1 |
|
/****************************************************************************** |
2 |
|
* Top contributors (to current version): |
3 |
|
* Tim King, Alex Ozdemir, Haniel Barbosa |
4 |
|
* |
5 |
|
* This file is part of the cvc5 project. |
6 |
|
* |
7 |
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS |
8 |
|
* in the top-level source directory and their institutional affiliations. |
9 |
|
* All rights reserved. See the file COPYING in the top-level source |
10 |
|
* directory for licensing information. |
11 |
|
* **************************************************************************** |
12 |
|
* |
13 |
|
* Defines Constraint and ConstraintDatabase which is the internal |
14 |
|
* representation of variables in arithmetic |
15 |
|
* |
16 |
|
* This file defines Constraint and ConstraintDatabase. |
17 |
|
* A Constraint is the internal representation of literals in TheoryArithmetic. |
18 |
|
* Constraints are fundamentally a triple: |
19 |
|
* - ArithVar associated with the constraint, |
20 |
|
* - a DeltaRational value, |
21 |
|
* - and a ConstraintType. |
22 |
|
* |
23 |
|
* Literals: |
24 |
|
* The constraint may also keep track of a node corresponding to the |
25 |
|
* Constraint. |
26 |
|
* This can be accessed by getLiteral() in O(1) if it has been set. |
27 |
|
* This node must be in normal form and may be used for communication with |
28 |
|
* the TheoryEngine. |
29 |
|
* |
30 |
|
* In addition, Constraints keep track of the following: |
31 |
|
* - A Constraint that is the negation of the Constraint. |
32 |
|
* - An iterator into a set of Constraints for the ArithVar sorted by |
33 |
|
* DeltaRational value. |
34 |
|
* - A context dependent internal proof of the node that can be used for |
35 |
|
* explanations. |
36 |
|
* - Whether an equality/disequality has been split in the user context via a |
37 |
|
* lemma. |
38 |
|
* - Whether a constraint, be be used in explanations sent to the context |
39 |
|
* |
40 |
|
* Looking up constraints: |
41 |
|
* - All of the Constraints with associated nodes in the ConstraintDatabase |
42 |
|
* can be accessed via a single hashtable lookup until the Constraint is |
43 |
|
* removed. |
44 |
|
* - Nodes that have not been associated to a constraints can be |
45 |
|
* inserted/associated to existing nodes in O(log n) time. |
46 |
|
* |
47 |
|
* Implications: |
48 |
|
* - A Constraint can be used to find unate implications. |
49 |
|
* - A unate implication is an implication based purely on the ArithVar |
50 |
|
* matching and the DeltaRational value. |
51 |
|
* (implies (<= x c) (<= x d)) given c <= d |
52 |
|
* - This is done using the iterator into the sorted set of constraints. |
53 |
|
* - Given a tight constraint and previous tightest constraint, this will |
54 |
|
* efficiently propagate internally. |
55 |
|
* |
56 |
|
* Additing and Removing Constraints |
57 |
|
* - Adding Constraints takes O(log n) time where n is the number of |
58 |
|
* constraints associated with the ArithVar. |
59 |
|
* - Removing Constraints takes O(1) time. |
60 |
|
* |
61 |
|
* Internals: |
62 |
|
* - Constraints are pointers to ConstraintValues. |
63 |
|
* - Undefined Constraints are NullConstraint. |
64 |
|
* |
65 |
|
* Assumption vs. Assertion: |
66 |
|
* - An assertion is anything on the theory d_fact queue. |
67 |
|
* This includes any thing propagated and returned to the fact queue. |
68 |
|
* These can be used in external conflicts and propagations of earlier |
69 |
|
* proofs. |
70 |
|
* - An assumption is anything on the theory d_fact queue that has no further |
71 |
|
* explanation i.e. this theory did not propagate it. |
72 |
|
* - To set something an assumption, first set it as being as assertion. |
73 |
|
* - Internal assumptions have no explanations and must be regressed out of the |
74 |
|
* proof. |
75 |
|
*/ |
76 |
|
|
77 |
|
#include "cvc5_private.h" |
78 |
|
|
79 |
|
#ifndef CVC5__THEORY__ARITH__CONSTRAINT_H |
80 |
|
#define CVC5__THEORY__ARITH__CONSTRAINT_H |
81 |
|
|
82 |
|
#include <unordered_map> |
83 |
|
#include <vector> |
84 |
|
|
85 |
|
#include "base/configuration_private.h" |
86 |
|
#include "context/cdlist.h" |
87 |
|
#include "context/cdqueue.h" |
88 |
|
#include "expr/node.h" |
89 |
|
#include "theory/arith/arithvar.h" |
90 |
|
#include "theory/arith/callbacks.h" |
91 |
|
#include "theory/arith/constraint_forward.h" |
92 |
|
#include "theory/arith/delta_rational.h" |
93 |
|
#include "theory/arith/proof_macros.h" |
94 |
|
#include "theory/trust_node.h" |
95 |
|
#include "util/statistics_stats.h" |
96 |
|
|
97 |
|
namespace cvc5 { |
98 |
|
|
99 |
|
class ProofNodeManager; |
100 |
|
|
101 |
|
namespace context { |
102 |
|
class Context; |
103 |
|
} |
104 |
|
namespace theory { |
105 |
|
|
106 |
|
class EagerProofGenerator; |
107 |
|
|
108 |
|
namespace arith { |
109 |
|
|
110 |
|
class Comparison; |
111 |
|
class ArithCongruenceManager; |
112 |
|
class ArithVariables; |
113 |
|
|
114 |
|
/** |
115 |
|
* Logs the types of different proofs. |
116 |
|
* Current, proof types: |
117 |
|
* - NoAP : This constraint is not known to be true. |
118 |
|
* - AssumeAP : This is an input assertion. There is no proof. |
119 |
|
* : Something can be both asserted and have a proof. |
120 |
|
* - InternalAssumeAP : An internal assumption. This has no guarantee of having an external proof. |
121 |
|
* : This must be removed by regression. |
122 |
|
* - FarkasAP : A proof with Farka's coefficients, i.e. |
123 |
|
* : \sum lambda_i ( asNode(x_i) <= c_i ) |= 0 < 0 |
124 |
|
* : If proofs are on, coefficients will be logged. |
125 |
|
* : If proofs are off, coefficients will not be logged. |
126 |
|
* : A unate implication is a FarkasAP. |
127 |
|
* - TrichotomyAP : This is any entailment using (x<= a and x >=a) => x = a |
128 |
|
* : Equivalently, (x > a or x < a or x = a) |
129 |
|
* : There are 3 candidate ways this can propagate: |
130 |
|
* : !(x > a) and !(x = a) => x < a |
131 |
|
* : !(x < a) and !(x = a) => x > a |
132 |
|
* : !(x > a) and !(x < a) => x = a |
133 |
|
* - EqualityEngineAP : This is propagated by the equality engine. |
134 |
|
* : Consult this for the proof. |
135 |
|
* - IntTightenAP : This is indicates that a bound involving integers was tightened. |
136 |
|
* : e.g. i < 5.5 became i <= 5, when i is an integer. |
