1 |
|
/****************************************************************************** |
2 |
|
* Top contributors (to current version): |
3 |
|
* Andrew Reynolds, Mudathir Mohamed, Paul Meng |
4 |
|
* |
5 |
|
* This file is part of the cvc5 project. |
6 |
|
* |
7 |
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS |
8 |
|
* in the top-level source directory and their institutional affiliations. |
9 |
|
* All rights reserved. See the file COPYING in the top-level source |
10 |
|
* directory for licensing information. |
11 |
|
* **************************************************************************** |
12 |
|
* |
13 |
|
* Implementation of sets state object. |
14 |
|
*/ |
15 |
|
|
16 |
|
#include "theory/sets/solver_state.h" |
17 |
|
|
18 |
|
#include "expr/emptyset.h" |
19 |
|
#include "options/sets_options.h" |
20 |
|
#include "theory/sets/theory_sets_private.h" |
21 |
|
|
22 |
|
using namespace std; |
23 |
|
using namespace cvc5::kind; |
24 |
|
|
25 |
|
namespace cvc5 { |
26 |
|
namespace theory { |
27 |
|
namespace sets { |
28 |
|
|
29 |
9459 |
SolverState::SolverState(context::Context* c, |
30 |
|
context::UserContext* u, |
31 |
|
Valuation val, |
32 |
9459 |
SkolemCache& skc) |
33 |
9459 |
: TheoryState(c, u, val), d_skCache(skc), d_members(c) |
34 |
|
{ |
35 |
9459 |
d_true = NodeManager::currentNM()->mkConst(true); |
36 |
9459 |
d_false = NodeManager::currentNM()->mkConst(false); |
37 |
9459 |
} |
38 |
|
|
39 |
31226 |
void SolverState::reset() |
40 |
|
{ |
41 |
31226 |
d_set_eqc.clear(); |
42 |
31226 |
d_eqc_emptyset.clear(); |
43 |
31226 |
d_eqc_univset.clear(); |
44 |
31226 |
d_eqc_singleton.clear(); |
45 |
31226 |
d_congruent.clear(); |
46 |
31226 |
d_nvar_sets.clear(); |
47 |
31226 |
d_var_set.clear(); |
48 |
31226 |
d_compSets.clear(); |
49 |
31226 |
d_pol_mems[0].clear(); |
50 |
31226 |
d_pol_mems[1].clear(); |
51 |
31226 |
d_members_index.clear(); |
52 |
31226 |
d_singleton_index.clear(); |
53 |
31226 |
d_bop_index.clear(); |
54 |
31226 |
d_op_list.clear(); |
55 |
31226 |
d_allCompSets.clear(); |
56 |
31226 |
} |
57 |
|
|
58 |
151303 |
void SolverState::registerEqc(TypeNode tn, Node r) |
59 |
|
{ |
60 |
151303 |
if (tn.isSet()) |
61 |
|
{ |
62 |
54189 |
d_set_eqc.push_back(r); |
63 |
|
} |
64 |
151303 |
} |
65 |
|
|
66 |
510810 |
void SolverState::registerTerm(Node r, TypeNode tnn, Node n) |
67 |
|
{ |
68 |
510810 |
Kind nk = n.getKind(); |
69 |
510810 |
if (nk == MEMBER) |
70 |
|
{ |
71 |
120430 |
if (r.isConst()) |
72 |
|
{ |
73 |
229394 |
Node s = d_ee->getRepresentative(n[1]); |
74 |
229394 |
Node x = d_ee->getRepresentative(n[0]); |
75 |
114697 |
int pindex = r == d_true ? 0 : (r == d_false ? 1 : -1); |
76 |
114697 |
if (pindex != -1) |
77 |
|
{ |
78 |
114697 |
if (d_pol_mems[pindex][s].find(x) == d_pol_mems[pindex][s].end()) |
79 |
|
{ |
80 |
82368 |
d_pol_mems[pindex][s][x] = n; |
81 |
164736 |
