1 |
|
/****************************************************************************** |
2 |
|
* Top contributors (to current version): |
3 |
|
* Andrew Reynolds |
4 |
|
* |
5 |
|
* This file is part of the cvc5 project. |
6 |
|
* |
7 |
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS |
8 |
|
* in the top-level source directory and their institutional affiliations. |
9 |
|
* All rights reserved. See the file COPYING in the top-level source |
10 |
|
* directory for licensing information. |
11 |
|
* **************************************************************************** |
12 |
|
* |
13 |
|
* Sygus quantifier elimination preprocessor. |
14 |
|
*/ |
15 |
|
|
16 |
|
#ifndef CVC5__THEORY__QUANTIFIERS__SYGUS__SYGUS_QE_PREPROC_H |
17 |
|
#define CVC5__THEORY__QUANTIFIERS__SYGUS__SYGUS_QE_PREPROC_H |
18 |
|
|
19 |
|
#include "expr/node.h" |
20 |
|
|
21 |
|
namespace cvc5 { |
22 |
|
namespace theory { |
23 |
|
namespace quantifiers { |
24 |
|
|
25 |
|
/** |
26 |
|
* This module does quantifier elimination as a preprocess step |
27 |
|
* for "non-ground single invocation synthesis conjectures": |
28 |
|
* exists f. forall xy. P[ f(x), x, y ] |
29 |
|
* We run quantifier elimination: |
30 |
|
* exists y. P[ z, x, y ] ----> Q[ z, x ] |
31 |
|
* Where we replace the original conjecture with: |
32 |
|
* exists f. forall x. Q[ f(x), x ] |
33 |
|
* For more details, see Example 6 of Reynolds et al. SYNT 2017. |
34 |
|
*/ |
35 |
|
class SygusQePreproc |
36 |
|
{ |
37 |
|
public: |
38 |
|
SygusQePreproc(); |
39 |
1529 |
~SygusQePreproc() {} |
40 |
|
/** |
41 |
|
* Preprocess. Returns a lemma of the form q = nq where nq is obtained |
42 |
|
* by the quantifier elimination technique outlined above. |
43 |
|
*/ |
44 |
|
Node preprocess(Node q); |
45 |
|
}; |
46 |
|
|
47 |
|
} // namespace quantifiers |
48 |
|
} // namespace theory |
49 |
|
} // namespace cvc5 |
50 |
|
|
51 |
|
#endif /* CVC5__THEORY__QUANTIFIERS__SYGUS__SYGUS_QE_PREPROC_H */ |