137 |
|
* - IntHoleAP : This is currently a catch-all for all integer specific reason. |
138 |
|
*/ |
139 |
|
enum ArithProofType |
140 |
|
{ NoAP, |
141 |
|
AssumeAP, |
142 |
|
InternalAssumeAP, |
143 |
|
FarkasAP, |
144 |
|
TrichotomyAP, |
145 |
|
EqualityEngineAP, |
146 |
|
IntTightenAP, |
147 |
|
IntHoleAP}; |
148 |
|
|
149 |
|
/** |
150 |
|
* The types of constraints. |
151 |
|
* The convex constraints are the constraints are LowerBound, Equality, |
152 |
|
* and UpperBound. |
153 |
|
*/ |
154 |
|
enum ConstraintType {LowerBound, Equality, UpperBound, Disequality}; |
155 |
|
|
156 |
|
|
157 |
|
typedef context::CDList<ConstraintCP> CDConstraintList; |
158 |
|
|
159 |
|
typedef std::unordered_map<Node, ConstraintP> NodetoConstraintMap; |
160 |
|
|
161 |
|
typedef size_t ConstraintRuleID; |
162 |
|
static const ConstraintRuleID ConstraintRuleIdSentinel = std::numeric_limits<ConstraintRuleID>::max(); |
163 |
|
|
164 |
|
typedef size_t AntecedentId; |
165 |
|
static const AntecedentId AntecedentIdSentinel = std::numeric_limits<AntecedentId>::max(); |
166 |
|
|
167 |
|
|
168 |
|
typedef size_t AssertionOrder; |
169 |
|
static const AssertionOrder AssertionOrderSentinel = std::numeric_limits<AssertionOrder>::max(); |
170 |
|
|
171 |
|
|
172 |
|
/** |
173 |
|
* A ValueCollection binds together convex constraints that have the same |
174 |
|
* DeltaRational value. |
175 |
|
*/ |
176 |
|
class ValueCollection { |
177 |
|
private: |
178 |
|
|
179 |
|
ConstraintP d_lowerBound; |
180 |
|
ConstraintP d_upperBound; |
181 |
|
ConstraintP d_equality; |
182 |
|
ConstraintP d_disequality; |
183 |
|
|
184 |
|
public: |
185 |
|
ValueCollection(); |
186 |
|
|
187 |
|
static ValueCollection mkFromConstraint(ConstraintP c); |
188 |
|
|
189 |
|
bool hasLowerBound() const; |
190 |
|
bool hasUpperBound() const; |
191 |
|
bool hasEquality() const; |
192 |
|
bool hasDisequality() const; |
193 |
|
|
194 |
|
bool hasConstraintOfType(ConstraintType t) const; |
195 |
|
|
196 |
|
ConstraintP getLowerBound() const; |
197 |
|
ConstraintP getUpperBound() const; |
198 |
|
ConstraintP getEquality() const; |
199 |
|
ConstraintP getDisequality() const; |
200 |
|
|
201 |
|
ConstraintP getConstraintOfType(ConstraintType t) const; |
202 |
|
|
203 |
|
/** Returns true if any of the constraints are non-null. */ |
204 |
|
bool empty() const; |
205 |
|
|
206 |
|
/** |
207 |
|
* Remove the constraint of the type t from the collection. |
208 |
|
* Returns true if the ValueCollection is now empty. |
209 |
|
* If true is returned, d_value is now NULL. |
210 |
|
*/ |
211 |
|
void remove(ConstraintType t); |
212 |
|
|
213 |
|
/** |
214 |
|
* Adds a constraint to the set. |
215 |
|
* The collection must not have a constraint of that type already. |
216 |
|
*/ |
217 |
|
void add(ConstraintP c); |
218 |
|
|
219 |
|
void push_into(std::vector<ConstraintP>& vec) const; |
220 |
|
|
221 |
|
ConstraintP nonNull() const; |
222 |
|
|
223 |
|
ArithVar getVariable() const; |
224 |
|
const DeltaRational& getValue() const; |
225 |
|
}; |
226 |
|
|
227 |
|
/** |
228 |
|
* A Map of ValueCollections sorted by the associated DeltaRational values. |
229 |
|
* |
230 |
|
* Discussion: |
231 |
|
* While it is more natural to consider this a set, this cannot be a set as in |
232 |
|
* sets the type of both iterator and const_iterator in sets are |
233 |
|
* "constant iterators". We require iterators that dereference to |
234 |
|
* ValueCollection&. |
235 |
|
* |
236 |
|
* See: |
237 |
|
* http://gcc.gnu.org/onlinedocs/libstdc++/ext/lwg-defects.html#103 |
238 |
|
*/ |
239 |
|
typedef std::map<DeltaRational, ValueCollection> SortedConstraintMap; |
240 |
|
typedef SortedConstraintMap::iterator SortedConstraintMapIterator; |
241 |
|
typedef SortedConstraintMap::const_iterator SortedConstraintMapConstIterator; |
242 |
|
|
243 |
|
/** A Pair associating a variables and a Sorted ConstraintSet. */ |
244 |
147913 |
struct PerVariableDatabase{ |
245 |
|
ArithVar d_var; |
246 |
|
SortedConstraintMap d_constraints; |
247 |
|
|
248 |
|
// x ? c_1, x ? c_2, x ? c_3, ... |
249 |
|
// where ? is a non-empty subset of {lb, ub, eq} |
250 |
|
// c_1 < c_2 < c_3 < ... |
251 |
|
|
252 |
147913 |
PerVariableDatabase(ArithVar v) : d_var(v), d_constraints() {} |
253 |
|
|
254 |
|
bool empty() const { |
255 |
|
return d_constraints.empty(); |
256 |
|
} |
257 |
|
|
258 |
|
static bool IsEmpty(const PerVariableDatabase& p){ |
259 |
|
return p.empty(); |
260 |
|
} |
261 |
|
}; |
262 |
|
|
263 |
|
/** |
264 |
|
* If proofs are on, there is a vector of rationals for farkas coefficients. |
265 |
|
* This is the owner of the memory for the vector, and calls delete upon |
266 |
|
* cleanup. |
267 |
|
* |
268 |
|
*/ |
269 |
|
struct ConstraintRule { |
270 |
|
ConstraintP d_constraint; |
271 |
|
ArithProofType d_proofType; |
272 |
|
AntecedentId d_antecedentEnd; |
273 |
|
|
274 |
|
/** |
275 |
|
* In this comment, we abbreviate ConstraintDatabase::d_antecedents |
276 |
|
* and d_farkasCoefficients as ans and fc. |
277 |
|
* |
278 |
|
* This list is always empty if proofs are not enabled. |
279 |
|
* |
280 |
|
* If proofs are enabled, the proof of constraint c at p in ans[p] of length n |
281 |
|
* is (NullConstraint, ans[p-(n-1)], ... , ans[p-1], ans[p]) |
282 |
|
* |
283 |
|
* Farkas' proofs show a contradiction with the negation of c, c_not = |
284 |
|
* c->getNegation(). |
285 |
|
* |
286 |
|
* We treat the position for NullConstraint (p-n) as the position for the |
287 |
|
* farkas coefficient for so we pretend c_not is ans[p-n]. So this correlation |
288 |
|
* for the constraints we are going to use: (c_not, ans[p-n+(1)], ... , |
289 |
|
* ans[p-n+(n-1)], ans[p-n+(n)]) With the coefficients at positions: (fc[0], |
290 |
|
* fc[1)], ... fc[n]) |
291 |
|
* |
292 |
|
* The index of the constraints in the proof are {i | i <= 0 <= n] } (with |
293 |
|
* c_not being p-n). Partition the indices into L, U, and E, the lower bounds, |
294 |
|
* the upper bounds and equalities. |
295 |
|
* |
296 |
|
* We standardize the proofs to be upper bound oriented following the |
297 |
|
* convention: A x <= b with the proof witness of the form (lambda) Ax <= |
298 |
|
* (lambda) b and lambda >= 0. |
299 |
|
* |
300 |
|
* To accomplish this cleanly, the fc coefficients must be negative for lower |