Trace("sets-debug2") << "Membership[" << x << "][" << s << "] : " << n |
82 |
82368 |
<< ", pindex = " << pindex << std::endl; |
83 |
|
} |
84 |
114697 |
if (d_members_index[s].find(x) == d_members_index[s].end()) |
85 |
|
{ |
86 |
82368 |
d_members_index[s][x] = n; |
87 |
82368 |
d_op_list[MEMBER].push_back(n); |
88 |
|
} |
89 |
|
} |
90 |
|
else |
91 |
|
{ |
92 |
|
Assert(false); |
93 |
|
} |
94 |
|
} |
95 |
|
} |
96 |
390380 |
else if (nk == SINGLETON || nk == UNION || nk == INTERSECTION |
97 |
352868 |
|| nk == SETMINUS || nk == EMPTYSET || nk == UNIVERSE_SET) |
98 |
|
{ |
99 |
63241 |
if (nk == SINGLETON) |
100 |
|
{ |
101 |
20570 |
Node re = d_ee->getRepresentative(n[0]); |
102 |
10285 |
if (d_singleton_index.find(re) == d_singleton_index.end()) |
103 |
|
{ |
104 |
8093 |
d_singleton_index[re] = n; |
105 |
8093 |
d_eqc_singleton[r] = n; |
106 |
8093 |
d_op_list[SINGLETON].push_back(n); |
107 |
|
} |
108 |
|
else |
109 |
|
{ |
110 |
2192 |
d_congruent[n] = d_singleton_index[re]; |
111 |
|
} |
112 |
|
} |
113 |
52956 |
else if (nk == EMPTYSET) |
114 |
|
{ |
115 |
3635 |
d_eqc_emptyset[tnn] = r; |
116 |
|
} |
117 |
49321 |
else if (nk == UNIVERSE_SET) |
118 |
|
{ |
119 |
20024 |
Assert(options::setsExt()); |
120 |
1800 |
d_eqc_univset[tnn] = r; |
121 |
|
} |
122 |
|
else |
123 |
|
{ |
124 |
95042 |
Node r1 = d_ee->getRepresentative(n[0]); |
125 |
95042 |
Node r2 = d_ee->getRepresentative(n[1]); |
126 |
47521 |
std::map<Node, Node>& binr1 = d_bop_index[nk][r1]; |
127 |
47521 |
std::map<Node, Node>::iterator itb = binr1.find(r2); |
128 |
47521 |
if (itb == binr1.end()) |
129 |
|
{ |
130 |
44672 |
binr1[r2] = n; |
131 |
44672 |
d_op_list[nk].push_back(n); |
132 |
|
} |
133 |
|
else |
134 |
|
{ |
135 |
2849 |
d_congruent[n] = itb->second; |
136 |
|
} |
137 |
|
} |
138 |
63241 |
d_nvar_sets[r].push_back(n); |
139 |
63241 |
Trace("sets-debug2") << "Non-var-set[" << r << "] : " << n << std::endl; |
140 |
|
} |
141 |
327139 |
else if (nk == COMPREHENSION) |
142 |
|
{ |
143 |
124 |
d_compSets[r].push_back(n); |
144 |
124 |
d_allCompSets.push_back(n); |
145 |
124 |
Trace("sets-debug2") << "Comp-set[" << r << "] : " << n << std::endl; |
146 |
|
} |
147 |
327015 |
else if (n.isVar() && !d_skCache.isSkolem(n)) |
148 |
|
{ |
149 |
|
// it is important that we check it is a variable, but not an internally |
150 |
|
// introduced skolem, due to the semantics of the universe set. |
151 |
30474 |
if (tnn.isSet()) |
152 |
|
{ |
153 |
21750 |
if (d_var_set.find(r) == d_var_set.end()) |
154 |
|
{ |
155 |
20090 |
d_var_set[r] = n; |
156 |
20090 |
Trace("sets-debug2") << "var-set[" << r << "] : " << n << std::endl; |
157 |
|
} |
158 |
|
} |
159 |
|
} |
160 |
|
else |
161 |
|
{ |
162 |
296541 |
Trace("sets-debug2") << "Unknown-set[" << r << "] : " << n << std::endl; |
163 |
|
} |
164 |
510810 |
} |
165 |
|
|
166 |
64367 |
