1 |
|
/****************************************************************************** |
2 |
|
* Top contributors (to current version): |
3 |
|
* Andrew Reynolds, Andres Noetzli, Tianyi Liang |
4 |
|
* |
5 |
|
* This file is part of the cvc5 project. |
6 |
|
* |
7 |
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS |
8 |
|
* in the top-level source directory and their institutional affiliations. |
9 |
|
* All rights reserved. See the file COPYING in the top-level source |
10 |
|
* directory for licensing information. |
11 |
|
* **************************************************************************** |
12 |
|
* |
13 |
|
* Strings Preprocess. |
14 |
|
*/ |
15 |
|
|
16 |
|
#include "theory/strings/theory_strings_preprocess.h" |
17 |
|
|
18 |
|
#include "expr/kind.h" |
19 |
|
#include "expr/skolem_manager.h" |
20 |
|
#include "options/smt_options.h" |
21 |
|
#include "options/strings_options.h" |
22 |
|
#include "smt/logic_exception.h" |
23 |
|
#include "theory/quantifiers/quantifiers_attributes.h" |
24 |
|
#include "theory/strings/arith_entail.h" |
25 |
|
#include "theory/strings/sequences_rewriter.h" |
26 |
|
#include "theory/strings/word.h" |
27 |
|
#include "util/statistics_registry.h" |
28 |
|
|
29 |
|
using namespace cvc5; |
30 |
|
using namespace cvc5::kind; |
31 |
|
|
32 |
|
namespace cvc5 { |
33 |
|
namespace theory { |
34 |
|
namespace strings { |
35 |
|
|
36 |
|
/** Mapping to a dummy node for marking an attribute on internal quantified |
37 |
|
* formulas */ |
38 |
|
struct QInternalVarAttributeId |
39 |
|
{ |
40 |
|
}; |
41 |
|
typedef expr::Attribute<QInternalVarAttributeId, Node> QInternalVarAttribute; |
42 |
|
|
43 |
9495 |
StringsPreprocess::StringsPreprocess(SkolemCache* sc, |
44 |
9495 |
HistogramStat<Kind>* statReductions) |
45 |
9495 |
: d_sc(sc), d_statReductions(statReductions) |
46 |
|
{ |
47 |
9495 |
} |
48 |
|
|
49 |
9495 |
StringsPreprocess::~StringsPreprocess(){ |
50 |
|
|
51 |
9495 |
} |
52 |
|
|
53 |
3291 |
Node StringsPreprocess::reduce(Node t, |
54 |
|
std::vector<Node>& asserts, |
55 |
|
SkolemCache* sc) |
56 |
|
{ |
57 |
6582 |
Trace("strings-preprocess-debug") |
58 |
3291 |
<< "StringsPreprocess::reduce: " << t << std::endl; |
59 |
3291 |
Node retNode = t; |
60 |
3291 |
NodeManager* nm = NodeManager::currentNM(); |
61 |
3291 |
SkolemManager* sm = nm->getSkolemManager(); |
62 |
6582 |
Node zero = nm->mkConst(Rational(0)); |
63 |
6582 |
Node one = nm->mkConst(Rational(1)); |
64 |
6582 |
Node negOne = nm->mkConst(Rational(-1)); |
65 |
|
|
66 |
3291 |
if( t.getKind() == kind::STRING_SUBSTR ) { |
67 |
|
// processing term: substr( s, n, m ) |
68 |
2286 |
Node s = t[0]; |
69 |
2286 |
Node n = t[1]; |
70 |
2286 |
Node m = t[2]; |
71 |
2286 |
Node skt = sc->mkSkolemCached(t, SkolemCache::SK_PURIFY, "sst"); |