301 |
|
* bounds. The signs of equalities can be either positive or negative. |
302 |
|
* |
303 |
|
* Thus the proof corresponds to (with multiplication over inequalities): |
304 |
|
* \sum_{u in U} fc[u] ans[p-n+u] + \sum_{e in E} fc[e] ans[p-n+e] |
305 |
|
* + \sum_{l in L} fc[l] ans[p-n+l] |
306 |
|
* |= 0 < 0 |
307 |
|
* where fc[u] > 0, fc[l] < 0, and fc[e] != 0 (i.e. it can be either +/-). |
308 |
|
* |
309 |
|
* There is no requirement that the proof is minimal. |
310 |
|
* We do however use all of the constraints by requiring non-zero |
311 |
|
* coefficients. |
312 |
|
*/ |
313 |
|
RationalVectorCP d_farkasCoefficients; |
314 |
|
ConstraintRule() |
315 |
|
: d_constraint(NullConstraint) |
316 |
|
, d_proofType(NoAP) |
317 |
|
, d_antecedentEnd(AntecedentIdSentinel) |
318 |
|
{ |
319 |
|
d_farkasCoefficients = RationalVectorCPSentinel; |
320 |
|
} |
321 |
|
|
322 |
4270868 |
ConstraintRule(ConstraintP con, ArithProofType pt) |
323 |
4270868 |
: d_constraint(con) |
324 |
|
, d_proofType(pt) |
325 |
4270868 |
, d_antecedentEnd(AntecedentIdSentinel) |
326 |
|
{ |
327 |
4270868 |
d_farkasCoefficients = RationalVectorCPSentinel; |
328 |
4270868 |
} |
329 |
1326018 |
ConstraintRule(ConstraintP con, ArithProofType pt, AntecedentId antecedentEnd) |
330 |
1326018 |
: d_constraint(con) |
331 |
|
, d_proofType(pt) |
332 |
1326018 |
, d_antecedentEnd(antecedentEnd) |
333 |
|
{ |
334 |
1326018 |
d_farkasCoefficients = RationalVectorCPSentinel; |
335 |
1326018 |
} |
336 |
|
|
337 |
1774710 |
ConstraintRule(ConstraintP con, ArithProofType pt, AntecedentId antecedentEnd, RationalVectorCP coeffs) |
338 |
1774710 |
: d_constraint(con) |
339 |
|
, d_proofType(pt) |
340 |
1774710 |
, d_antecedentEnd(antecedentEnd) |
341 |
|
{ |
342 |
1774710 |
Assert(ARITH_PROOF_ON() || coeffs == RationalVectorCPSentinel); |
343 |
1774710 |
d_farkasCoefficients = coeffs; |
344 |
1774710 |
} |
345 |
|
|
346 |
|
void print(std::ostream& out) const; |
347 |
|
void debugPrint() const; |
348 |
|
}; /* class ConstraintRule */ |
349 |
|
|
350 |
|
class Constraint { |
351 |
|
|
352 |
|
friend class ConstraintDatabase; |
353 |
|
|
354 |
|
public: |
355 |
|
/** |
356 |
|
* This begins construction of a minimal constraint. |
357 |
|
* |
358 |
|
* This should only be called by ConstraintDatabase. |
359 |
|
* |
360 |
|
* Because of circular dependencies a Constraint is not fully valid until |
361 |
|
* initialize has been called on it. |
362 |
|
*/ |
363 |
|
Constraint(ArithVar x, ConstraintType t, const DeltaRational& v); |
364 |
|
|
365 |
|
/** |
366 |
|
* Destructor for a constraint. |
367 |
|
* This should only be called if safeToGarbageCollect() is true. |
368 |
|
*/ |
369 |
|
~Constraint(); |
370 |
|
|
371 |
|
static ConstraintType constraintTypeOfComparison(const Comparison& cmp); |
372 |
|
|
373 |
16310390 |
inline ConstraintType getType() const { |
374 |
16310390 |
return d_type; |
375 |
|
} |
376 |
|
|
377 |
22341957 |
inline ArithVar getVariable() const { |
378 |
22341957 |
return d_variable; |
379 |
|
} |
380 |
|
|
381 |
36595183 |
const DeltaRational& getValue() const { |
382 |
36595183 |
return d_value; |
383 |
|
} |
384 |
|
|
385 |
3000814 |
inline ConstraintP getNegation() const { |
386 |
3000814 |
return d_negation; |
387 |
|
} |
388 |
|
|
389 |
5953237 |
bool isEquality() const{ |
390 |
5953237 |
return d_type == Equality; |
391 |
|
} |
392 |
609670 |
bool isDisequality() const{ |
393 |
609670 |
return d_type == Disequality; |
394 |
|
} |
395 |
4683714 |
bool isLowerBound() const{ |
396 |
4683714 |
return d_type == LowerBound; |
397 |
|
} |
398 |
4355266 |
bool isUpperBound() const{ |
399 |
4355266 |
return d_type == UpperBound; |
400 |
|
} |
401 |
1016884 |
bool isStrictUpperBound() const{ |
402 |
1016884 |
Assert(isUpperBound()); |
403 |
1016884 |
return getValue().infinitesimalSgn() < 0; |
404 |
|
} |
405 |
|
|
406 |
1047207 |
bool isStrictLowerBound() const{ |
407 |
1047207 |
Assert(isLowerBound()); |
408 |
1047207 |
return getValue().infinitesimalSgn() > 0; |
409 |
|
} |
410 |
|
|
411 |
1355631 |
bool isSplit() const { |
412 |
1355631 |
return d_split; |
413 |
|
} |
414 |
|
|
415 |
|
/** |
416 |
|
* Splits the node in the user context. |
417 |
|
* Returns a lemma that is assumed to be true for the rest of the user context. |
418 |
|
* Constraint must be an equality or disequality. |
419 |
|
*/ |
420 |
|
TrustNode split(); |
421 |
|
|
422 |
8797736 |
bool canBePropagated() const { |
423 |
8797736 |
return d_canBePropagated; |
424 |
|
} |
425 |
|
void setCanBePropagated(); |
426 |
|
|
427 |
|
/** |
428 |
|
* Light wrapper for calling setCanBePropagated(), |
429 |
|
* on this and this->d_negation. |
430 |
|
*/ |
431 |
371712 |
void setPreregistered(){ |
432 |
371712 |
setCanBePropagated(); |
433 |
371712 |
d_negation->setCanBePropagated(); |
434 |
371712 |
} |
435 |
|
|
436 |
48604595 |
bool assertedToTheTheory() const { |
437 |
48604595 |
Assert((d_assertionOrder < AssertionOrderSentinel) != d_witness.isNull()); |
438 |
48604595 |
return d_assertionOrder < AssertionOrderSentinel; |
439 |
|
} |
440 |
5269162 |
TNode getWitness() const { |
441 |
5269162 |
Assert(assertedToTheTheory()); |
442 |
5269162 |
return d_witness; |
443 |
|
} |
444 |
|
|
445 |
4813575 |
bool assertedBefore(AssertionOrder time) const { |
446 |
4813575 |
return d_assertionOrder < time; |
447 |
|
} |
448 |
|
|
449 |
|
/** |
450 |
|
* Sets the witness literal for a node being on the assertion stack. |
451 |
|
* |
452 |
|
* If the negation of the node is true, inConflict must be true. |
453 |
|
* If the negation of the node is false, inConflict must be false. |
454 |
|
* Hence, negationHasProof() == inConflict. |
455 |
|
* |
456 |
|
* This replaces: |
457 |
|
* void setAssertedToTheTheory(TNode witness); |
458 |
|
* void setAssertedToTheTheoryWithNegationTrue(TNode witness); |
459 |
|
*/ |
460 |
|
void setAssertedToTheTheory(TNode witness, bool inConflict); |
461 |
|
|
462 |
12027271 |
bool hasLiteral() const { |
463 |
12027271 |
return !d_literal.isNull(); |
464 |
|
} |
465 |
|
|
466 |
|
void setLiteral(Node n); |
467 |
|
|
468 |
1319558 |
Node getLiteral() const { |
469 |
1319558 |
Assert(hasLiteral()); |
470 |
1319558 |
return d_literal; |
471 |
|
} |
472 |
|
|
473 |
|
/** Gets a literal in the normal form suitable for proofs. |