void SolverState::addEqualityToExp(Node a, Node b, std::vector<Node>& exp) const |
167 |
|
{ |
168 |
64367 |
if (a != b) |
169 |
|
{ |
170 |
19241 |
Assert(areEqual(a, b)); |
171 |
19241 |
exp.push_back(a.eqNode(b)); |
172 |
|
} |
173 |
64367 |
} |
174 |
|
|
175 |
15468 |
Node SolverState::getEmptySetEqClass(TypeNode tn) const |
176 |
|
{ |
177 |
15468 |
std::map<TypeNode, Node>::const_iterator it = d_eqc_emptyset.find(tn); |
178 |
15468 |
if (it != d_eqc_emptyset.end()) |
179 |
|
{ |
180 |
14305 |
return it->second; |
181 |
|
} |
182 |
1163 |
return Node::null(); |
183 |
|
} |
184 |
|
|
185 |
3429 |
Node SolverState::getUnivSetEqClass(TypeNode tn) const |
186 |
|
{ |
187 |
3429 |
std::map<TypeNode, Node>::const_iterator it = d_eqc_univset.find(tn); |
188 |
3429 |
if (it != d_eqc_univset.end()) |
189 |
|
{ |
190 |
2622 |
return it->second; |
191 |
|
} |
192 |
807 |
return Node::null(); |
193 |
|
} |
194 |
|
|
195 |
7639 |
Node SolverState::getSingletonEqClass(Node r) const |
196 |
|
{ |
197 |
7639 |
std::map<Node, Node>::const_iterator it = d_eqc_singleton.find(r); |
198 |
7639 |
if (it != d_eqc_singleton.end()) |
199 |
|
{ |
200 |
4 |
return it->second; |
201 |
|
} |
202 |
7635 |
return Node::null(); |
203 |
|
} |
204 |
|
|
205 |
234 |
Node SolverState::getBinaryOpTerm(Kind k, Node r1, Node r2) const |
206 |
|
{ |
207 |
|
std::map<Kind, std::map<Node, std::map<Node, Node> > >::const_iterator itk = |
208 |
234 |
d_bop_index.find(k); |
209 |
234 |
if (itk == d_bop_index.end()) |
210 |
|
{ |
211 |
|
return Node::null(); |
212 |
|
} |
213 |
|
std::map<Node, std::map<Node, Node> >::const_iterator it1 = |
214 |
234 |
itk->second.find(r1); |
215 |
234 |
if (it1 == itk->second.end()) |
216 |
|
{ |
217 |
136 |
return Node::null(); |
218 |
|
} |
219 |
98 |
std::map<Node, Node>::const_iterator it2 = it1->second.find(r2); |
220 |
98 |
if (it2 == it1->second.end()) |
221 |
|
{ |
222 |
62 |
return Node::null(); |
223 |
|
} |
224 |
36 |
return it2->second; |
225 |
|
} |
226 |
|
|
227 |
159322 |
bool SolverState::isEntailed(Node n, bool polarity) const |
228 |
|
{ |
229 |
159322 |
if (n.getKind() == NOT) |
230 |
|
{ |
231 |
14880 |
return isEntailed(n[0], !polarity); |
232 |
|
} |
233 |
144442 |
else if (n.getKind() == EQUAL) |
234 |
|
{ |
235 |
8277 |
if (polarity) |
236 |
|
{ |
237 |
7489 |
return areEqual(n[0], n[1]); |
238 |
|
} |
239 |
788 |
return areDisequal(n[0], n[1]); |
240 |
|
} |
241 |
136165 |
else if (n.getKind() == MEMBER) |
242 |
|
{ |
243 |
74447 |
if (areEqual(n, polarity ? d_true : d_false)) |
244 |
|
{ |
245 |
53644 |
return true; |
246 |
|
} |
247 |
|
// check members cache |
248 |
20803 |
if (polarity && d_ee->hasTerm(n[1])) |
249 |
|
{ |
250 |
30156 |
Node r = d_ee->getRepresentative(n[1]); |
251 |
19945 |
if (isMember(n[0], r)) |
252 |
|
{ |
253 |
9734 |
return true; |
254 |
|
} |
255 |
|
} |
256 |
|
} |
257 |
61718 |