72 |
2286 |
Node t12 = nm->mkNode(PLUS, n, m); |
73 |
2286 |
Node lt0 = nm->mkNode(STRING_LENGTH, s); |
74 |
|
//start point is greater than or equal zero |
75 |
2286 |
Node c1 = nm->mkNode(GEQ, n, zero); |
76 |
|
//start point is less than end of string |
77 |
2286 |
Node c2 = nm->mkNode(GT, lt0, n); |
78 |
|
//length is positive |
79 |
2286 |
Node c3 = nm->mkNode(GT, m, zero); |
80 |
2286 |
Node cond = nm->mkNode(AND, c1, c2, c3); |
81 |
|
|
82 |
2286 |
Node emp = Word::mkEmptyWord(t.getType()); |
83 |
|
|
84 |
2286 |
Node sk1 = sc->mkSkolemCached(s, n, SkolemCache::SK_PREFIX, "sspre"); |
85 |
2286 |
Node sk2 = sc->mkSkolemCached(s, t12, SkolemCache::SK_SUFFIX_REM, "sssufr"); |
86 |
2286 |
Node b11 = s.eqNode(nm->mkNode(STRING_CONCAT, sk1, skt, sk2)); |
87 |
|
//length of first skolem is second argument |
88 |
2286 |
Node b12 = nm->mkNode(STRING_LENGTH, sk1).eqNode(n); |
89 |
2286 |
Node lsk2 = nm->mkNode(STRING_LENGTH, sk2); |
90 |
|
// Length of the suffix is either 0 (in the case where m + n > len(s)) or |
91 |
|
// len(s) - n -m |
92 |
|
Node b13 = nm->mkNode( |
93 |
|
OR, |
94 |
2286 |
nm->mkNode(EQUAL, lsk2, nm->mkNode(MINUS, lt0, nm->mkNode(PLUS, n, m))), |
95 |
4572 |
nm->mkNode(EQUAL, lsk2, zero)); |
96 |
|
// Length of the result is at most m |
97 |
2286 |
Node b14 = nm->mkNode(LEQ, nm->mkNode(STRING_LENGTH, skt), m); |
98 |
|
|
99 |
2286 |
Node b1 = nm->mkNode(AND, {b11, b12, b13, b14}); |
100 |
2286 |
Node b2 = skt.eqNode(emp); |
101 |
2286 |
Node lemma = nm->mkNode(ITE, cond, b1, b2); |
102 |
|
|
103 |
|
// assert: |
104 |
|
// IF n >=0 AND len( s ) > n AND m > 0 |
105 |
|
// THEN: s = sk1 ++ skt ++ sk2 AND |
106 |
|
// len( sk1 ) = n AND |
107 |
|
// ( len( sk2 ) = len( s )-(n+m) OR len( sk2 ) = 0 ) AND |
108 |
|
// len( skt ) <= m |
109 |
|
// ELSE: skt = "" |
110 |
|
// |
111 |
|
// Note: The length of sk2 is either 0 (if the n + m is greater or equal to |
112 |
|
// the length of s) or len(s) - (n + m) otherwise. If n + m is greater or |
113 |
|
// equal to the length of s, then len(s) - (n + m) is negative and in |
114 |
|
// conflict with lengths always being positive, so only len(sk2) = 0 may be |
115 |
|
// satisfied. If n + m is less than the length of s, then len(sk2) = 0 |
116 |
|
// cannot be satisfied because we have the constraint that len(skt) <= m, |
117 |
|
// so sk2 must be greater than 0. |
118 |
1143 |
asserts.push_back(lemma); |
119 |
|
|
120 |
|
// Thus, substr( s, n, m ) = skt |
121 |
1143 |
retNode = skt; |
122 |
|
} |
123 |
2148 |
else if (t.getKind() == kind::STRING_UPDATE) |
124 |
|
{ |
125 |
|
// processing term: update( s, n, r ) |
126 |
30 |
Node s = t[0]; |
127 |
30 |
Node n = t[1]; |
128 |
30 |
Node r = t[2]; |
129 |
30 |