474 |
|
* That is, (sum of non-const monomials) >< const. |
475 |
|
* |
476 |
|
* This is a sister method to `getLiteral`, which returns a normal form |
477 |
|
* literal, suitable for external solving use. |
478 |
|
*/ |
479 |
|
Node getProofLiteral() const; |
480 |
|
|
481 |
|
/** |
482 |
|
* Set the node as having a proof and being an assumption. |
483 |
|
* The node must be assertedToTheTheory(). |
484 |
|
* |
485 |
|
* Precondition: negationHasProof() == inConflict. |
486 |
|
* |
487 |
|
* Replaces: |
488 |
|
* selfExplaining(). |
489 |
|
* selfExplainingWithNegationTrue(). |
490 |
|
*/ |
491 |
|
void setAssumption(bool inConflict); |
492 |
|
|
493 |
|
/** Returns true if the node is an assumption.*/ |
494 |
|
bool isAssumption() const; |
495 |
|
|
496 |
|
/** Set the constraint to have an EqualityEngine proof. */ |
497 |
|
void setEqualityEngineProof(); |
498 |
|
bool hasEqualityEngineProof() const; |
499 |
|
|
500 |
|
/** Returns true if the node has a Farkas' proof. */ |
501 |
|
bool hasFarkasProof() const; |
502 |
|
|
503 |
|
/** |
504 |
|
* @brief Returns whether this constraint is provable using a Farkas |
505 |
|
* proof applied to (possibly tightened) input assertions. |
506 |
|
* |
507 |
|
* An example of a constraint that has a simple Farkas proof: |
508 |
|
* x <= 0 proven from x + y <= 0 and x - y <= 0. |
509 |
|
* |
510 |
|
* An example of another constraint that has a simple Farkas proof: |
511 |
|
* x <= 0 proven from x + y <= 0 and x - y <= 0.5 for integers x, y |
512 |
|
* (integer bound-tightening is applied first!). |
513 |
|
* |
514 |
|
* An example of a constraint that might be proven **without** a simple |
515 |
|
* Farkas proof: |
516 |
|
* x < 0 proven from not(x == 0) and not(x > 0). |
517 |
|
* |
518 |
|
* This could be proven internally by the arithmetic theory using |
519 |
|
* `TrichotomyAP` as the proof type. |
520 |
|
* |
521 |
|
*/ |
522 |
|
bool hasSimpleFarkasProof() const; |
523 |
|
/** |
524 |
|
* Returns whether this constraint is an assumption or a tightened |
525 |
|
* assumption. |
526 |
|
*/ |
527 |
|
bool isPossiblyTightenedAssumption() const; |
528 |
|
|
529 |
|
/** Returns true if the node has a int bound tightening proof. */ |
530 |
|
bool hasIntTightenProof() const; |
531 |
|
|
532 |
|
/** Returns true if the node has a int hole proof. */ |
533 |
|
bool hasIntHoleProof() const; |
534 |
|
|
535 |
|
/** Returns true if the node has a trichotomy proof. */ |
536 |
|
bool hasTrichotomyProof() const; |
537 |
|
|
538 |
|
void printProofTree(std::ostream & out, size_t depth = 0) const; |
539 |
|
|
540 |
|
/** |
541 |
|
* A sets the constraint to be an internal assumption. |
542 |
|
* |
543 |
|
* This does not need to have a witness or an associated literal. |
544 |
|
* This is always itself in the explanation fringe for both conflicts |
545 |
|
* and propagation. |
546 |
|
* This cannot be converted back into a Node conflict or explanation. |
547 |
|
* |
548 |
|
* This cannot have a proof or be asserted to the theory! |
549 |
|
* |
550 |
|
*/ |
551 |
|
void setInternalAssumption(bool inConflict); |
552 |
|
bool isInternalAssumption() const; |
553 |
|
|
554 |
|
/** |
555 |
|
* Returns a explanation of the constraint that is appropriate for conflicts. |
556 |
|
* |
557 |
|
* This is not appropriate for propagation! |
558 |
|
* |
559 |
|
* This is the minimum fringe of the implication tree s.t. |
560 |
|
* every constraint is assertedToTheTheory() or hasEqualityEngineProof(). |
561 |
|
*/ |
562 |
|
TrustNode externalExplainByAssertions() const; |
563 |
|
|
564 |
|
/** |
565 |
|
* Writes an explanation of a constraint into the node builder. |
566 |
|
* Pushes back an explanation that is acceptable to send to the sat solver. |
567 |
|
* nb is assumed to be an AND. |
568 |
|
* |
569 |
|
* This is the minimum fringe of the implication tree s.t. |
570 |
|
* every constraint is assertedToTheTheory() or hasEqualityEngineProof(). |
571 |
|
* |
572 |
|
* This is not appropriate for propagation! |
573 |
|
* Use explainForPropagation() instead. |
574 |
|
*/ |
575 |
2444191 |
std::shared_ptr<ProofNode> externalExplainByAssertions(NodeBuilder& nb) const |
576 |
|
{ |
577 |
2444191 |
return externalExplain(nb, AssertionOrderSentinel); |
578 |
|
} |
579 |
|
|
580 |
|
/* Equivalent to calling externalExplainByAssertions on all constraints in b */ |
581 |
|
static Node externalExplainByAssertions(const ConstraintCPVec& b); |
582 |
|
static Node externalExplainByAssertions(ConstraintCP a, ConstraintCP b); |
583 |
|
static Node externalExplainByAssertions(ConstraintCP a, ConstraintCP b, ConstraintCP c); |
584 |
|
|
585 |
|
/** |
586 |
|
* This is the minimum fringe of the implication tree s.t. every constraint is |
587 |
|
* - assertedToTheTheory(), |
588 |
|
* - isInternalDecision() or |
589 |
|
* - hasEqualityEngineProof(). |
590 |
|
*/ |
591 |
|
static void assertionFringe(ConstraintCPVec& v); |
592 |
|
static void assertionFringe(ConstraintCPVec& out, const ConstraintCPVec& in); |
593 |
|
|
594 |
|
/** The fringe of a farkas' proof. */ |
595 |
|
bool onFringe() const { |
596 |
|
return assertedToTheTheory() || isInternalAssumption() || hasEqualityEngineProof(); |
597 |
|
} |
598 |
|
|
599 |
|
/** |
600 |
|
* Returns an explanation of a propagation by the ConstraintDatabase. |
601 |
|
* The constraint must have a proof. |
602 |
|
* The constraint cannot be an assumption. |
603 |
|
* |
604 |
|
* This is the minimum fringe of the implication tree (excluding the |
605 |
|
* constraint itself) s.t. every constraint is assertedToTheTheory() or |
606 |
|
* hasEqualityEngineProof(). |
607 |
|
* |
608 |
|
* All return conjuncts were asserted before this constraint. |
609 |
|
* |
610 |
|
* Requires the given node to rewrite to the canonical literal for this |
611 |
|
* constraint. |
612 |
|
* |
613 |
|
* @params n the literal to prove |
614 |
|
* n must rewrite to the constraint's canonical literal |
615 |
|
* |
616 |
|
* @returns a trust node of the form: |
617 |
|
* (=> explanation n) |
618 |
|
*/ |
619 |
|
TrustNode externalExplainForPropagation(TNode n) const; |
620 |
|
|
621 |
|
/** |
622 |
|
* Explain the constraint and its negation in terms of assertions. |
623 |
|
* The constraint must be in conflict. |
624 |
|
*/ |
625 |
|