else if (n.getKind() == AND || n.getKind() == OR) |
258 |
|
{ |
259 |
36971 |
bool conj = (n.getKind() == AND) == polarity; |
260 |
91575 |
for (const Node& nc : n) |
261 |
|
{ |
262 |
68562 |
bool isEnt = isEntailed(nc, polarity); |
263 |
68562 |
if (isEnt != conj) |
264 |
|
{ |
265 |
13958 |
return !conj; |
266 |
|
} |
267 |
|
} |
268 |
23013 |
return conj; |
269 |
|
} |
270 |
24747 |
else if (n.isConst()) |
271 |
|
{ |
272 |
12823 |
return (polarity && n == d_true) || (!polarity && n == d_false); |
273 |
|
} |
274 |
22993 |
return false; |
275 |
|
} |
276 |
|
|
277 |
6771 |
bool SolverState::isSetDisequalityEntailed(Node r1, Node r2) const |
278 |
|
{ |
279 |
6771 |
Assert(d_ee->hasTerm(r1) && d_ee->getRepresentative(r1) == r1); |
280 |
6771 |
Assert(d_ee->hasTerm(r2) && d_ee->getRepresentative(r2) == r2); |
281 |
13542 |
TypeNode tn = r1.getType(); |
282 |
13542 |
Node re = getEmptySetEqClass(tn); |
283 |
9497 |
for (unsigned e = 0; e < 2; e++) |
284 |
|
{ |
285 |
11486 |
Node a = e == 0 ? r1 : r2; |
286 |
11486 |
Node b = e == 0 ? r2 : r1; |
287 |
8760 |
if (isSetDisequalityEntailedInternal(a, b, re)) |
288 |
|
{ |
289 |
6034 |
return true; |
290 |
|
} |
291 |
|
} |
292 |
737 |
return false; |
293 |
|
} |
294 |
|
|
295 |
8760 |
bool SolverState::isSetDisequalityEntailedInternal(Node a, |
296 |
|
Node b, |
297 |
|
Node re) const |
298 |
|
{ |
299 |
|
// if there are members in a |
300 |
|
std::map<Node, std::map<Node, Node> >::const_iterator itpma = |
301 |
8760 |
d_pol_mems[0].find(a); |
302 |
8760 |
if (itpma == d_pol_mems[0].end()) |
303 |
|
{ |
304 |
|
// no positive members, continue |
305 |
1600 |
return false; |
306 |
|
} |
307 |
|
// if b is empty |
308 |
7160 |
if (b == re) |
309 |
|
{ |
310 |
2382 |
if (!itpma->second.empty()) |
311 |
|
{ |
312 |
4764 |
Trace("sets-deq") << "Disequality is satisfied because members are in " |
313 |
2382 |
<< a << " and " << b << " is empty" << std::endl; |
314 |
2382 |
return true; |
315 |
|
} |
316 |
|
else |
317 |
|
{ |
318 |
|
// a should not be singleton |
319 |
|
Assert(d_eqc_singleton.find(a) == d_eqc_singleton.end()); |
320 |
|
} |
321 |
|
return false; |
322 |
|
} |
323 |
4778 |
std::map<Node, Node>::const_iterator itsb = d_eqc_singleton.find(b); |
324 |
|
std::map<Node, std::map<Node, Node> >::const_iterator itpmb = |
325 |
4778 |
d_pol_mems[1].find(b); |
326 |
9556 |
std::vector<Node> prev; |
327 |
7253 |
for (const std::pair<const Node, Node>& itm : itpma->second) |
328 |
|
{ |
329 |
|
// if b is a singleton |
330 |
6127 |
if (itsb != d_eqc_singleton.end()) |
331 |
|
{ |
332 |
3417 |
if (areDisequal(itm.first, itsb->second[0])) |
333 |
|
{ |
334 |
5608 |
Trace("sets-deq") << "Disequality is satisfied because of " |
335 |
5608 |
<< itm.second << ", singleton eq " << itsb->second[0] |
336 |
2804 |
<< std::endl; |
337 |
6456 |
return true; |
338 |
|
} |
339 |
|
// or disequal with another member |
