
|
{ |
102 |
246942 |
Trace("smt-proof-pp-debug") << "...already computed" << std::endl; |
103 |
246942 |
pfn = it->second; |
104 |
|
} |
105 |
|
else |
106 |
|
{ |
107 |
35848 |
Trace("smt-proof-pp-debug") << "...get proof" << std::endl; |
108 |
35848 |
Assert(d_pppg != nullptr); |
109 |
|
// get proof from preprocess proof generator |
110 |
35848 |
pfn = d_pppg->getProofFor(f); |
111 |
35848 |
Trace("smt-proof-pp-debug") << "...finished get proof" << std::endl; |
112 |
|
// print for debugging |
113 |
35848 |
if (pfn == nullptr) |
114 |
|
{ |
115 |
34034 |
Trace("smt-proof-pp-debug") |
116 |
17017 |
<< "...no proof, possibly an input assumption" << std::endl; |
117 |
|
} |
118 |
|
else |
119 |
|
{ |
120 |
18831 |
Assert(pfn->getResult() == f); |
121 |
18831 |
if (Trace.isOn("smt-proof-pp")) |
122 |
|
{ |
123 |
|
Trace("smt-proof-pp") |
124 |
|
<< "=== Connect proof for preprocessing: " << f << std::endl; |
125 |
|
Trace("smt-proof-pp") << *pfn.get() << std::endl; |
126 |
|
} |
127 |
|
} |
128 |
35848 |
d_assumpToProof[f] = pfn; |
129 |
|
} |
130 |
282790 |
if (pfn == nullptr || pfn->getRule() == PfRule::ASSUME) |
131 |
|
{ |
132 |
271399 |
Trace("smt-proof-pp-debug") << "...do not add proof" << std::endl; |
133 |
|
// no update |
134 |
271399 |
return false; |
135 |
|
} |
136 |
11391 |
Trace("smt-proof-pp-debug") << "...add proof" << std::endl; |
137 |
|
// connect the proof |
138 |
11391 |
cdp->addProof(pfn); |
139 |
11391 |
return true; |
140 |
|
} |
141 |
320012 |
Node ret = expandMacros(id, children, args, cdp); |
142 |
160006 |
Trace("smt-proof-pp-debug") << "...expanded = " << !ret.isNull() << std::endl; |
143 |
160006 |
return !ret.isNull(); |
144 |
|
} |
145 |
|
|
146 |
60561 |
bool ProofPostprocessCallback::updateInternal(Node res, |
147 |
|
PfRule id, |
148 |
|
const std::vector<Node>& children, |
149 |
|
const std::vector<Node>& args, |
150 |
|
CDProof* cdp) |
151 |
|
{ |
152 |
60561 |
bool continueUpdate = true; |
153 |
60561 |
return update(res, id, children, args, cdp, continueUpdate); |
154 |
|
} |
155 |
|
|
156 |
23570 |
Node ProofPostprocessCallback::eliminateCrowdingLits( |
157 |
|
const std::vector<Node>& clauseLits, |
158 |
|
const std::vector<Node>& targetClauseLits, |
159 |
|
const std::vector<Node>& children, |
160 |
|
const std::vector<Node>& args, |
161 |
|
CDProof* cdp) |
162 |
|
{ |
163 |
23570 |
Trace("smt-proof-pp-debug2") << push; |
164 |
23570 |
NodeManager* nm = NodeManager::currentNM(); |
165 |
47140 |
Node trueNode = nm->mkConst(true); |
166 |
|
// get crowding lits and the position of the last clause that includes |
167 |
|
// them. The factoring step must be added after the last inclusion and before |
168 |
|
// its elimination. |
169 |
47140 |
std::unordered_set<TNode> crowding; |
170 |
47140 |
std::vector<std::pair<Node, size_t>> lastInclusion; |
171 |
|
// positions of eliminators of crowding literals, which are the positions of |
172 |
|
// the clauses that eliminate crowding literals *after* their last inclusion |
173 |
47140 |
std::vector<size_t> eliminators; |
174 |
2022550 |
for (size_t i = 0, size = clauseLits.size(); i < size; ++i) |
175 |
|
{ |
176 |
5996940 |
if (!crowding.count(clauseLits[i]) |
177 |
9384936 |
&& std::find( |
178 |
1693998 |
targetClauseLits.begin(), targetClauseLits.end(), clauseLits[i]) |
179 |
5386976 |
== targetClauseLits.end()) |
180 |
|
{ |
181 |
526230 |
Node crowdLit = clauseLits[i]; |
182 |
263115 |
crowding.insert(crowdLit); |
183 |
263115 |
Trace("smt-proof-pp-debug2") << "crowding lit " << crowdLit << "\n"; |
184 |
|
// found crowding lit, now get its last inclusion position, which is the |
185 |
|
// position of the last resolution link that introduces the crowding |
186 |
|
// literal. Note that this position has to be *before* the last link, as a |
187 |
|
// link *after* the last inclusion must eliminate the crowding literal. |
188 |
|
size_t j; |
189 |
8745776 |
for (j = children.size() - 1; j > 0; --j) |
190 |
|
{ |
191 |
|
// notice that only non-singleton clauses may be introducing the |
192 |
|
// crowding literal, so we only care about non-singleton OR nodes. We |
193 |
|
// check then against the kind and whether the whole OR node occurs as a |
194 |
|
// pivot of the respective resolution |
195 |
8745776 |
if (children[j - 1].getKind() != kind::OR) |
196 |
|
{ |
197 |
455321 |
continue; |
198 |
|
} |
199 |
8290455 |
uint64_t pivotIndex = 2 * (j - 1); |
200 |
16580910 |
if (args[pivotIndex] == children[j - 1] |
201 |
16580910 |
|| args[pivotIndex].notNode() == children[j - 1]) |
202 |
|
{ |
203 |
933 |
continue; |
204 |
|
} |
205 |
24868566 |
if (std::find(children[j - 1].begin(), children[j - 1].end(), crowdLit) |
206 |
24868566 |
!= children[j - 1].end()) |
207 |
|
{ |
208 |
263115 |
break; |
209 |
|
} |
210 |
|
} |
211 |
263115 |
Assert(j > 0); |
212 |
263115 |
lastInclusion.emplace_back(crowdLit, j - 1); |
213 |
|
|
214 |
263115 |
Trace("smt-proof-pp-debug2") << "last inc " << j - 1 << "\n"; |
215 |
|
// get elimination position, starting from the following link as the last |
216 |
|
// inclusion one. The result is the last (in the chain, but first from |
217 |
|
// this point on) resolution link that eliminates the crowding literal. A |
218 |
|
// literal l is eliminated by a link if it contains a literal l' with |
219 |
|
// opposite polarity to l. |
220 |
2781839 |
for (; j < children.size(); ++j) |
221 |
|
{ |
222 |
1522477 |
bool posFirst = args[(2 * j) - 1] == trueNode; |
223 |
2781839 |
Node pivot = args[(2 * j)]; |
224 |
3044954 |
Trace("smt-proof-pp-debug2") |
225 |
1522477 |
<< "\tcheck w/ args " << posFirst << " / " << pivot << "\n"; |
226 |
|
// To eliminate the crowding literal (crowdLit), the clause must contain |
227 |
|
// it with opposite polarity. There are three successful cases, |
228 |
|
// according to the pivot and its sign |
229 |
|
// |
230 |
|
// - crowdLit is the same as the pivot and posFirst is true, which means |
231 |
|
// that the clause contains its negation and eliminates it |
232 |
|
// |
233 |
|
// - crowdLit is the negation of the pivot and posFirst is false, so the |
234 |
|
// clause contains the node whose negation is crowdLit. Note that this |
235 |
|
// case may either be crowdLit.notNode() == pivot or crowdLit == |
236 |
|
// pivot.notNode(). |
237 |