TrustNode externalExplainConflict() const; |
626 |
|
|
627 |
|
/** The constraint is known to be true. */ |
628 |
131666415 |
inline bool hasProof() const { |
629 |
131666415 |
return d_crid != ConstraintRuleIdSentinel; |
630 |
|
} |
631 |
|
|
632 |
|
/** The negation of the constraint is known to hold. */ |
633 |
42614573 |
inline bool negationHasProof() const { |
634 |
42614573 |
return d_negation->hasProof(); |
635 |
|
} |
636 |
|
|
637 |
|
/** Neither the contraint has a proof nor the negation has a proof.*/ |
638 |
151430 |
bool truthIsUnknown() const { |
639 |
151430 |
return !hasProof() && !negationHasProof(); |
640 |
|
} |
641 |
|
|
642 |
|
/** This is a synonym for hasProof(). */ |
643 |
12812697 |
inline bool isTrue() const { |
644 |
12812697 |
return hasProof(); |
645 |
|
} |
646 |
|
|
647 |
|
/** Both the constraint and its negation are true. */ |
648 |
8439930 |
inline bool inConflict() const { |
649 |
8439930 |
return hasProof() && negationHasProof(); |
650 |
|
} |
651 |
|
|
652 |
|
/** |
653 |
|
* Returns the constraint that corresponds to taking |
654 |
|
* x r ceiling(getValue()) where r is the node's getType(). |
655 |
|
* Esstentially this is an up branch. |
656 |
|
*/ |
657 |
|
ConstraintP getCeiling(); |
658 |
|
|
659 |
|
/** |
660 |
|
* Returns the constraint that corresponds to taking |
661 |
|
* x r floor(getValue()) where r is the node's getType(). |
662 |
|
* Esstentially this is a down branch. |
663 |
|
*/ |
664 |
|
ConstraintP getFloor(); |
665 |
|
|
666 |
|
static ConstraintP makeNegation(ArithVar v, ConstraintType t, const DeltaRational& r); |
667 |
|
|
668 |
|
const ValueCollection& getValueCollection() const; |
669 |
|
|
670 |
|
|
671 |
|
ConstraintP getStrictlyWeakerUpperBound(bool hasLiteral, bool mustBeAsserted) const; |
672 |
|
ConstraintP getStrictlyWeakerLowerBound(bool hasLiteral, bool mustBeAsserted) const; |
673 |
|
|
674 |
|
/** |
675 |
|
* Marks a the constraint c as being entailed by a. |
676 |
|
* The Farkas proof 1*(a) + -1 (c) |= 0<0 |
677 |
|
* |
678 |
|
* After calling impliedByUnate(), the caller should either raise a conflict |
679 |
|
* or try call tryToPropagate(). |
680 |
|
*/ |
681 |
|
void impliedByUnate(ConstraintCP a, bool inConflict); |
682 |
|
|
683 |
|
/** |
684 |
|
* Marks a the constraint c as being entailed by a. |
685 |
|
* The reason has to do with integer bound tightening. |
686 |
|
* |
687 |
|
* After calling impliedByIntTighten(), the caller should either raise a conflict |
688 |
|
* or try call tryToPropagate(). |
689 |
|
*/ |
690 |
|
void impliedByIntTighten(ConstraintCP a, bool inConflict); |
691 |
|
|
692 |
|
/** |
693 |
|
* Marks a the constraint c as being entailed by a. |
694 |
|
* The reason has to do with integer reasoning. |
695 |
|
* |
696 |
|
* After calling impliedByIntHole(), the caller should either raise a conflict |
697 |
|
* or try call tryToPropagate(). |
698 |
|
*/ |
699 |
|
void impliedByIntHole(ConstraintCP a, bool inConflict); |
700 |
|
|
701 |
|
/** |
702 |
|
* Marks a the constraint c as being entailed by a. |
703 |
|
* The reason has to do with integer reasoning. |
704 |
|
* |
705 |
|
* After calling impliedByIntHole(), the caller should either raise a conflict |
706 |
|
* or try call tryToPropagate(). |
707 |
|
*/ |
708 |
|
void impliedByIntHole(const ConstraintCPVec& b, bool inConflict); |
709 |
|
|
710 |
|
/** |
711 |
|
* This is a lemma of the form: |
712 |
|
* x < d or x = d or x > d |
713 |
|
* The current constraint c is one of the above constraints and {a,b} |
714 |
|
* are the negation of the other two constraints. |
715 |
|
* |
716 |
|
* Preconditions: |
717 |
|
* - negationHasProof() == inConflict. |
718 |
|
* |
719 |
|
* After calling impliedByTrichotomy(), the caller should either raise a conflict |
720 |
|
* or try call tryToPropagate(). |
721 |
|
*/ |
722 |
|
void impliedByTrichotomy(ConstraintCP a, ConstraintCP b, bool inConflict); |
723 |
|
|
724 |
|
/** |
725 |
|
* Marks the node as having a Farkas proof. |
726 |
|
* |
727 |
|
* Preconditions: |
728 |
|
* - coeffs == NULL if proofs are off. |
729 |
|
* - See the comments for ConstraintRule for the form of coeffs when |
730 |
|
* proofs are on. |
731 |
|
* - negationHasProof() == inConflict. |
732 |
|
* |
733 |
|
* After calling impliedByFarkas(), the caller should either raise a conflict |
734 |
|
* or try call tryToPropagate(). |
735 |
|
*/ |
736 |
|
void impliedByFarkas(const ConstraintCPVec& b, RationalVectorCP coeffs, bool inConflict); |
737 |
|
|
738 |
|
/** |
739 |
|
* Generates an implication node, B => getLiteral(), |
740 |
|
* where B is the result of externalExplainByAssertions(b). |
741 |
|
* Does not guarantee b is the explanation of the constraint. |
742 |
|
*/ |
743 |
|
Node externalImplication(const ConstraintCPVec& b) const; |
744 |
|
|
745 |
|
/** |
746 |
|
* Returns true if the variable is assigned the value dr, |
747 |
|
* the constraint would be satisfied. |
748 |
|
*/ |
749 |
|
bool satisfiedBy(const DeltaRational& dr) const; |
750 |
|
|
751 |
|
/** |
752 |
|
* The node must have a proof already and be eligible for propagation! |
753 |
|
* You probably want to call tryToPropagate() instead. |
754 |
|
* |
755 |
|
* Preconditions: |
756 |
|
* - hasProof() |
757 |
|
* - canBePropagated() |
758 |
|
* - !assertedToTheTheory() |
759 |
|
*/ |
760 |
|
void propagate(); |
761 |
|
|
762 |
|
/** |
763 |
|
* If the constraint |
764 |
|
* canBePropagated() and |
765 |
|
* !assertedToTheTheory(), |
766 |
|
* the constraint is added to the database's propagation queue. |
767 |
|
* |
768 |
|
* Precondition: |
769 |
|
* - hasProof() |
770 |
|
*/ |
771 |
|
void tryToPropagate(); |
772 |
|
|
773 |
|
/** |
774 |
|
* Returns a reference to the containing database. |
775 |
|
* Precondition: the constraint must be initialized. |
776 |
|
*/ |
777 |
|
const ConstraintDatabase& getDatabase() const; |
778 |
|
|
779 |
|
/** Returns the constraint rule at the position. */ |
780 |
|
const ConstraintRule& getConstraintRule() const; |
781 |
|
|
782 |
|
private: |
783 |
|
/** Returns true if the constraint has been initialized. */ |
784 |
|
bool initialized() const; |
785 |
|
|
786 |
|
/** |
787 |
|
* This initializes the fields that cannot be set in the constructor due to |
788 |
|
* circular dependencies. |
789 |
|
*/ |
790 |
|