340 |
713 |
for (const Node& p : prev) |
341 |
|
{ |
342 |
109 |
if (areDisequal(itm.first, p)) |
343 |
|
{ |
344 |
18 |
Trace("sets-deq") |
345 |
9 |
<< "Disequality is satisfied because of disequal members " |
346 |
9 |
<< itm.first << " " << p << ", singleton eq " << std::endl; |
347 |
9 |
return true; |
348 |
|
} |
349 |
|
} |
350 |
|
// if a has positive member that is negative member in b |
351 |
|
} |
352 |
2710 |
else if (itpmb != d_pol_mems[1].end()) |
353 |
|
{ |
354 |
3239 |
for (const std::pair<const Node, Node>& itnm : itpmb->second) |
355 |
|
{ |
356 |
2392 |
if (areEqual(itm.first, itnm.first)) |
357 |
|
{ |
358 |
1678 |
Trace("sets-deq") << "Disequality is satisfied because of " |
359 |
839 |
<< itm.second << " " << itnm.second << std::endl; |
360 |
839 |
return true; |
361 |
|
} |
362 |
|
} |
363 |
|
} |
364 |
2475 |
prev.push_back(itm.first); |
365 |
|
} |
366 |
1126 |
return false; |
367 |
|
} |
368 |
|
|
369 |
|
Node SolverState::getCongruent(Node n) const |
370 |
|
{ |
371 |
|
Assert(d_ee->hasTerm(n)); |
372 |
|
std::map<Node, Node>::const_iterator it = d_congruent.find(n); |
373 |
|
if (it == d_congruent.end()) |
374 |
|
{ |
375 |
|
return n; |
376 |
|
} |
377 |
|
return it->second; |
378 |
|
} |
379 |
80914 |
bool SolverState::isCongruent(Node n) const |
380 |
|
{ |
381 |
80914 |
return d_congruent.find(n) != d_congruent.end(); |
382 |
|
} |
383 |
75400 |
const std::vector<Node>& SolverState::getNonVariableSets(Node r) const |
384 |
|
{ |
385 |
75400 |
std::map<Node, std::vector<Node> >::const_iterator it = d_nvar_sets.find(r); |
386 |
75400 |
if (it == d_nvar_sets.end()) |
387 |
|
{ |
388 |
17842 |
return d_emptyVec; |
389 |
|
} |
390 |
57558 |
return it->second; |
391 |
|
} |
392 |
|
|
393 |
20896 |
Node SolverState::getVariableSet(Node r) const |
394 |
|
{ |
395 |
20896 |
std::map<Node, Node>::const_iterator it = d_var_set.find(r); |
396 |
20896 |
if (it != d_var_set.end()) |
397 |
|
{ |
398 |
5980 |
return it->second; |
399 |
|
} |
400 |
14916 |
return Node::null(); |
401 |
|
} |
402 |
|
|
403 |
|
const std::vector<Node>& SolverState::getComprehensionSets(Node r) const |
404 |
|
{ |
405 |
|
std::map<Node, std::vector<Node> >::const_iterator it = d_compSets.find(r); |
406 |
|
if (it == d_compSets.end()) |
407 |
|
{ |
408 |
|
return d_emptyVec; |
409 |
|
} |
410 |
|
return it->second; |
411 |
|
} |
412 |
|
|
413 |
111766 |
const std::map<Node, Node>& SolverState::getMembers(Node r) const |
414 |
|
{ |
415 |
111766 |
return getMembersInternal(r, 0); |
416 |
|
} |
417 |
30791 |
const std::map<Node, Node>& SolverState::getNegativeMembers(Node r) const |
418 |
|
{ |
419 |
30791 |
return getMembersInternal(r, 1); |
420 |
|
} |
421 |
142557 |
const std::map<Node, Node>& SolverState::getMembersInternal(Node r, |
422 |
|
unsigned i) const |
423 |
|
{ |
424 |
|
std::map<Node, std::map<Node, Node> >::const_iterator itp = |