3198031 |
if ((crowdLit == pivot && posFirst) |
238 |
2891877 |
|| (crowdLit.notNode() == pivot && !posFirst) |
239 |
4414354 |
|| (pivot.notNode() == crowdLit && !posFirst)) |
240 |
|
{ |
241 |
263115 |
Trace("smt-proof-pp-debug2") << "\t\tfound it!\n"; |
242 |
263115 |
eliminators.push_back(j); |
243 |
263115 |
break; |
244 |
|
} |
245 |
|
} |
246 |
263115 |
AlwaysAssert(j < children.size()); |
247 |
|
} |
248 |
|
} |
249 |
23570 |
Assert(!lastInclusion.empty()); |
250 |
|
// order map so that we process crowding literals in the order of the clauses |
251 |
|
// that last introduce them |
252 |
1136109 |
auto cmp = [](std::pair<Node, size_t>& a, std::pair<Node, size_t>& b) { |
253 |
1136109 |
return a.second < b.second; |
254 |
1136109 |
}; |
255 |
23570 |
std::sort(lastInclusion.begin(), lastInclusion.end(), cmp); |
256 |
|
// order eliminators |
257 |
23570 |
std::sort(eliminators.begin(), eliminators.end()); |
258 |
23570 |
if (Trace.isOn("smt-proof-pp-debug")) |
259 |
|
{ |
260 |
|
Trace("smt-proof-pp-debug") << "crowding lits last inclusion:\n"; |
261 |
|
for (const auto& pair : lastInclusion) |
262 |
|
{ |
263 |
|
Trace("smt-proof-pp-debug") |
264 |
|
<< "\t- [" << pair.second << "] : " << pair.first << "\n"; |
265 |
|
} |
266 |
|
Trace("smt-proof-pp-debug") << "eliminators:"; |
267 |
|
for (size_t elim : eliminators) |
268 |
|
{ |
269 |
|
Trace("smt-proof-pp-debug") << " " << elim; |
270 |
|
} |
271 |
|
Trace("smt-proof-pp-debug") << "\n"; |
272 |
|
} |
273 |
|
// TODO (cvc4-wishues/issues/77): implement also simpler version and compare |
274 |
|
// |
275 |
|
// We now start to break the chain, one step at a time. Naively this breaking |
276 |
|
// down would be one resolution/factoring to each crowding literal, but we can |
277 |
|
// merge some of the cases. Effectively we do the following: |
278 |
|
// |
279 |
|
// |
280 |
|
// lastClause children[start] ... children[end] |
281 |
|
// ---------------------------------------------- CHAIN_RES |
282 |
|
// C |
283 |
|
// ----------- FACTORING |
284 |
|
// lastClause' children[start'] ... children[end'] |
285 |
|
// -------------------------------------------------------------- CHAIN_RES |
286 |
|
// ... |
287 |
|
// |
288 |
|
// where |
289 |
|
// lastClause_0 = children[0] |
290 |
|
// start_0 = 1 |
291 |
|
// end_0 = eliminators[0] - 1 |
292 |
|
// start_i+1 = nextGuardedElimPos - 1 |
293 |
|
// |
294 |
|
// The important point is how end_i+1 is computed. It is based on what we call |
295 |
|
// the "nextGuardedElimPos", i.e., the next elimination position that requires |
296 |
|
// removal of duplicates. The intuition is that a factoring step may eliminate |
297 |
|
// the duplicates of crowding literals l1 and l2. If the last inclusion of l2 |
298 |
|
// is before the elimination of l1, then we can go ahead and also perform the |
299 |
|
// elimination of l2 without another factoring. However if another literal l3 |
300 |
|
// has its last inclusion after the elimination of l2, then the elimination of |
301 |
|
// l3 is the next guarded elimination. |
302 |
|
// |
303 |
|
// To do the above computation then we determine, after a resolution/factoring |
304 |
|
// step, the first crowded literal to have its last inclusion after "end". The |
305 |
|
// first elimination position to be bigger than the position of that crowded |
306 |
|
// literal is the next guarded elimination position. |
307 |
23570 |
size_t lastElim = 0; |
308 |
23570 |
Node lastClause = children[0]; |
309 |
47140 |
std::vector<Node> childrenRes; |
310 |
47140 |
std::vector<Node> childrenResArgs; |
311 |
47140 |
Node resPlaceHolder; |
312 |
23570 |
size_t nextGuardedElimPos = eliminators[0]; |
313 |
|
do |
314 |
|
{ |
315 |
175518 |
size_t start = lastElim + 1; |
316 |
175518 |
size_t end = nextGuardedElimPos - 1; |
317 |
351036 |
Trace("smt-proof-pp-debug2") |
318 |
175518 |
<< "res with:\n\tlastClause: " << lastClause << "\n\tstart: " << start |
319 |
175518 |
<< "\n\tend: " << end << "\n"; |
320 |
175518 |
childrenRes.push_back(lastClause); |
321 |
|
// note that the interval of insert is exclusive in the end, so we add 1 |
322 |
526554 |
childrenRes.insert(childrenRes.end(), |
323 |
351036 |
children.begin() + start, |
324 |
877590 |
children.begin() + end + 1); |
325 |
526554 |
childrenResArgs.insert(childrenResArgs.end(), |
326 |
351036 |
args.begin() + (2 * start) - 1, |
327 |
877590 |
args.begin() + (2 * end) + 1); |
328 |
175518 |
Trace("smt-proof-pp-debug2") << "res children: " << childrenRes << "\n"; |
329 |
175518 |
Trace("smt-proof-pp-debug2") << "res args: " << childrenResArgs << "\n"; |
330 |
351036 |
resPlaceHolder = d_pnm->getChecker()->checkDebug(PfRule::CHAIN_RESOLUTION, |
331 |
|
childrenRes, |
332 |
|
childrenResArgs, |
333 |
351036 |
Node::null(), |
334 |
|
""); |
335 |
351036 |
Trace("smt-proof-pp-debug2") |
336 |
175518 |
<< "resPlaceHorder: " << resPlaceHolder << "\n"; |
337 |
175518 |
cdp->addStep( |
338 |
|
resPlaceHolder, PfRule::CHAIN_RESOLUTION, childrenRes, childrenResArgs); |
339 |
|
// I need to add factoring if end < children.size(). Otherwise, this is |
340 |
|
// to be handled by the caller |
341 |
175518 |
if (end < children.size() - 1) |
342 |
|
{ |
343 |
455844 |
lastClause = d_pnm->getChecker()->checkDebug( |
344 |
455844 |
PfRule::FACTORING, {resPlaceHolder}, {}, Node::null(), ""); |
345 |
151948 |
if (!lastClause.isNull()) |
346 |
|
{ |
347 |
151948 |
cdp->addStep(lastClause, PfRule::FACTORING, {resPlaceHolder}, {}); |
348 |
|
} |
349 |
|
else |
350 |
|
{ |
351 |
|
lastClause = resPlaceHolder; |
352 |
|
} |
353 |
151948 |
Trace("smt-proof-pp-debug2") << "lastClause: " << lastClause << "\n"; |
354 |
|
} |
355 |
|
else |
356 |
|
{ |
357 |
23570 |
lastClause = resPlaceHolder; |
358 |
23570 |
break; |
359 |
|
} |
360 |
|
// update for next round |
361 |
151948 |
childrenRes.clear(); |
362 |
151948 |
childrenResArgs.clear(); |
363 |
151948 |
lastElim = end; |
364 |
|
|
365 |
|
// find the position of the last inclusion of the next crowded literal |
366 |
151948 |
size_t nextCrowdedInclusionPos = lastInclusion.size(); |
367 |
2213287 |
for (size_t i = 0, size = lastInclusion.size(); i < size; ++i) |
368 |
|
{ |
369 |
2189717 |
if (lastInclusion[i].second > lastElim) |
370 |
|
{ |
371 |
128378 |
nextCrowdedInclusionPos = i; |