void initialize(ConstraintDatabase* db, |
791 |
|
SortedConstraintMapIterator v, |
792 |
|
ConstraintP negation); |
793 |
|
|
794 |
|
class ConstraintRuleCleanup |
795 |
|
{ |
796 |
|
public: |
797 |
7371596 |
inline void operator()(ConstraintRule* crp) |
798 |
|
{ |
799 |
7371596 |
Assert(crp != NULL); |
800 |
7371596 |
ConstraintP constraint = crp->d_constraint; |
801 |
7371596 |
Assert(constraint->d_crid != ConstraintRuleIdSentinel); |
802 |
7371596 |
constraint->d_crid = ConstraintRuleIdSentinel; |
803 |
7371596 |
ARITH_PROOF({ |
804 |
|
if (crp->d_farkasCoefficients != RationalVectorCPSentinel) |
805 |
|
{ |
806 |
|
delete crp->d_farkasCoefficients; |
807 |
|
} |
808 |
|
}); |
809 |
7371596 |
} |
810 |
|
}; |
811 |
|
|
812 |
|
class CanBePropagatedCleanup |
813 |
|
{ |
814 |
|
public: |
815 |
743424 |
inline void operator()(ConstraintP* p) |
816 |
|
{ |
817 |
743424 |
ConstraintP constraint = *p; |
818 |
743424 |
Assert(constraint->d_canBePropagated); |
819 |
743424 |
constraint->d_canBePropagated = false; |
820 |
743424 |
} |
821 |
|
}; |
822 |
|
|
823 |
|
class AssertionOrderCleanup |
824 |
|
{ |
825 |
|
public: |
826 |
4827704 |
inline void operator()(ConstraintP* p) |
827 |
|
{ |
828 |
4827704 |
ConstraintP constraint = *p; |
829 |
4827704 |
Assert(constraint->assertedToTheTheory()); |
830 |
4827704 |
constraint->d_assertionOrder = AssertionOrderSentinel; |
831 |
4827704 |
constraint->d_witness = TNode::null(); |
832 |
4827704 |
Assert(!constraint->assertedToTheTheory()); |
833 |
4827704 |
} |
834 |
|
}; |
835 |
|
|
836 |
|
class SplitCleanup |
837 |
|
{ |
838 |
|
public: |
839 |
27692 |
inline void operator()(ConstraintP* p) |
840 |
|
{ |
841 |
27692 |
ConstraintP constraint = *p; |
842 |
27692 |
Assert(constraint->d_split); |
843 |
27692 |
constraint->d_split = false; |
844 |
27692 |
} |
845 |
|
}; |
846 |
|
|
847 |
|
/** |
848 |
|
* Returns true if the node is safe to garbage collect. |
849 |
|
* Both it and its negation must have no context dependent data set. |
850 |
|
*/ |
851 |
|
bool safeToGarbageCollect() const; |
852 |
|
|
853 |
|
/** |
854 |
|
* Returns true if the constraint has no context dependent data set. |
855 |
|
*/ |
856 |
|
bool contextDependentDataIsSet() const; |
857 |
|
|
858 |
|
/** |
859 |
|
* Returns true if the node correctly corresponds to the constraint that is |
860 |
|
* being set. |
861 |
|
*/ |
862 |
|
bool sanityChecking(Node n) const; |
863 |
|
|
864 |
|
/** Returns a reference to the map for d_variable. */ |
865 |
|
SortedConstraintMap& constraintSet() const; |
866 |
|
|
867 |
|
/** Returns coefficients for the proofs for farkas cancellation. */ |
868 |
|
static std::pair<int, int> unateFarkasSigns(ConstraintCP a, ConstraintCP b); |
869 |
|
|
870 |
|
Node externalExplain(AssertionOrder order) const; |
871 |
|
/** |
872 |
|
* Returns an explanation of that was assertedBefore(order). |
873 |
|
* The constraint must have a proof. |
874 |
|
* The constraint cannot be selfExplaining(). |
875 |
|
* |
876 |
|
* This is the minimum fringe of the implication tree |
877 |
|
* s.t. every constraint is assertedBefore(order) or hasEqualityEngineProof(). |
878 |
|
*/ |
879 |
|
std::shared_ptr<ProofNode> externalExplain(NodeBuilder& nb, |
880 |
|
AssertionOrder order) const; |
881 |
|
|
882 |
|
static Node externalExplain(const ConstraintCPVec& b, AssertionOrder order); |
883 |
|
|
884 |
19120106 |
inline ArithProofType getProofType() const { |
885 |
19120106 |
return getConstraintRule().d_proofType; |
886 |
|
} |
887 |
|
|
888 |
538503 |
inline AntecedentId getEndAntecedent() const { |
889 |
538503 |
return getConstraintRule().d_antecedentEnd; |
890 |
|
} |
891 |
|
|
892 |
11178 |
inline RationalVectorCP getFarkasCoefficients() const |
893 |
|
{ |
894 |
11178 |
return ARITH_NULLPROOF(getConstraintRule().d_farkasCoefficients); |
895 |
|
} |
896 |
|
|
897 |
|
void debugPrint() const; |
898 |
|
|
899 |
|
/** |
900 |
|
* The proof of the node is empty. |
901 |
|
* The proof must be a special proof. Either |
902 |
|
* isSelfExplaining() or |
903 |
|
* hasEqualityEngineProof() |
904 |
|
*/ |
905 |
|
bool antecentListIsEmpty() const; |
906 |
|
|
907 |
|
bool antecedentListLengthIsOne() const; |
908 |
|
|
909 |
|
/** Return true if every element in b has a proof. */ |
910 |
|
static bool allHaveProof(const ConstraintCPVec& b); |
911 |
|
|
912 |
|
/** Precondition: hasFarkasProof() |
913 |
|
* Computes the combination implied by the farkas coefficients. Sees if it is |
914 |
|
* a contradiction. |
915 |
|
*/ |
916 |
|
|
917 |
|
bool wellFormedFarkasProof() const; |
918 |
|
|
919 |
|
/** The ArithVar associated with the constraint. */ |
920 |
|
const ArithVar d_variable; |
921 |
|
|
922 |
|
/** The type of the Constraint. */ |
923 |
|
const ConstraintType d_type; |
924 |
|
|
925 |
|
/** The DeltaRational value with the constraint. */ |
926 |
|
const DeltaRational d_value; |
927 |
|
|
928 |
|
/** A pointer to the associated database for the Constraint. */ |
929 |
|
ConstraintDatabase* d_database; |
930 |
|
|
931 |
|
/** |
932 |
|
* The node to be communicated with the TheoryEngine. |
933 |
|
* |
934 |
|
* This is not context dependent, but may be set once. |
935 |
|
* |
936 |
|
* This must be set if the constraint canBePropagated(). |
937 |
|
* This must be set if the constraint assertedToTheTheory(). |
938 |
|
* Otherwise, this may be null(). |
939 |
|
*/ |
940 |
|
Node d_literal; |
941 |
|
|
942 |
|
/** Pointer to the negation of the Constraint. */ |
943 |
|
ConstraintP d_negation; |
944 |
|
|
945 |
|
/** |
946 |
|
* This is true if the associated node can be propagated. |
947 |
|
* |
948 |
|
* This should be enabled if the node has been preregistered. |
949 |
|
* |
950 |
|
* Sat Context Dependent. |
951 |
|
* This is initially false. |
952 |
|
*/ |
953 |
|
bool d_canBePropagated; |
954 |
|
|
955 |
|
/** |
956 |
|
* This is the order the constraint was asserted to the theory. |
957 |
|
* If this has been set, the node can be used in conflicts. |
958 |
|
* If this is c.d_assertedOrder < d.d_assertedOrder, then c can be used in the |
959 |
|
* explanation of d. |
960 |
|
* |
961 |
|
* This should be set after the literal is dequeued by Theory::get(). |
962 |
|
* |
963 |
|
* Sat Context Dependent. |
964 |
|
* This is initially AssertionOrderSentinel. |
965 |
|
*/ |