425 |
142557 |
d_pol_mems[i].find(r); |
426 |
142557 |
if (itp == d_pol_mems[i].end()) |
427 |
|
{ |
428 |
44379 |
return d_emptyMap; |
429 |
|
} |
430 |
98178 |
return itp->second; |
431 |
|
} |
432 |
|
|
433 |
1086 |
bool SolverState::hasMembers(Node r) const |
434 |
|
{ |
435 |
|
std::map<Node, std::map<Node, Node> >::const_iterator it = |
436 |
1086 |
d_pol_mems[0].find(r); |
437 |
1086 |
if (it == d_pol_mems[0].end()) |
438 |
|
{ |
439 |
363 |
return false; |
440 |
|
} |
441 |
723 |
return !it->second.empty(); |
442 |
|
} |
443 |
|
const std::map<Kind, std::map<Node, std::map<Node, Node> > >& |
444 |
15851 |
SolverState::getBinaryOpIndex() const |
445 |
|
{ |
446 |
15851 |
return d_bop_index; |
447 |
|
} |
448 |
|
|
449 |
|
const std::map<Node, std::map<Node, Node>>& SolverState::getBinaryOpIndex( |
450 |
|
Kind k) |
451 |
|
{ |
452 |
|
return d_bop_index[k]; |
453 |
|
} |
454 |
|
|
455 |
6056 |
const std::map<Kind, std::vector<Node> >& SolverState::getOperatorList() const |
456 |
|
{ |
457 |
6056 |
return d_op_list; |
458 |
|
} |
459 |
|
|
460 |
14133 |
const std::vector<Node>& SolverState::getComprehensionSets() const |
461 |
|
{ |
462 |
14133 |
return d_allCompSets; |
463 |
|
} |
464 |
|
|
465 |
970 |
const vector<Node> SolverState::getSetsEqClasses(const TypeNode& t) const |
466 |
|
{ |
467 |
970 |
vector<Node> representatives; |
468 |
9725 |
for (const Node& eqc : getSetsEqClasses()) |
469 |
|
{ |
470 |
8755 |
if (eqc.getType().getSetElementType() == t) |
471 |
|
{ |
472 |
8755 |
representatives.push_back(eqc); |
473 |
|
} |
474 |
|
} |
475 |
970 |
return representatives; |
476 |
|
} |
477 |
|
|
478 |
61033 |
bool SolverState::isMember(TNode x, TNode s) const |
479 |
|
{ |
480 |
61033 |
Assert(hasTerm(s) && getRepresentative(s) == s); |
481 |
61033 |
NodeIntMap::const_iterator mem_i = d_members.find(s); |
482 |
61033 |
if (mem_i != d_members.end()) |
483 |
|
{ |
484 |
|
std::map<Node, std::vector<Node> >::const_iterator itd = |
485 |
54185 |
d_members_data.find(s); |
486 |
54185 |
Assert(itd != d_members_data.end()); |
487 |
54185 |
const std::vector<Node>& members = itd->second; |
488 |
54185 |
Assert((*mem_i).second <= members.size()); |
489 |
111417 |
for (size_t i = 0, nmem = (*mem_i).second; i < nmem; i++) |
490 |
|
{ |
491 |
105211 |
if (areEqual(members[i][0], x)) |
492 |
|
{ |
493 |
47979 |
return true; |
494 |
|
} |
495 |
|
} |
496 |
|
} |
497 |
13054 |
return false; |
498 |
|
} |
499 |
|
|
500 |
53951 |
void SolverState::addMember(TNode r, TNode atom) |
501 |
|
{ |
502 |
53951 |
NodeIntMap::iterator mem_i = d_members.find(r); |
503 |
53951 |
size_t n_members = 0; |
504 |
53951 |
if (mem_i != d_members.end()) |
505 |
|
{ |
506 |
39848 |
n_members = (*mem_i).second; |
507 |
|
} |
508 |
53951 |
d_members[r] = n_members + 1; |
509 |
53951 |
if (n_members < d_members_data[r].size()) |