372 |
128378 |
break; |
373 |
|
} |
374 |
|
} |
375 |
303896 |
Trace("smt-proof-pp-debug2") |
376 |
151948 |
<< "nextCrowdedInclusion/Pos: " |
377 |
151948 |
<< lastInclusion[nextCrowdedInclusionPos].second << "/" |
378 |
151948 |
<< nextCrowdedInclusionPos << "\n"; |
379 |
|
// if there is none, then the remaining literals will be used in the next |
380 |
|
// round |
381 |
151948 |
if (nextCrowdedInclusionPos == lastInclusion.size()) |
382 |
|
{ |
383 |
23570 |
nextGuardedElimPos = children.size(); |
384 |
|
} |
385 |
|
else |
386 |
|
{ |
387 |
128378 |
nextGuardedElimPos = children.size(); |
388 |
1787823 |
for (size_t i = 0, size = eliminators.size(); i < size; ++i) |
389 |
|
{ |
390 |
|
// nextGuardedElimPos is the largest element of |
391 |
|
// eliminators bigger the next crowded literal's last inclusion |
392 |
1787823 |
if (eliminators[i] > lastInclusion[nextCrowdedInclusionPos].second) |
393 |
|
{ |
394 |
128378 |
nextGuardedElimPos = eliminators[i]; |
395 |
128378 |
break; |
396 |
|
} |
397 |
|
} |
398 |
128378 |
Assert(nextGuardedElimPos < children.size()); |
399 |
|
} |
400 |
303896 |
Trace("smt-proof-pp-debug2") |
401 |
303896 |
<< "nextGuardedElimPos: " << nextGuardedElimPos << "\n"; |
402 |
|
} while (true); |
403 |
47140 |
Trace("smt-proof-pp-debug2") << pop; |
404 |
47140 |
return lastClause; |
405 |
|
} |
406 |
|
|
407 |
242465 |
Node ProofPostprocessCallback::expandMacros(PfRule id, |
408 |
|
const std::vector<Node>& children, |
409 |
|
const std::vector<Node>& args, |
410 |
|
CDProof* cdp) |
411 |
|
{ |
412 |
242465 |
if (d_elimRules.find(id) == d_elimRules.end()) |
413 |
|
{ |
414 |
|
// not eliminated |
415 |
|
return Node::null(); |
416 |
|
} |
417 |
|
// macro elimination |
418 |
242465 |
if (id == PfRule::MACRO_SR_EQ_INTRO) |
419 |
|
{ |
420 |
|
// (TRANS |
421 |
|
// (SUBS <children> :args args[0:1]) |
422 |
|
// (REWRITE :args <t.substitute(x1,t1). ... .substitute(xn,tn)> args[2])) |
423 |
172208 |
std::vector<Node> tchildren; |
424 |
172208 |
Node t = args[0]; |
425 |
172208 |
Node ts; |
426 |
86104 |
if (!children.empty()) |
427 |
|
{ |
428 |
27576 |
std::vector<Node> sargs; |
429 |
13788 |
sargs.push_back(t); |
430 |
13788 |
MethodId ids = MethodId::SB_DEFAULT; |
431 |
13788 |
if (args.size() >= 2) |
432 |
|
{ |
433 |
10336 |
if (builtin::BuiltinProofRuleChecker::getMethodId(args[1], ids)) |
434 |
|
{ |
435 |
10336 |
sargs.push_back(args[1]); |
436 |
|
} |
437 |
|
} |
438 |
13788 |
MethodId ida = MethodId::SBA_SEQUENTIAL; |
439 |
13788 |
if (args.size() >= 3) |
440 |
|
{ |
441 |
1700 |
if (builtin::BuiltinProofRuleChecker::getMethodId(args[2], ida)) |
442 |
|
{ |
443 |
1700 |
sargs.push_back(args[2]); |
444 |
|
} |
445 |
|
} |
446 |
13788 |
ts = builtin::BuiltinProofRuleChecker::applySubstitution( |
447 |
|
t, children, ids, ida); |
448 |
27576 |
Trace("smt-proof-pp-debug") |
449 |
13788 |
<< "...eq intro subs equality is " << t << " == " << ts << ", from " |
450 |
13788 |
<< ids << " " << ida << std::endl; |
451 |
13788 |
if (ts != t) |
452 |
|
{ |
453 |
15642 |
Node eq = t.eqNode(ts); |
454 |
|
// apply SUBS proof rule if necessary |
455 |
7821 |
if (!updateInternal(eq, PfRule::SUBS, children, sargs, cdp)) |
456 |
|
{ |
457 |
|
// if we specified that we did not want to eliminate, add as step |
458 |
|
cdp->addStep(eq, PfRule::SUBS, children, sargs); |
459 |
|
} |
460 |
7821 |
tchildren.push_back(eq); |
461 |
|
} |
462 |
|
} |
463 |
|
else |
464 |
|
{ |
465 |
|
// no substitute |
466 |
72316 |
ts = t; |
467 |
|
} |
468 |
172208 |
std::vector<Node> rargs; |
469 |
86104 |
rargs.push_back(ts); |
470 |
86104 |
MethodId idr = MethodId::RW_REWRITE; |
471 |
86104 |
if (args.size() >= 4) |
472 |
|
{ |
473 |
12 |
if (builtin::BuiltinProofRuleChecker::getMethodId(args[3], idr)) |
474 |
|
{ |
475 |
12 |
rargs.push_back(args[3]); |
476 |
|
} |
477 |
|
} |
478 |
|
builtin::BuiltinProofRuleChecker* builtinPfC = |
479 |
|
static_cast<builtin::BuiltinProofRuleChecker*>( |
480 |
86104 |
d_pnm->getChecker()->getCheckerFor(PfRule::MACRO_SR_EQ_INTRO)); |
481 |
172208 |
Node tr = builtinPfC->applyRewrite(ts, idr); |
482 |
172208 |
Trace("smt-proof-pp-debug") |
483 |
86104 |
<< "...eq intro rewrite equality is " << ts << " == " << tr << ", from " |
484 |
86104 |
<< idr << std::endl; |
485 |
86104 |
if (ts != tr) |
486 |
|
{ |
487 |
105480 |
Node eq = ts.eqNode(tr); |
488 |
|
// apply REWRITE proof rule |
489 |
52740 |
if (!updateInternal(eq, PfRule::REWRITE, {}, rargs, cdp)) |
490 |
|
{ |
491 |
|
// if not elimianted, add as step |
492 |
|
cdp->addStep(eq, PfRule::REWRITE, {}, rargs); |
493 |
|
} |
494 |
52740 |
tchildren.push_back(eq); |
495 |
|
} |
496 |
86104 |
if (t == tr) |
497 |
|
{ |
498 |
|
// typically not necessary, but done to be robust |
499 |
32118 |
cdp->addStep(t.eqNode(tr), PfRule::REFL, {}, {t}); |
500 |
32118 |
return t.eqNode(tr); |
501 |
|
} |
502 |
|
// must add TRANS if two step |
503 |
53986 |
return addProofForTrans(tchildren, cdp); |
504 |
|
} |
505 |
156361 |
else if (id == PfRule::MACRO_SR_PRED_INTRO) |
506 |
|
{ |
507 |
16714 |
std::vector<Node> tchildren; |
508 |
16714 |
std::vector<Node> sargs = args; |
509 |
|
// take into account witness form, if necessary |
510 |
8357 |
bool reqWitness = d_wfpm.requiresWitnessFormIntro(args[0]); |
511 |
16714 |
Trace("smt-proof-pp-debug") |
512 |
8357 |
<< "...pred intro reqWitness=" << reqWitness << std::endl; |
513 |
|
// (TRUE_ELIM |
514 |
|
// (TRANS |
515 |
|
// (MACRO_SR_EQ_INTRO <children> :args (t args[1:])) |
516 |
|
// ... proof of apply_SR(t) = toWitness(apply_SR(t)) ... |
517 |
|
// (MACRO_SR_EQ_INTRO {} {toWitness(apply_SR(t))}) |
518 |
|
// )) |
519 |
|
// Notice this is an optimized, one sided version of the expansion of |
520 |
|
// MACRO_SR_PRED_TRANSFORM below. |
521 |
|
// We call the expandMacros method on MACRO_SR_EQ_INTRO, where notice |
522 |
|
// that this rule application is immediately expanded in the recursive |
523 |
|
// call and not added to the proof. |
524 |
16714 |
Node conc = expandMacros(PfRule::MACRO_SR_EQ_INTRO, children, sargs, cdp); |
525 |
16714 |
Trace("smt-proof-pp-debug") |
526 |
8357 |
<< "...pred intro conclusion is " << conc << std::endl; |
527 |
8357 |
Assert(!conc.isNull()); |
528 |
8357 |
Assert(conc.getKind() == EQUAL); |
529 |
8357 |
Assert(conc[0] == args[0]); |