966 |
|
AssertionOrder d_assertionOrder; |
967 |
|
|
968 |
|
/** |
969 |
|
* This is guaranteed to be on the fact queue. |
970 |
|
* For example if x + y = x + 1 is on the fact queue, then use this |
971 |
|
*/ |
972 |
|
TNode d_witness; |
973 |
|
|
974 |
|
/** |
975 |
|
* The position of the constraint in the constraint rule id. |
976 |
|
* |
977 |
|
* Sat Context Dependent. |
978 |
|
* This is initially |
979 |
|
*/ |
980 |
|
ConstraintRuleID d_crid; |
981 |
|
|
982 |
|
/** |
983 |
|
* True if the equality has been split. |
984 |
|
* Only meaningful if ConstraintType == Equality. |
985 |
|
* |
986 |
|
* User Context Dependent. |
987 |
|
* This is initially false. |
988 |
|
*/ |
989 |
|
bool d_split; |
990 |
|
|
991 |
|
/** |
992 |
|
* Position in sorted constraint set for the variable. |
993 |
|
* Unset if d_type is Disequality. |
994 |
|
*/ |
995 |
|
SortedConstraintMapIterator d_variablePosition; |
996 |
|
|
997 |
|
}; /* class ConstraintValue */ |
998 |
|
|
999 |
|
std::ostream& operator<<(std::ostream& o, const Constraint& c); |
1000 |
|
std::ostream& operator<<(std::ostream& o, const ConstraintP c); |
1001 |
|
std::ostream& operator<<(std::ostream& o, const ConstraintCP c); |
1002 |
|
std::ostream& operator<<(std::ostream& o, const ConstraintType t); |
1003 |
|
std::ostream& operator<<(std::ostream& o, const ValueCollection& c); |
1004 |
|
std::ostream& operator<<(std::ostream& o, const ConstraintCPVec& v); |
1005 |
|
std::ostream& operator<<(std::ostream& o, const ArithProofType); |
1006 |
|
|
1007 |
|
|
1008 |
|
class ConstraintDatabase { |
1009 |
|
private: |
1010 |
|
/** |
1011 |
|
* The map from ArithVars to their unique databases. |
1012 |
|
* When the vector changes size, we cannot allow the maps to move so this |
1013 |
|
* is a vector of pointers. |
1014 |
|
*/ |
1015 |
|
std::vector<PerVariableDatabase*> d_varDatabases; |
1016 |
|
|
1017 |
|
SortedConstraintMap& getVariableSCM(ArithVar v) const; |
1018 |
|
|
1019 |
|
/** Maps literals to constraints.*/ |
1020 |
|
NodetoConstraintMap d_nodetoConstraintMap; |
1021 |
|
|
1022 |
|
/** |
1023 |
|
* A queue of propagated constraints. |
1024 |
|
* ConstraintCP are pointers. |
1025 |
|
* The elements of the queue do not require destruction. |
1026 |
|
*/ |
1027 |
|
context::CDQueue<ConstraintCP> d_toPropagate; |
1028 |
|
|
1029 |
|
/** |
1030 |
|
* Proofs are lists of valid constraints terminated by the first null |
1031 |
|
* sentinel value in the proof list. |
1032 |
|
* We abbreviate d_antecedents as ans in the comment. |
1033 |
|
* |
1034 |
|
* The proof at p in ans[p] of length n is |
1035 |
|
* (NullConstraint, ans[p-(n-1)], ... , ans[p-1], ans[p]) |
1036 |
|
* |
1037 |
|
* The proof at p corresponds to the conjunction: |
1038 |
|
* (and x_i) |
1039 |
|
* |
1040 |
|
* So the proof of a Constraint c corresponds to the horn clause: |
1041 |
|
* (implies (and x_i) c) |
1042 |
|
* where (and x_i) is the proof at c.d_crid d_antecedentEnd. |
1043 |
|
* |
1044 |
|
* Constraints are pointers so this list is designed not to require any destruction. |
1045 |
|
*/ |
1046 |
|
CDConstraintList d_antecedents; |
1047 |
|
|
1048 |
|
typedef context::CDList<ConstraintRule, Constraint::ConstraintRuleCleanup> ConstraintRuleList; |
1049 |
|
typedef context::CDList<ConstraintP, Constraint::CanBePropagatedCleanup> CBPList; |
1050 |
|
typedef context::CDList<ConstraintP, Constraint::AssertionOrderCleanup> AOList; |
1051 |
|
typedef context::CDList<ConstraintP, Constraint::SplitCleanup> SplitList; |
1052 |
|
|
1053 |
|
|
1054 |
|
|
1055 |
|
/** |
1056 |
|
* The watch lists are collected together as they need to be garbage collected |
1057 |
|
* carefully. |
1058 |
|
*/ |
1059 |
9459 |
struct Watches{ |
1060 |
|
|
1061 |
|
/** |
1062 |
|
* Contains the exact list of constraints that have a proof. |
1063 |
|
* Upon pop, this unsets d_crid to NoAP. |
1064 |
|
* |
1065 |
|
* The index in this list is the proper ordering of the proofs. |
1066 |
|
*/ |
1067 |
|
ConstraintRuleList d_constraintProofs; |
1068 |
|
|
1069 |
|
/** |
1070 |
|
* Contains the exact list of constraints that can be used for propagation. |
1071 |
|
*/ |
1072 |
|
CBPList d_canBePropagatedWatches; |
1073 |
|
|
1074 |
|
/** |
1075 |
|
* Contains the exact list of constraints that have been asserted to the theory. |
1076 |
|
*/ |
1077 |
|
AOList d_assertionOrderWatches; |
1078 |
|
|
1079 |
|
|
1080 |
|
/** |
1081 |
|
* Contains the exact list of atoms that have been preregistered. |
1082 |
|
* This is a pointer as it must be destroyed before the elements of |
1083 |
|
* d_varDatabases. |
1084 |
|
*/ |
1085 |
|
SplitList d_splitWatches; |
1086 |
|
Watches(context::Context* satContext, context::Context* userContext); |
1087 |
|
}; |
1088 |
|
Watches* d_watches; |
1089 |
|
|
1090 |
|
void pushSplitWatch(ConstraintP c); |
1091 |
|
void pushCanBePropagatedWatch(ConstraintP c); |
1092 |
|
void pushAssertionOrderWatch(ConstraintP c, TNode witness); |
1093 |
|
|
1094 |
|
/** Assumes that antecedents have already been pushed. */ |
1095 |
|
void pushConstraintRule(const ConstraintRule& crp); |
1096 |
|
|
1097 |
|
/** Returns true if all of the entries of the vector are empty. */ |
1098 |
|
static bool emptyDatabase(const std::vector<PerVariableDatabase>& vec); |
1099 |
|
|
1100 |
|
/** Map from nodes to arithvars. */ |
1101 |
|
const ArithVariables& d_avariables; |
1102 |
|
|
1103 |
1306522 |
const ArithVariables& getArithVariables() const{ |
1104 |
1306522 |
return d_avariables; |
1105 |
|
} |
1106 |
|
|
1107 |
|
ArithCongruenceManager& d_congruenceManager; |
1108 |
|
|
1109 |
|
const context::Context * const d_satContext; |
1110 |
|
/** Owned by the TheoryArithPrivate, used here. */ |
1111 |
|
EagerProofGenerator* d_pfGen; |
1112 |
|
/** Owned by the TheoryArithPrivate, used here. */ |
1113 |
|
ProofNodeManager* d_pnm; |
1114 |
|
|
1115 |
|
RaiseConflict d_raiseConflict; |
1116 |
|
|
1117 |
|
|
1118 |
|
const Rational d_one; |
1119 |
|
const Rational d_negOne; |
1120 |
|
|
1121 |
|
friend class Constraint; |
1122 |
|
|
1123 |
|
public: |
1124 |
|
ConstraintDatabase(context::Context* satContext, |
1125 |
|
context::Context* userContext, |
1126 |
|
const ArithVariables& variables, |
1127 |
|
ArithCongruenceManager& dm, |
1128 |
|
RaiseConflict conflictCallBack, |
1129 |
|