510 |
|
{ |
511 |
43481 |
d_members_data[r][n_members] = atom; |
512 |
|
} |
513 |
|
else |
514 |
|
{ |
515 |
10470 |
d_members_data[r].push_back(atom); |
516 |
|
} |
517 |
53951 |
} |
518 |
|
|
519 |
197148 |
bool SolverState::merge(TNode t1, |
520 |
|
TNode t2, |
521 |
|
std::vector<Node>& facts, |
522 |
|
TNode cset) |
523 |
|
{ |
524 |
197148 |
NodeIntMap::iterator mem_i2 = d_members.find(t2); |
525 |
197148 |
if (mem_i2 == d_members.end()) |
526 |
|
{ |
527 |
|
// no members in t2, we are done |
528 |
183378 |
return true; |
529 |
|
} |
530 |
13770 |
NodeIntMap::iterator mem_i1 = d_members.find(t1); |
531 |
13770 |
size_t n_members = 0; |
532 |
13770 |
if (mem_i1 != d_members.end()) |
533 |
|
{ |
534 |
13355 |
n_members = (*mem_i1).second; |
535 |
|
} |
536 |
29129 |
for (size_t i = 0, nmem2 = (*mem_i2).second; i < nmem2; i++) |
537 |
|
{ |
538 |
15453 |
Assert(i < d_members_data[t2].size() |
539 |
|
&& d_members_data[t2][i].getKind() == MEMBER); |
540 |
30812 |
Node m2 = d_members_data[t2][i]; |
541 |
|
// check if redundant |
542 |
15453 |
bool add = true; |
543 |
18774 |
for (size_t j = 0; j < n_members; j++) |
544 |
|
{ |
545 |
17830 |
Assert(j < d_members_data[t1].size() |
546 |
|
&& d_members_data[t1][j].getKind() == MEMBER); |
547 |
17830 |
if (areEqual(m2[0], d_members_data[t1][j][0])) |
548 |
|
{ |
549 |
14509 |
add = false; |
550 |
14509 |
break; |
551 |
|
} |
552 |
|
} |
553 |
15453 |
if (add) |
554 |
|
{ |
555 |
|
// if there is a concrete set in t1, propagate new facts or conflicts |
556 |
944 |
if (!cset.isNull()) |
557 |
|
{ |
558 |
238 |
NodeManager* nm = NodeManager::currentNM(); |
559 |
238 |
Assert(areEqual(m2[1], cset)); |
560 |
382 |
Node exp = nm->mkNode(AND, m2[1].eqNode(cset), m2); |
561 |
238 |
if (cset.getKind() == SINGLETON) |
562 |
|
{ |
563 |
144 |
if (cset[0] != m2[0]) |
564 |
|
{ |
565 |
288 |
Node eq = cset[0].eqNode(m2[0]); |
566 |
288 |
Trace("sets-prop") << "Propagate eq-mem eq inference : " << exp |
567 |
144 |
<< " => " << eq << std::endl; |
568 |
288 |
Node fact = nm->mkNode(IMPLIES, exp, eq); |
569 |
144 |
facts.push_back(fact); |
570 |
|
} |
571 |
|
} |
572 |
|
else |
573 |
|
{ |
574 |
|
// conflict |
575 |
94 |
Assert(facts.empty()); |
576 |
188 |
Trace("sets-prop") |
577 |
94 |
<< "Propagate eq-mem conflict : " << exp << std::endl; |
578 |
94 |
facts.push_back(exp); |
579 |
94 |
return false; |
580 |
|
} |
581 |
|
} |
582 |
850 |
if (n_members < d_members_data[t1].size()) |
583 |
|
{ |
584 |
627 |
d_members_data[t1][n_members] = m2; |
585 |
|
} |
586 |
|
else |
587 |
|
{ |
588 |
223 |
d_members_data[t1].push_back(m2); |
589 |
|
} |
590 |
850 |
n_members++; |
591 |
|
} |
592 |
|
} |
593 |
13676 |
d_members[t1] = n_members; |
594 |
13676 |
return true; |
595 |
|
} |
596 |
|
|
597 |
|
} // namespace sets |
598 |
|
} // namespace theory |
599 |
28191 |
} // namespace cvc5 |