530 |
8357 |
tchildren.push_back(conc); |
531 |
8357 |
if (reqWitness) |
532 |
|
{ |
533 |
6440 |
Node weq = addProofForWitnessForm(conc[1], cdp); |
534 |
3220 |
Trace("smt-proof-pp-debug") << "...weq is " << weq << std::endl; |
535 |
3220 |
if (addToTransChildren(weq, tchildren)) |
536 |
|
{ |
537 |
|
// toWitness(apply_SR(t)) = apply_SR(toWitness(apply_SR(t))) |
538 |
|
// rewrite again, don't need substitution. Also we always use the |
539 |
|
// default rewriter, due to the definition of MACRO_SR_PRED_INTRO. |
540 |
6258 |
Node weqr = expandMacros(PfRule::MACRO_SR_EQ_INTRO, {}, {weq[1]}, cdp); |
541 |
3129 |
addToTransChildren(weqr, tchildren); |
542 |
|
} |
543 |
|
} |
544 |
|
// apply transitivity if necessary |
545 |
16714 |
Node eq = addProofForTrans(tchildren, cdp); |
546 |
8357 |
Assert(!eq.isNull()); |
547 |
8357 |
Assert(eq.getKind() == EQUAL); |
548 |
8357 |
Assert(eq[0] == args[0]); |
549 |
8357 |
Assert(eq[1] == d_true); |
550 |
|
|
551 |
8357 |
cdp->addStep(eq[0], PfRule::TRUE_ELIM, {eq}, {}); |
552 |
8357 |
return eq[0]; |
553 |
|
} |
554 |
148004 |
else if (id == PfRule::MACRO_SR_PRED_ELIM) |
555 |
|
{ |
556 |
|
// (EQ_RESOLVE |
557 |
|
// children[0] |
558 |
|
// (MACRO_SR_EQ_INTRO children[1:] :args children[0] ++ args)) |
559 |
4074 |
std::vector<Node> schildren(children.begin() + 1, children.end()); |
560 |
4074 |
std::vector<Node> srargs; |
561 |
2037 |
srargs.push_back(children[0]); |
562 |
2037 |
srargs.insert(srargs.end(), args.begin(), args.end()); |
563 |
4074 |
Node conc = expandMacros(PfRule::MACRO_SR_EQ_INTRO, schildren, srargs, cdp); |
564 |
2037 |
Assert(!conc.isNull()); |
565 |
2037 |
Assert(conc.getKind() == EQUAL); |
566 |
2037 |
Assert(conc[0] == children[0]); |
567 |
|
// apply equality resolve |
568 |
2037 |
cdp->addStep(conc[1], PfRule::EQ_RESOLVE, {children[0], conc}, {}); |
569 |
2037 |
return conc[1]; |
570 |
|
} |
571 |
145967 |
else if (id == PfRule::MACRO_SR_PRED_TRANSFORM) |
572 |
|
{ |
573 |
|
// (EQ_RESOLVE |
574 |
|
// children[0] |
575 |
|
// (TRANS |
576 |
|
// (MACRO_SR_EQ_INTRO children[1:] :args (children[0] args[1:])) |
577 |
|
// ... proof of c = wc |
578 |
|
// (MACRO_SR_EQ_INTRO {} wc) |
579 |
|
// (SYMM |
580 |
|
// (MACRO_SR_EQ_INTRO children[1:] :args <args>) |
581 |
|
// ... proof of a = wa |
582 |
|
// (MACRO_SR_EQ_INTRO {} wa)))) |
583 |
|
// where |
584 |
|
// wa = toWitness(apply_SR(args[0])) and |
585 |
|
// wc = toWitness(apply_SR(children[0])). |
586 |
69984 |
Trace("smt-proof-pp-debug") |
587 |
34992 |
<< "Transform " << children[0] << " == " << args[0] << std::endl; |
588 |
34992 |
if (CDProof::isSame(children[0], args[0])) |
589 |
|
{ |
590 |
3101 |
Trace("smt-proof-pp-debug") << "...nothing to do" << std::endl; |
591 |
|
// nothing to do |
592 |
3101 |
return children[0]; |
593 |
|
} |
594 |
63782 |
std::vector<Node> tchildren; |
595 |
63782 |
std::vector<Node> schildren(children.begin() + 1, children.end()); |
596 |
63782 |
std::vector<Node> sargs = args; |
597 |
|
// first, compute if we need |
598 |
31891 |
bool reqWitness = d_wfpm.requiresWitnessFormTransform(children[0], args[0]); |
599 |
31891 |
Trace("smt-proof-pp-debug") << "...reqWitness=" << reqWitness << std::endl; |
600 |
|
// convert both sides, in three steps, take symmetry of second chain |
601 |
95673 |
for (unsigned r = 0; r < 2; r++) |
602 |
|
{ |
603 |
127564 |
std::vector<Node> tchildrenr; |
604 |
|
// first rewrite children[0], then args[0] |
605 |
63782 |
sargs[0] = r == 0 ? children[0] : args[0]; |
606 |
|
// t = apply_SR(t) |
607 |
127564 |
Node eq = expandMacros(PfRule::MACRO_SR_EQ_INTRO, schildren, sargs, cdp); |
608 |
127564 |
Trace("smt-proof-pp-debug") |
609 |
63782 |
<< "transform subs_rewrite (" << r << "): " << eq << std::endl; |
610 |
63782 |
Assert(!eq.isNull() && eq.getKind() == EQUAL && eq[0] == sargs[0]); |
611 |
63782 |
addToTransChildren(eq, tchildrenr); |
612 |
|
// apply_SR(t) = toWitness(apply_SR(t)) |
613 |
63782 |
if (reqWitness) |
614 |
|
{ |
615 |
24160 |
Node weq = addProofForWitnessForm(eq[1], cdp); |
616 |
24160 |
Trace("smt-proof-pp-debug") |
617 |
12080 |
<< "transform toWitness (" << r << "): " << weq << std::endl; |
618 |
12080 |
if (addToTransChildren(weq, tchildrenr)) |
619 |
|
{ |
620 |
|
// toWitness(apply_SR(t)) = apply_SR(toWitness(apply_SR(t))) |
621 |
|
// rewrite again, don't need substitution. Also, we always use the |
622 |
|
// default rewriter, due to the definition of MACRO_SR_PRED_TRANSFORM. |
623 |
|
Node weqr = |
624 |
10308 |
expandMacros(PfRule::MACRO_SR_EQ_INTRO, {}, {weq[1]}, cdp); |
625 |
10308 |
Trace("smt-proof-pp-debug") << "transform rewrite_witness (" << r |
626 |
5154 |
<< "): " << weqr << std::endl; |
627 |
5154 |
addToTransChildren(weqr, tchildrenr); |
628 |
|
} |
629 |
|
} |
630 |
127564 |
Trace("smt-proof-pp-debug") |
631 |
63782 |
<< "transform connect (" << r << ")" << std::endl; |
632 |
|
// add to overall chain |
633 |
63782 |
if (r == 0) |
634 |
|
{ |
635 |
|
// add the current chain to the overall chain |
636 |
31891 |
tchildren.insert(tchildren.end(), tchildrenr.begin(), tchildrenr.end()); |
637 |
|
} |
638 |
|
else |
639 |
|
{ |
640 |
|
// add the current chain to cdp |
641 |
63782 |
Node eqr = addProofForTrans(tchildrenr, cdp); |
642 |
31891 |
if (!eqr.isNull()) |
643 |
|
{ |
644 |
41152 |
Trace("smt-proof-pp-debug") << "transform connect sym " << tchildren |
645 |
20576 |
<< " " << eqr << std::endl; |
646 |
|
// take symmetry of above and add it to the overall chain |
647 |
20576 |
addToTransChildren(eqr, tchildren, true); |
648 |
|
} |
649 |
|
} |
650 |
127564 |
Trace("smt-proof-pp-debug") |
651 |
63782 |
<< "transform finish (" << r << ")" << std::endl; |
652 |
|
} |
653 |
|
|
654 |
|
// apply transitivity if necessary |
655 |
63782 |
Node eq = addProofForTrans(tchildren, cdp); |
656 |
|
|
657 |
31891 |
cdp->addStep(args[0], PfRule::EQ_RESOLVE, {children[0], eq}, {}); |
658 |
31891 |
return args[0]; |
659 |
|
} |
660 |
110975 |
else if (id == PfRule::MACRO_RESOLUTION |
661 |
110975 |
|| id == PfRule::MACRO_RESOLUTION_TRUST) |
662 |
|
{ |
663 |
|
// first generate the naive chain_resolution |
664 |
83286 |
std::vector<Node> chainResArgs{args.begin() + 1, args.end()}; |
665 |
41643 |
Node chainConclusion = d_pnm->getChecker()->checkDebug( |
666 |
83286 |