EagerProofGenerator* pfGen, |
1130 |
|
ProofNodeManager* pnm); |
1131 |
|
|
1132 |
|
~ConstraintDatabase(); |
1133 |
|
|
1134 |
|
/** Adds a literal to the database. */ |
1135 |
|
ConstraintP addLiteral(TNode lit); |
1136 |
|
|
1137 |
|
/** |
1138 |
|
* If hasLiteral() is true, returns the constraint. |
1139 |
|
* Otherwise, returns NullConstraint. |
1140 |
|
*/ |
1141 |
|
ConstraintP lookup(TNode literal) const; |
1142 |
|
|
1143 |
|
/** |
1144 |
|
* Returns true if the literal has been added to the database. |
1145 |
|
* This is a hash table lookup. |
1146 |
|
* It does not look in the database for an equivalent corresponding constraint. |
1147 |
|
*/ |
1148 |
|
bool hasLiteral(TNode literal) const; |
1149 |
|
|
1150 |
3251051 |
bool hasMorePropagations() const{ |
1151 |
3251051 |
return !d_toPropagate.empty(); |
1152 |
|
} |
1153 |
|
|
1154 |
543945 |
ConstraintCP nextPropagation(){ |
1155 |
543945 |
Assert(hasMorePropagations()); |
1156 |
|
|
1157 |
543945 |
ConstraintCP p = d_toPropagate.front(); |
1158 |
543945 |
d_toPropagate.pop(); |
1159 |
|
|
1160 |
543945 |
return p; |
1161 |
|
} |
1162 |
|
|
1163 |
|
void addVariable(ArithVar v); |
1164 |
|
bool variableDatabaseIsSetup(ArithVar v) const; |
1165 |
|
void removeVariable(ArithVar v); |
1166 |
|
|
1167 |
|
/** Get an explanation and proof for this constraint from the equality engine |
1168 |
|
*/ |
1169 |
|
TrustNode eeExplain(ConstraintCP c) const; |
1170 |
|
/** Get an explanation for this constraint from the equality engine */ |
1171 |
|
void eeExplain(ConstraintCP c, NodeBuilder& nb) const; |
1172 |
|
|
1173 |
|
/** |
1174 |
|
* Returns a constraint with the variable v, the constraint type t, and a value |
1175 |
|
* dominated by r (explained below) if such a constraint exists in the database. |
1176 |
|
* If no such constraint exists, NullConstraint is returned. |
1177 |
|
* |
1178 |
|
* t must be either UpperBound or LowerBound. |
1179 |
|
* The returned value v is dominated: |
1180 |
|
* If t is UpperBound, r <= v |
1181 |
|
* If t is LowerBound, r >= v |
1182 |
|
* |
1183 |
|
* variableDatabaseIsSetup(v) must be true. |
1184 |
|
*/ |
1185 |
|
ConstraintP getBestImpliedBound(ArithVar v, ConstraintType t, const DeltaRational& r) const; |
1186 |
|
|
1187 |
|
/** Returns the constraint, if it exists */ |
1188 |
|
ConstraintP lookupConstraint(ArithVar v, ConstraintType t, const DeltaRational& r) const; |
1189 |
|
|
1190 |
|
/** |
1191 |
|
* Returns a constraint with the variable v, the constraint type t and the value r. |
1192 |
|
* If there is such a constraint in the database already, it is returned. |
1193 |
|
* If there is no such constraint, this constraint is added to the database. |
1194 |
|
* |
1195 |
|
*/ |
1196 |
|
ConstraintP getConstraint(ArithVar v, ConstraintType t, const DeltaRational& r); |
1197 |
|
|
1198 |
|
/** |
1199 |
|
* Returns a constraint of the given type for the value and variable |
1200 |
|
* for the given ValueCollection, vc. |
1201 |
|
* This is made if there is no such constraint. |
1202 |
|
*/ |
1203 |
|
ConstraintP ensureConstraint(ValueCollection& vc, ConstraintType t); |
1204 |
|
|
1205 |
|
|
1206 |
|
void deleteConstraintAndNegation(ConstraintP c); |
1207 |
|
|
1208 |
|
/** Given constraints `a` and `b` such that `a OR b` by unate reasoning, |
1209 |
|
* adds a TrustNode to `out` which proves `a OR b` as a lemma. |
1210 |
|
* |
1211 |
|
* Example: `x <= 5` OR `5 <= x`. |
1212 |
|
*/ |
1213 |
|
void proveOr(std::vector<TrustNode>& out, |
1214 |
|
ConstraintP a, |
1215 |
|
ConstraintP b, |
1216 |
|
bool negateSecond) const; |
1217 |
|
/** Given constraints `a` and `b` such that `a` implies `b` by unate |
1218 |
|
* reasoning, adds a TrustNode to `out` which proves `-a OR b` as a lemma. |
1219 |
|
* |
1220 |
|
* Example: `x >= 5` -> `x >= 4`. |
1221 |
|
*/ |
1222 |
|
void implies(std::vector<TrustNode>& out, ConstraintP a, ConstraintP b) const; |
1223 |
|
/** Given constraints `a` and `b` such that `not(a AND b)` by unate reasoning, |
1224 |
|
* adds a TrustNode to `out` which proves `-a OR -b` as a lemma. |
1225 |
|
* |
1226 |
|
* Example: `x >= 4` -> `x <= 3`. |
1227 |
|
*/ |
1228 |
|
void mutuallyExclusive(std::vector<TrustNode>& out, |
1229 |
|
ConstraintP a, |
1230 |
|
ConstraintP b) const; |
1231 |
|
|
1232 |
|
/** |
1233 |
|
* Outputs a minimal set of unate implications onto the vector for the variable. |
1234 |
|
* This outputs lemmas of the general forms |
1235 |
|
* (= p c) implies (<= p d) for c < d, or |
1236 |
|
* (= p c) implies (not (= p d)) for c != d. |
1237 |
|
*/ |
1238 |
|
void outputUnateEqualityLemmas(std::vector<TrustNode>& lemmas) const; |
1239 |
|
void outputUnateEqualityLemmas(std::vector<TrustNode>& lemmas, |
1240 |
|
ArithVar v) const; |
1241 |
|
|
1242 |
|
/** |
1243 |
|
* Outputs a minimal set of unate implications onto the vector for the variable. |
1244 |
|
* |
1245 |
|
* If ineqs is true, this outputs lemmas of the general form |
1246 |
|
* (<= p c) implies (<= p d) for c < d. |
1247 |
|
*/ |
1248 |
|
void outputUnateInequalityLemmas(std::vector<TrustNode>& lemmas) const; |
1249 |
|
void outputUnateInequalityLemmas(std::vector<TrustNode>& lemmas, |
1250 |
|
ArithVar v) const; |
1251 |
|
|
1252 |
|
void unatePropLowerBound(ConstraintP curr, ConstraintP prev); |
1253 |
|
void unatePropUpperBound(ConstraintP curr, ConstraintP prev); |
1254 |
|
void unatePropEquality(ConstraintP curr, ConstraintP prevLB, ConstraintP prevUB); |
1255 |
|
|
1256 |
|
/** AntecendentID must be in range. */ |
1257 |
|
ConstraintCP getAntecedent(AntecedentId p) const; |
1258 |
|
|
1259 |
6264951 |
bool isProofEnabled() const { return d_pnm != nullptr; } |
1260 |
|
|
1261 |
|
private: |
1262 |
|
/** returns true if cons is now in conflict. */ |
1263 |
|
bool handleUnateProp(ConstraintP ant, ConstraintP cons); |
1264 |
|
|
1265 |
|
DenseSet d_reclaimable; |
1266 |
|
|
1267 |
|
class Statistics { |
1268 |
|
public: |
1269 |
|
IntStat d_unatePropagateCalls; |
1270 |
|
IntStat d_unatePropagateImplications; |
1271 |
|
|
1272 |
|
Statistics(); |
1273 |
|
} d_statistics; |
1274 |
|
|
1275 |
|
}; /* ConstraintDatabase */ |
1276 |
|
|
1277 |
|
} // namespace arith |
1278 |
|
} // namespace theory |
1279 |
|
} // namespace cvc5 |
1280 |
|
|
1281 |
|
#endif /* CVC5__THEORY__ARITH__CONSTRAINT_H */ |