Node skt = sc->mkSkolemCached(t, SkolemCache::SK_PURIFY, "sst"); |
130 |
30 |
Node ls = nm->mkNode(STRING_LENGTH, s); |
131 |
|
// start point is greater than or equal zero |
132 |
30 |
Node c1 = nm->mkNode(GEQ, n, zero); |
133 |
|
// start point is less than end of string |
134 |
30 |
Node c2 = nm->mkNode(GT, ls, n); |
135 |
30 |
Node cond = nm->mkNode(AND, c1, c2); |
136 |
|
|
137 |
|
// substr(r,0,|s|-n) |
138 |
30 |
Node lens = nm->mkNode(STRING_LENGTH, s); |
139 |
30 |
Node rs; |
140 |
15 |
if (r.isConst() && Word::getLength(r) == 1) |
141 |
|
{ |
142 |
|
// optimization: don't need to take substring for single characters, due |
143 |
|
// to guard on where it is used in the reduction below. |
144 |
2 |
rs = r; |
145 |
|
} |
146 |
|
else |
147 |
|
{ |
148 |
13 |
rs = nm->mkNode(STRING_SUBSTR, r, zero, nm->mkNode(MINUS, lens, n)); |
149 |
|
} |
150 |
30 |
Node rslen = nm->mkNode(STRING_LENGTH, rs); |
151 |
30 |
Node nsuf = nm->mkNode(PLUS, n, rslen); |
152 |
|
// substr(s, n, len(substr(r,0,|s|-n))), which is used for formalizing the |
153 |
|
// purification variable sk3 below. |
154 |
30 |
Node ssubstr = nm->mkNode(STRING_SUBSTR, s, n, rslen); |
155 |
|
|
156 |
30 |
Node sk1 = sc->mkSkolemCached(s, n, SkolemCache::SK_PREFIX, "sspre"); |
157 |
|
Node sk2 = |
158 |
30 |
sc->mkSkolemCached(s, nsuf, SkolemCache::SK_SUFFIX_REM, "sssufr"); |
159 |
30 |
Node sk3 = sc->mkSkolemCached(ssubstr, SkolemCache::SK_PURIFY, "ssubstr"); |
160 |
30 |
Node a1 = skt.eqNode(nm->mkNode(STRING_CONCAT, sk1, rs, sk2)); |
161 |
30 |
Node a2 = s.eqNode(nm->mkNode(STRING_CONCAT, sk1, sk3, sk2)); |
162 |
|
// length of first skolem is second argument |
163 |
30 |
Node a3 = nm->mkNode(STRING_LENGTH, sk1).eqNode(n); |
164 |
|
|
165 |
30 |
Node b1 = nm->mkNode(AND, a1, a2, a3); |
166 |
30 |
Node b2 = skt.eqNode(s); |
167 |
30 |
Node lemma = nm->mkNode(ITE, cond, b1, b2); |
168 |
|
|
169 |
|
// assert: |
170 |
|
// IF n >=0 AND n < len( s ) |
171 |
|
// THEN: skt = sk1 ++ substr(r,0,len(s)-n) ++ sk2 AND |
172 |
|
// s = sk1 ++ sk3 ++ sk2 AND |
173 |
|
// len( sk1 ) = n |
174 |
|
// ELSE: skt = s |
175 |
|
// We use an optimization where r is used instead of substr(r,0,len(s)-n) |
176 |
|
// if r is a constant of length one. |
177 |
15 |
asserts.push_back(lemma); |
178 |
|
|
179 |
|
// Thus, str.update( s, n, r ) = skt |
180 |
15 |
retNode = skt; |
181 |
|
} |
182 |
2133 |
else if (t.getKind() == kind::STRING_STRIDOF) |
183 |
|
{ |
184 |
|
// processing term: indexof( x, y, n ) |
185 |
268 |
Node x = t[0]; |
186 |
268 |
Node y = t[1]; |
187 |
268 |
Node n = t[2]; |
188 |
|
Node skk = sc->mkTypedSkolemCached( |
189 |
268 |
nm->integerType(), t, SkolemCache::SK_PURIFY, "iok"); |
190 |
|
|
191 |
268 |
Node negone = nm->mkConst(Rational(-1)); |