PfRule::CHAIN_RESOLUTION, children, chainResArgs, Node::null(), ""); |
667 |
41643 |
Trace("smt-proof-pp-debug") << "Original conclusion: " << args[0] << "\n"; |
668 |
83286 |
Trace("smt-proof-pp-debug") |
669 |
41643 |
<< "chainRes conclusion: " << chainConclusion << "\n"; |
670 |
|
// There are n cases: |
671 |
|
// - if the conclusion is the same, just replace |
672 |
|
// - if they have the same literals but in different quantity, add a |
673 |
|
// FACTORING step |
674 |
|
// - if the order is not the same, add a REORDERING step |
675 |
|
// - if there are literals in chainConclusion that are not in the original |
676 |
|
// conclusion, we need to transform the MACRO_RESOLUTION into a series of |
677 |
|
// CHAIN_RESOLUTION + FACTORING steps, so that we explicitly eliminate all |
678 |
|
// these "crowding" literals. We do this via FACTORING so we avoid adding |
679 |
|
// an exponential number of premises, which would happen if we just |
680 |
|
// repeated in the premises the clauses needed for eliminating crowding |
681 |
|
// literals, which could themselves add crowding literals. |
682 |
41643 |
if (chainConclusion == args[0]) |
683 |
|
{ |
684 |
13793 |
cdp->addStep( |
685 |
|
chainConclusion, PfRule::CHAIN_RESOLUTION, children, chainResArgs); |
686 |
13793 |
return chainConclusion; |
687 |
|
} |
688 |
27850 |
NodeManager* nm = NodeManager::currentNM(); |
689 |
|
// If we got here, then chainConclusion is NECESSARILY an OR node |
690 |
27850 |
Assert(chainConclusion.getKind() == kind::OR); |
691 |
|
// get the literals in the chain conclusion |
692 |
|
std::vector<Node> chainConclusionLits{chainConclusion.begin(), |
693 |
55700 |
chainConclusion.end()}; |
694 |
|
std::set<Node> chainConclusionLitsSet{chainConclusion.begin(), |
695 |
55700 |
chainConclusion.end()}; |
696 |
|
// is args[0] a singleton clause? If it's not an OR node, then yes. |
697 |
|
// Otherwise, it's only a singleton if it occurs in chainConclusionLitsSet |
698 |
55700 |
std::vector<Node> conclusionLits; |
699 |
|
// whether conclusion is singleton |
700 |
27850 |
if (chainConclusionLitsSet.count(args[0])) |
701 |
|
{ |
702 |
1034 |
conclusionLits.push_back(args[0]); |
703 |
|
} |
704 |
|
else |
705 |
|
{ |
706 |
26816 |
Assert(args[0].getKind() == kind::OR); |
707 |
26816 |
conclusionLits.insert( |
708 |
53632 |
conclusionLits.end(), args[0].begin(), args[0].end()); |
709 |
|
} |
710 |
|
std::set<Node> conclusionLitsSet{conclusionLits.begin(), |
711 |
55700 |
conclusionLits.end()}; |
712 |
|
// If the sets are different, there are "crowding" literals, i.e. literals |
713 |
|
// that were removed by implicit multi-usage of premises in the resolution |
714 |
|
// chain. |
715 |
27850 |
if (chainConclusionLitsSet != conclusionLitsSet) |
716 |
|
{ |
717 |
23570 |
chainConclusion = eliminateCrowdingLits( |
718 |
|
chainConclusionLits, conclusionLits, children, args, cdp); |
719 |
|
// update vector of lits. Note that the set is no longer used, so we don't |
720 |
|
// need to update it |
721 |
|
// |
722 |
|
// We need again to check whether chainConclusion is a singleton |
723 |
|
// clause. As above, it's a singleton if it's in the original |
724 |
|
// chainConclusionLitsSet. |
725 |
23570 |
chainConclusionLits.clear(); |
726 |
23570 |
if (chainConclusionLitsSet.count(chainConclusion)) |
727 |
|
{ |
728 |
1 |
chainConclusionLits.push_back(chainConclusion); |
729 |
|
} |
730 |
|
else |
731 |
|
{ |
732 |
23569 |
Assert(chainConclusion.getKind() == kind::OR); |
733 |
70707 |
chainConclusionLits.insert(chainConclusionLits.end(), |
734 |
|
chainConclusion.begin(), |
735 |
70707 |
chainConclusion.end()); |
736 |
|
} |
737 |
|
} |
738 |
|
else |
739 |
|
{ |
740 |
4280 |
cdp->addStep( |
741 |
|
chainConclusion, PfRule::CHAIN_RESOLUTION, children, chainResArgs); |
742 |
|
} |
743 |
55700 |
Trace("smt-proof-pp-debug") |
744 |
27850 |
<< "Conclusion after chain_res/elimCrowd: " << chainConclusion << "\n"; |
745 |
55700 |
Trace("smt-proof-pp-debug") |
746 |
27850 |
<< "Conclusion lits: " << chainConclusionLits << "\n"; |
747 |
|
// Placeholder for running conclusion |
748 |
55700 |
Node n = chainConclusion; |
749 |
|
// factoring |
750 |
27850 |
if (chainConclusionLits.size() != conclusionLits.size()) |
751 |
|
{ |
752 |
|
// We build it rather than taking conclusionLits because the order may be |
753 |
|
// different |
754 |
54062 |
std::vector<Node> factoredLits; |
755 |
54062 |
std::unordered_set<TNode> clauseSet; |
756 |
859193 |
for (size_t i = 0, size = chainConclusionLits.size(); i < size; ++i) |
757 |
|
{ |
758 |
832162 |
if (clauseSet.count(chainConclusionLits[i])) |
759 |
|
{ |
760 |
356865 |
continue; |
761 |
|
} |
762 |
475297 |
factoredLits.push_back(n[i]); |
763 |
475297 |
clauseSet.insert(n[i]); |
764 |
|
} |
765 |
27031 |
Node factored = factoredLits.empty() |
766 |
|
? nm->mkConst(false) |
767 |
27031 |
: factoredLits.size() == 1 |
768 |
1033 |
? factoredLits[0] |
769 |
82126 |
: nm->mkNode(kind::OR, factoredLits); |
770 |
27031 |
cdp->addStep(factored, PfRule::FACTORING, {n}, {}); |
771 |
27031 |
n = factored; |
772 |
|
} |
773 |
|
// either same node or n as a clause |
774 |
27850 |
Assert(n == args[0] || n.getKind() == kind::OR); |
775 |
|
// reordering |
776 |
27850 |
if (n != args[0]) |
777 |
|
{ |
778 |
24358 |
cdp->addStep(args[0], PfRule::REORDERING, {n}, {args[0]}); |
779 |
|
} |
780 |
27850 |
return args[0]; |
781 |
|
} |
782 |
69332 |
else if (id == PfRule::SUBS) |
783 |
|
{ |
784 |
7821 |
NodeManager* nm = NodeManager::currentNM(); |
785 |
|
// Notice that a naive way to reconstruct SUBS is to do a term conversion |
786 |
|
// proof for each substitution. |
787 |
|
// The proof of f(a) * { a -> g(b) } * { b -> c } = f(g(c)) is: |
788 |
|
// TRANS( CONG{f}( a=g(b) ), CONG{f}( CONG{g}( b=c ) ) ) |
789 |
|
// Notice that more optimal proofs are possible that do a single traversal |
790 |
|
// over t. This is done by applying later substitutions to the range of |
791 |
|
// previous substitutions, until a final simultaneous substitution is |
792 |
|
// applied to t. For instance, in the above example, we first prove: |
793 |
|
// CONG{g}( b = c ) |
794 |
|
// by applying the second substitution { b -> c } to the range of the first, |
795 |
|
// giving us a proof of g(b)=g(c). We then construct the updated proof |
796 |
|
// by tranitivity: |
797 |
|
// TRANS( a=g(b), CONG{g}( b=c ) ) |
798 |
|
// We then apply the substitution { a -> g(c), b -> c } to f(a), to obtain: |
799 |
|
// CONG{f}( TRANS( a=g(b), CONG{g}( b=c ) ) ) |
800 |
|
// which notice is more compact than the proof above. |
801 |
15642 |
Node t = args[0]; |
802 |
|
// get the kind of substitution |
803 |
7821 |
MethodId ids = MethodId::SB_DEFAULT; |
804 |
7821 |
if (args.size() >= 2) |
805 |
|
{ |
806 |
5969 |
builtin::BuiltinProofRuleChecker::getMethodId(args[1], ids); |
807 |
|
} |
808 |
7821 |
MethodId ida = MethodId::SBA_SEQUENTIAL; |
809 |
7821 |
if (args.size() >= 3) |
810 |
|
{ |
811 |
1651 |
builtin::BuiltinProofRuleChecker::getMethodId(args[2], ida); |
812 |
|
} |
813 |
15642 |
std::vector<std::shared_ptr<CDProof>> pfs; |
814 |
15642 |
std::vector<TNode> vsList; |
815 |
15642 |
std::vector<TNode> ssList; |
816 |
15642 |
std::vector<TNode> fromList; |
817 |
15642 |
std::vector<ProofGenerator*> pgs; |
818 |
|
// first, compute the entire substitution |
819 |
287897 |
for (size_t i = 0, nchild = children.size(); i < nchild; i++) |
820 |
|
{ |
821 |
|
// get the substitution |
822 |
560152 |
builtin::BuiltinProofRuleChecker::getSubstitutionFor( |
823 |
280076 |
children[i], vsList, ssList, fromList, ids); |
824 |
|
// ensure proofs for each formula in fromList |
825 |
280076 |
if (children[i].getKind() == AND && ids == MethodId::SB_DEFAULT) |
826 |
|
{ |
827 |
|
for (size_t j = 0, nchildi = children[i].getNumChildren(); j < nchildi; |
828 |
|
j++) |
829 |
|
{ |
830 |
|
Node nodej = nm->mkConst(Rational(j)); |
831 |
|
cdp->addStep( |
832 |
|
children[i][j], PfRule::AND_ELIM, {children[i]}, {nodej}); |
833 |
|
} |
834 |
|
} |
835 |
|
} |
836 |
15642 |
std::vector<Node> vvec; |
837 |
15642 |
std::vector<Node> svec; |
838 |
287897 |
for (size_t i = 0, nvs = vsList.size(); i < nvs; i++) |
839 |
|
{ |
840 |
|
// Note we process in forward order, since later substitution should be |
841 |
|
// applied to earlier ones, and the last child of a SUBS is processed |
842 |
|
// first. |
843 |
560067 |
TNode var = vsList[i]; |
844 |
560067 |
TNode subs = ssList[i]; |
845 |
560067 |
TNode childFrom = fromList[i]; |
846 |
560152 |
Trace("smt-proof-pp-debug") |
847 |
280076 |
<< "...process " << var << " -> " << subs << " (" << childFrom << ", " |
848 |
280076 |
<< ids << ")" << std::endl; |
849 |
|
// apply the current substitution to the range |
850 |
280076 |
if (!vvec.empty() && ida == MethodId::SBA_SEQUENTIAL) |
851 |
|
{ |
852 |
|
Node ss = |
853 |
1099 |
subs.substitute(vvec.begin(), vvec.end(), svec.begin(), svec.end()); |
854 |
592 |
if (ss != subs) |
855 |
|
{ |
856 |
170 |
Trace("smt-proof-pp-debug") |
857 |
85 |
<< "......updated to " << var << " -> " << ss |
858 |
85 |
<< " based on previous substitution" << std::endl; |
859 |
|
// make the proof for the tranitivity step |
860 |
170 |
std::shared_ptr<CDProof> pf = std::make_shared<CDProof>(d_pnm); |
861 |
85 |
pfs.push_back(pf); |
862 |
|
// prove the updated substitution |
863 |
|
TConvProofGenerator tcg(d_pnm, |
864 |
|
nullptr, |
865 |
|
TConvPolicy::ONCE, |
866 |
|
TConvCachePolicy::NEVER, |
867 |
|
"nested_SUBS_TConvProofGenerator", |
868 |
|
nullptr, |
869 |
170 |
true); |
870 |
|
// add previous rewrite steps |
871 |
317 |
for (unsigned j = 0, nvars = vvec.size(); j < nvars; j++) |
872 |
|
{ |
873 |
|
// substitutions are pre-rewrites |
874 |
232 |
tcg.addRewriteStep(vvec[j], svec[j], pgs[j], true); |
875 |
|
} |
876 |
|
// get the proof for the update to the current substitution |
877 |
170 |
Node seqss = subs.eqNode(ss); |
878 |
170 |
std::shared_ptr<ProofNode> pfn = tcg.getProofFor(seqss); |
879 |
85 |
Assert(pfn != nullptr); |
880 |
|
// add the proof |
881 |
85 |
pf->addProof(pfn); |
882 |
|
// get proof for childFrom from cdp |
883 |
85 |
pfn = cdp->getProofFor(childFrom); |
884 |
85 |
pf->addProof(pfn); |
885 |
|
// ensure we have a proof of var = subs |
886 |
170 |
Node veqs = addProofForSubsStep(var, subs, childFrom, pf.get()); |
887 |
|
// transitivity |
888 |
85 |
pf->addStep(var.eqNode(ss), PfRule::TRANS, {veqs, seqss}, {}); |
889 |
|
// add to the substitution |
890 |
85 |
vvec.push_back(var); |
891 |
85 |
svec.push_back(ss); |
892 |
85 |
pgs.push_back(pf.get()); |
893 |
85 |
continue; |
894 |
|
} |
895 |
|
} |
896 |
|
// Just use equality from CDProof, but ensure we have a proof in cdp. |
897 |
|
// This may involve a TRUE_INTRO/FALSE_INTRO if the substitution step |
898 |
|
// uses the assumption childFrom as a Boolean assignment (e.g. |
899 |
|
// childFrom = true if we are using MethodId::SB_LITERAL). |
900 |
279991 |
addProofForSubsStep(var, subs, childFrom, cdp); |
901 |
279991 |
vvec.push_back(var); |
902 |
279991 |
svec.push_back(subs); |
903 |
279991 |
pgs.push_back(cdp); |
904 |
|
} |
905 |
|
// should be implied by the substitution now |
906 |
7821 |
TConvPolicy tcpolicy = ida == MethodId::SBA_FIXPOINT ? TConvPolicy::FIXPOINT |
907 |
|
: TConvPolicy::ONCE; |
908 |
|
TConvProofGenerator tcpg(d_pnm, |
909 |
|
nullptr, |
910 |
|
tcpolicy, |
911 |
|
TConvCachePolicy::NEVER, |
912 |
|
"SUBS_TConvProofGenerator", |
913 |
|
nullptr, |
914 |
15642 |
true); |
915 |
287897 |
for (unsigned j = 0, nvars = vvec.size(); j < nvars; j++) |
916 |
|
{ |
917 |
|
// substitutions are pre-rewrites |
918 |
280076 |
tcpg.addRewriteStep(vvec[j], svec[j], pgs[j], true); |
919 |
|
} |
920 |
|
// add the proof constructed by the term conversion utility |
921 |
15642 |
std::shared_ptr<ProofNode> pfn = tcpg.getProofForRewriting(t); |
922 |
15642 |
Node eq = pfn->getResult(); |
923 |
|
Node ts = builtin::BuiltinProofRuleChecker::applySubstitution( |
924 |
15642 |
t, children, ids, ida); |
925 |
15642 |
Node eqq = t.eqNode(ts); |
926 |
7821 |
if (eq != eqq) |
927 |
|
{ |
928 |
|
pfn = nullptr; |
929 |
|
} |
930 |
|
// should give a proof, if not, then tcpg does not agree with the |
931 |
|
// substitution. |
932 |
7821 |
Assert(pfn != nullptr); |
933 |
7821 |
if (pfn == nullptr) |
934 |
|
{ |
935 |
|
AlwaysAssert(false) << "resort to TRUST_SUBS" << std::endl |
936 |
|
<< eq << std::endl |
937 |
|
<< eqq << std::endl |
938 |
|
<< "from " << children << " applied to " << t; |
939 |
|
cdp->addStep(eqq, PfRule::TRUST_SUBS, {}, {eqq}); |
940 |
|
} |
941 |
|
else |
942 |
|
{ |
943 |
7821 |
cdp->addProof(pfn); |
944 |
|
} |
945 |
7821 |
return eqq; |
946 |
|
} |
947 |
61511 |
else if (id == PfRule::REWRITE) |
948 |
|
{ |
949 |
|
// get the kind of rewrite |
950 |
57096 |
MethodId idr = MethodId::RW_REWRITE; |
951 |
57096 |
if (args.size() >= 2) |
952 |
|
{ |
953 |
8 |
builtin::BuiltinProofRuleChecker::getMethodId(args[1], idr); |
954 |
|
} |
955 |
|
builtin::BuiltinProofRuleChecker* builtinPfC = |
956 |
|
static_cast<builtin::BuiltinProofRuleChecker*>( |
957 |
57096 |
d_pnm->getChecker()->getCheckerFor(PfRule::REWRITE)); |
958 |
114192 |
Node ret = builtinPfC->applyRewrite(args[0], idr); |
959 |
114192 |
Node eq = args[0].eqNode(ret); |
960 |
57096 |
if (idr == MethodId::RW_REWRITE || idr == MethodId::RW_REWRITE_EQ_EXT) |
961 |
|
{ |
962 |
|
// rewrites from theory::Rewriter |
963 |
57096 |
bool isExtEq = (idr == MethodId::RW_REWRITE_EQ_EXT); |
964 |
|
// use rewrite with proof interface |
965 |
57096 |
Rewriter* rr = d_smte->getRewriter(); |
966 |
114192 |
TrustNode trn = rr->rewriteWithProof(args[0], isExtEq); |
967 |
114192 |
std::shared_ptr<ProofNode> pfn = trn.toProofNode(); |
968 |
57096 |
if (pfn == nullptr) |
969 |
|
{ |
970 |
16 |
Trace("smt-proof-pp-debug") |
971 |
8 |
<< "Use TRUST_REWRITE for " << eq << std::endl; |
972 |
|
// did not have a proof of rewriting, probably isExtEq is true |
973 |
8 |
if (isExtEq) |
974 |
|
{ |
975 |
|
// update to THEORY_REWRITE with idr |
976 |
8 |
Assert(args.size() >= 1); |
977 |
8 |
TheoryId theoryId = Theory::theoryOf(args[0].getType()); |
978 |
16 |
Node tid = builtin::BuiltinProofRuleChecker::mkTheoryIdNode(theoryId); |
979 |
8 |
cdp->addStep(eq, PfRule::THEORY_REWRITE, {}, {eq, tid, args[1]}); |
980 |
|
} |
981 |
|
else |
982 |
|
{ |
983 |
|
// this should never be applied |
984 |
|
cdp->addStep(eq, PfRule::TRUST_REWRITE, {}, {eq}); |
985 |
|
} |
986 |
|
} |
987 |
|
else |
988 |
|
{ |
989 |
57088 |
cdp->addProof(pfn); |
990 |
|
} |
991 |
114192 |
Assert(trn.getNode() == ret) |
992 |
57096 |
<< "Unexpected rewrite " << args[0] << std::endl |
993 |
57096 |
<< "Got: " << trn.getNode() << std::endl |
994 |
57096 |
<< "Expected: " << ret; |
995 |
|
} |
996 |
|
else if (idr == MethodId::RW_EVALUATE) |
997 |
|
{ |
998 |
|
// change to evaluate, which is never eliminated |
999 |
|
cdp->addStep(eq, PfRule::EVALUATE, {}, {args[0]}); |
1000 |
|
} |
1001 |
|
else |
1002 |
|
{ |
1003 |
|
// don't know how to eliminate |
1004 |
|
return Node::null(); |
1005 |
|
} |
1006 |
57096 |
if (args[0] == ret) |
1007 |
|
{ |
1008 |
|
// should not be necessary typically |
1009 |
|
cdp->addStep(eq, PfRule::REFL, {}, {args[0]}); |
1010 |
|
} |
1011 |
57096 |
return eq; |
1012 |
|
} |
1013 |
4415 |
else if (id == PfRule::THEORY_REWRITE) |
1014 |
|
{ |
1015 |
|
Assert(!args.empty()); |
1016 |
|
Node eq = args[0]; |
1017 |
|
Assert(eq.getKind() == EQUAL); |
1018 |
|
// try to replay theory rewrite |
1019 |
|
// first, check that maybe its just an evaluation step |
1020 |
|
ProofChecker* pc = d_pnm->getChecker(); |
1021 |
|
Node ceval = |
1022 |
|
pc->checkDebug(PfRule::EVALUATE, {}, {eq[0]}, eq, "smt-proof-pp-debug"); |
1023 |
|
if (!ceval.isNull() && ceval == eq) |
1024 |
|
{ |
1025 |
|
cdp->addStep(eq, PfRule::EVALUATE, {}, {eq[0]}); |
1026 |
|
return eq; |
1027 |
|
} |
1028 |
|
// otherwise no update |
1029 |
|
Trace("final-pf-hole") << "hole: " << id << " : " << eq << std::endl; |
1030 |
|
} |
1031 |
4415 |
else if (id == PfRule::MACRO_ARITH_SCALE_SUM_UB) |
1032 |
|
{ |
1033 |
4415 |
Debug("macro::arith") << "Expand MACRO_ARITH_SCALE_SUM_UB" << std::endl; |
1034 |
4415 |
if (Debug.isOn("macro::arith")) |
1035 |
|
{ |
1036 |
|
for (const auto& child : children) |
1037 |
|
{ |
1038 |
|
Debug("macro::arith") << " child: " << child << std::endl; |
1039 |
|
} |
1040 |
|
Debug("macro::arith") << " args: " << args << std::endl; |
1041 |
|
} |
1042 |
4415 |
Assert(args.size() == children.size()); |
1043 |
4415 |
NodeManager* nm = NodeManager::currentNM(); |
1044 |
8830 |
ProofStepBuffer steps{d_pnm->getChecker()}; |
1045 |
|
|
1046 |
|
// Scale all children, accumulating |
1047 |
8830 |
std::vector<Node> scaledRels; |
1048 |
27795 |
for (size_t i = 0; i < children.size(); ++i) |
1049 |
|
{ |
1050 |
46760 |
TNode child = children[i]; |
1051 |
46760 |
TNode scalar = args[i]; |
1052 |
23380 |
bool isPos = scalar.getConst<Rational>() > 0; |
1053 |
|
Node scalarCmp = |
1054 |
46760 |
nm->mkNode(isPos ? GT : LT, scalar, nm->mkConst(Rational(0))); |
1055 |
|
// (= scalarCmp true) |
1056 |
46760 |
Node scalarCmpOrTrue = steps.tryStep(PfRule::EVALUATE, {}, {scalarCmp}); |
1057 |
23380 |
Assert(!scalarCmpOrTrue.isNull()); |
1058 |
|
// scalarCmp |
1059 |
23380 |
steps.addStep(PfRule::TRUE_ELIM, {scalarCmpOrTrue}, {}, scalarCmp); |
1060 |
|
// (and scalarCmp relation) |
1061 |
|
Node scalarCmpAndRel = |
1062 |
46760 |
steps.tryStep(PfRule::AND_INTRO, {scalarCmp, child}, {}); |
1063 |
23380 |
Assert(!scalarCmpAndRel.isNull()); |
1064 |
|
// (=> (and scalarCmp relation) scaled) |
1065 |
|
Node impl = |
1066 |
|
steps.tryStep(isPos ? PfRule::ARITH_MULT_POS : PfRule::ARITH_MULT_NEG, |
1067 |
|
{}, |
1068 |
46760 |
{scalar, child}); |
1069 |
23380 |
Assert(!impl.isNull()); |
1070 |
|
// scaled |
1071 |
|
Node scaled = |
1072 |
46760 |
steps.tryStep(PfRule::MODUS_PONENS, {scalarCmpAndRel, impl}, {}); |
1073 |
23380 |
Assert(!scaled.isNull()); |
1074 |
23380 |
scaledRels.emplace_back(scaled); |
1075 |
|
} |
1076 |
|
|
1077 |
8830 |
Node sumBounds = steps.tryStep(PfRule::ARITH_SUM_UB, scaledRels, {}); |
1078 |
4415 |
cdp->addSteps(steps); |
1079 |
8830 |
Debug("macro::arith") << "Expansion done. Proved: " << sumBounds |
1080 |
4415 |
<< std::endl; |
1081 |
4415 |
return sumBounds; |
1082 |
|
} |
1083 |
|
|
1084 |
|
// TRUST, PREPROCESS, THEORY_LEMMA, THEORY_PREPROCESS? |
1085 |
|
|
1086 |
|
return Node::null(); |
1087 |
|
} |
1088 |
|
|
1089 |
15300 |
Node ProofPostprocessCallback::addProofForWitnessForm(Node t, CDProof* cdp) |
1090 |
|
{ |
1091 |
30600 |
Node tw = SkolemManager::getOriginalForm(t); |
1092 |
15300 |
Node eq = t.eqNode(tw); |
1093 |
15300 |
if (t == tw) |
1094 |
|
{ |
1095 |
|
// not necessary, add REFL step |
1096 |
7017 |
cdp->addStep(eq, PfRule::REFL, {}, {t}); |
1097 |
7017 |
return eq; |
1098 |
|
} |
1099 |
16566 |
std::shared_ptr<ProofNode> pn = d_wfpm.getProofFor(eq); |
1100 |
8283 |
if (pn != nullptr) |
1101 |
|
{ |
1102 |
|
// add the proof |
1103 |
8283 |
cdp->addProof(pn); |
1104 |
|
} |
1105 |
|
else |
1106 |
|
{ |
1107 |
|
Assert(false) << "ProofPostprocessCallback::addProofForWitnessForm: failed " |
1108 |
|
"to add proof for witness form of " |
1109 |
|
<< t; |
1110 |
|
} |
1111 |
8283 |
return eq; |
1112 |
|
} |
1113 |
|
|
1114 |
126125 |
Node ProofPostprocessCallback::addProofForTrans( |
1115 |
|
const std::vector<Node>& tchildren, CDProof* cdp) |
1116 |
|
{ |
1117 |
126125 |
size_t tsize = tchildren.size(); |
1118 |
126125 |
if (tsize > 1) |
1119 |
|
{ |
1120 |
32252 |
Node lhs = tchildren[0][0]; |
1121 |
32252 |
Node rhs = tchildren[tsize - 1][1]; |
1122 |
32252 |
Node eq = lhs.eqNode(rhs); |
1123 |
16126 |
cdp->addStep(eq, PfRule::TRANS, tchildren, {}); |
1124 |
16126 |
return eq; |
1125 |
|
} |
1126 |
109999 |
else if (tsize == 1) |
1127 |
|
{ |
1128 |
98684 |
return tchildren[0]; |
1129 |
|
} |
1130 |
11315 |
return Node::null(); |
1131 |
|
} |
1132 |
|
|
1133 |
280076 |
Node ProofPostprocessCallback::addProofForSubsStep(Node var, |
1134 |
|
Node subs, |
1135 |
|
Node assump, |
1136 |
|
CDProof* cdp) |
1137 |
|
{ |
1138 |
|
// ensure we have a proof of var = subs |
1139 |
280076 |
Node veqs = var.eqNode(subs); |
1140 |
280076 |
if (veqs != assump) |
1141 |
|
{ |
1142 |
|
// should be true intro or false intro |
1143 |
4318 |
Assert(subs.isConst()); |
1144 |
12954 |
cdp->addStep( |
1145 |
|
veqs, |
1146 |
4318 |
subs.getConst<bool>() ? PfRule::TRUE_INTRO : PfRule::FALSE_INTRO, |
1147 |
|
{assump}, |
1148 |
4318 |
{}); |
1149 |
|
} |
1150 |
280076 |
return veqs; |
1151 |
|
} |
1152 |
|
|
1153 |
107941 |
bool ProofPostprocessCallback::addToTransChildren(Node eq, |
1154 |
|
std::vector<Node>& tchildren, |
1155 |
|
bool isSymm) |
1156 |
|
{ |
1157 |
107941 |
Assert(!eq.isNull()); |
1158 |
107941 |
Assert(eq.getKind() == kind::EQUAL); |
1159 |
107941 |
if (eq[0] == eq[1]) |
1160 |
|
{ |
1161 |
38536 |
return false; |
1162 |
|
} |
1163 |
138810 |
Node equ = isSymm ? eq[1].eqNode(eq[0]) : eq; |
1164 |
69405 |
Assert(tchildren.empty() |
1165 |
|
|| (tchildren[tchildren.size() - 1].getKind() == kind::EQUAL |
1166 |
|
&& tchildren[tchildren.size() - 1][1] == equ[0])); |
1167 |
69405 |
tchildren.push_back(equ); |
1168 |
69405 |
return true; |
1169 |
|
} |
1170 |
|
|
1171 |
3600 |
ProofPostprocessFinalCallback::ProofPostprocessFinalCallback( |
1172 |
3600 |
ProofNodeManager* pnm) |
1173 |
3600 |
: d_ruleCount(smtStatisticsRegistry().registerHistogram<PfRule>( |
1174 |
7200 |
"finalProof::ruleCount")), |
1175 |
|
d_totalRuleCount( |
1176 |
7200 |
smtStatisticsRegistry().registerInt("finalProof::totalRuleCount")), |
1177 |
|
d_minPedanticLevel( |
1178 |
7200 |
smtStatisticsRegistry().registerInt("finalProof::minPedanticLevel")), |
1179 |
|
d_numFinalProofs( |
1180 |
7200 |
smtStatisticsRegistry().registerInt("finalProofs::numFinalProofs")), |
1181 |
|
d_pnm(pnm), |
1182 |
21600 |
d_pedanticFailure(false) |
1183 |
|
{ |
1184 |
3600 |
d_minPedanticLevel += 10; |
1185 |
3600 |
} |
1186 |
|
|
1187 |
2690 |
void ProofPostprocessFinalCallback::initializeUpdate() |
1188 |
|
{ |
1189 |
2690 |
d_pedanticFailure = false; |
1190 |
2690 |
d_pedanticFailureOut.str(""); |
1191 |
2690 |
++d_numFinalProofs; |
1192 |
2690 |
} |
1193 |
|
|
1194 |
2755228 |
bool ProofPostprocessFinalCallback::shouldUpdate(std::shared_ptr<ProofNode> pn, |
1195 |
|
const std::vector<Node>& fa, |
1196 |
|
bool& continueUpdate) |
1197 |
|
{ |
1198 |
2755228 |
PfRule r = pn->getRule(); |
1199 |
|
// if not doing eager pedantic checking, fail if below threshold |
1200 |
2755228 |
if (!options::proofEagerChecking()) |
1201 |
|
{ |
1202 |
2755228 |
if (!d_pedanticFailure) |
1203 |
|
{ |
1204 |
2755228 |
Assert(d_pedanticFailureOut.str().empty()); |
1205 |
2755228 |
if (d_pnm->getChecker()->isPedanticFailure(r, d_pedanticFailureOut)) |
1206 |
|
{ |
1207 |
|
d_pedanticFailure = true; |
1208 |
|
} |
1209 |
|
} |
1210 |
|
} |
1211 |
2755228 |
uint32_t plevel = d_pnm->getChecker()->getPedanticLevel(r); |
1212 |
2755228 |
if (plevel != 0) |
1213 |
|
{ |
1214 |
13061 |
d_minPedanticLevel.minAssign(plevel); |
1215 |
|
} |
1216 |
|
// record stats for the rule |
1217 |
2755228 |
d_ruleCount << r; |
1218 |
2755228 |
++d_totalRuleCount; |
1219 |
2755228 |
return false; |
1220 |
|
} |
1221 |
|
|
1222 |
2690 |
bool ProofPostprocessFinalCallback::wasPedanticFailure(std::ostream& out) const |
1223 |
|
{ |
1224 |
2690 |
if (d_pedanticFailure) |
1225 |
|
{ |
1226 |
|
out << d_pedanticFailureOut.str(); |
1227 |
|
return true; |
1228 |
|
} |
1229 |
2690 |
return false; |
1230 |
|
} |
1231 |
|
|
1232 |
3600 |
ProofPostproccess::ProofPostproccess(ProofNodeManager* pnm, |
1233 |
|
SmtEngine* smte, |
1234 |
|
ProofGenerator* pppg, |
1235 |
3600 |
bool updateScopedAssumptions) |
1236 |
|
: d_pnm(pnm), |
1237 |
|
d_cb(pnm, smte, pppg, updateScopedAssumptions), |
1238 |
|
// the update merges subproofs |
1239 |
|
d_updater(d_pnm, d_cb, true), |
1240 |
|
d_finalCb(pnm), |
1241 |
3600 |
d_finalizer(d_pnm, d_finalCb) |
1242 |
|
{ |
1243 |
3600 |
} |
1244 |
|
|
1245 |
3600 |
ProofPostproccess::~ProofPostproccess() {} |
1246 |
|
|
1247 |
2690 |
void ProofPostproccess::process(std::shared_ptr<ProofNode> pf) |
1248 |
|
{ |
1249 |
|
// Initialize the callback, which computes necessary static information about |
1250 |
|
// how to process, including how to process assumptions in pf. |
1251 |
2690 |
d_cb.initializeUpdate(); |
1252 |
|
// now, process |
1253 |
2690 |
d_updater.process(pf); |
1254 |
|
// take stats and check pedantic |
1255 |
2690 |
d_finalCb.initializeUpdate(); |
1256 |
2690 |
d_finalizer.process(pf); |
1257 |
|
|
1258 |
5380 |
std::stringstream serr; |
1259 |
2690 |
bool wasPedanticFailure = d_finalCb.wasPedanticFailure(serr); |
1260 |
2690 |
if (wasPedanticFailure) |
1261 |
|
{ |
1262 |
|
AlwaysAssert(!wasPedanticFailure) |
1263 |
|
<< "ProofPostproccess::process: pedantic failure:" << std::endl |
1264 |
|
<< serr.str(); |
1265 |
|
} |
1266 |
2690 |
} |
1267 |
|
|
1268 |
10116 |
void ProofPostproccess::setEliminateRule(PfRule rule) |
1269 |
|
{ |
1270 |
10116 |
d_cb.setEliminateRule(rule); |
1271 |
10116 |
} |
1272 |
|
|
1273 |
|
} // namespace smt |
1274 |
28191 |
} // namespace cvc5 |