192 |
|
|
193 |
|
// substr( x, n, len( x ) - n ) |
194 |
|
Node st = nm->mkNode(STRING_SUBSTR, |
195 |
|
x, |
196 |
|
n, |
197 |
268 |
nm->mkNode(MINUS, nm->mkNode(STRING_LENGTH, x), n)); |
198 |
|
Node io2 = |
199 |
268 |
sc->mkSkolemCached(st, y, SkolemCache::SK_FIRST_CTN_PRE, "iopre"); |
200 |
|
Node io4 = |
201 |
268 |
sc->mkSkolemCached(st, y, SkolemCache::SK_FIRST_CTN_POST, "iopost"); |
202 |
|
|
203 |
|
// ~contains( substr( x, n, len( x ) - n ), y ) |
204 |
268 |
Node c11 = nm->mkNode(STRING_STRCTN, st, y).negate(); |
205 |
|
// n > len( x ) |
206 |
268 |
Node c12 = nm->mkNode(GT, n, nm->mkNode(STRING_LENGTH, x)); |
207 |
|
// 0 > n |
208 |
268 |
Node c13 = nm->mkNode(GT, zero, n); |
209 |
268 |
Node cond1 = nm->mkNode(OR, c11, c12, c13); |
210 |
|
// skk = -1 |
211 |
268 |
Node cc1 = skk.eqNode(negone); |
212 |
|
|
213 |
|
// y = "" |
214 |
268 |
Node emp = Word::mkEmptyWord(x.getType()); |
215 |
268 |
Node cond2 = y.eqNode(emp); |
216 |
|
// skk = n |
217 |
268 |
Node cc2 = skk.eqNode(t[2]); |
218 |
|
|
219 |
|
// substr( x, n, len( x ) - n ) = str.++( io2, y, io4 ) |
220 |
268 |
Node c31 = st.eqNode(nm->mkNode(STRING_CONCAT, io2, y, io4)); |
221 |
|
// ~contains( str.++( io2, substr( y, 0, len( y ) - 1) ), y ) |
222 |
|
Node c32 = |
223 |
536 |
nm->mkNode( |
224 |
|
STRING_STRCTN, |
225 |
268 |
nm->mkNode( |
226 |
|
STRING_CONCAT, |
227 |
|
io2, |
228 |
268 |
nm->mkNode( |
229 |
|
STRING_SUBSTR, |
230 |
|
y, |
231 |
|
zero, |
232 |
268 |
nm->mkNode(MINUS, nm->mkNode(STRING_LENGTH, y), one))), |
233 |
|
y) |
234 |
268 |
.negate(); |
235 |
|
// skk = n + len( io2 ) |
236 |
268 |
Node c33 = skk.eqNode(nm->mkNode(PLUS, n, nm->mkNode(STRING_LENGTH, io2))); |
237 |
268 |
Node cc3 = nm->mkNode(AND, c31, c32, c33); |
238 |
|
|
239 |
|
// assert: |
240 |
|
// IF: ~contains( substr( x, n, len( x ) - n ), y ) OR n > len(x) OR 0 > n |
241 |
|
// THEN: skk = -1 |
242 |
|
// ELIF: y = "" |
243 |
|
// THEN: skk = n |
244 |
|
// ELSE: substr( x, n, len( x ) - n ) = str.++( io2, y, io4 ) ^ |
245 |
|
// ~contains( str.++( io2, substr( y, 0, len( y ) - 1) ), y ) ^ |
246 |
|
// skk = n + len( io2 ) |
247 |
|
// for fresh io2, io4. |
248 |
268 |
Node rr = nm->mkNode(ITE, cond1, cc1, nm->mkNode(ITE, cond2, cc2, cc3)); |
249 |
134 |
asserts.push_back(rr); |
250 |
|
|
251 |
|
// Thus, indexof( x, y, n ) = skk. |
252 |
134 |
retNode = skk; |
253 |
|
} |
254 |
1999 |
else if (t.getKind() == STRING_ITOS) |
255 |
|
{ |
256 |
|
// processing term: int.to.str( n ) |
257 |
54 |
Node n = t[0]; |
258 |
54 |
Node itost = sc->mkSkolemCached(t, SkolemCache::SK_PURIFY, "itost"); |
259 |
54 |
Node leni = nm->mkNode(STRING_LENGTH, itost); |
260 |
|
|
261 |
54 |
std::vector<Node> conc; |
262 |
54 |
std::vector< TypeNode > argTypes; |
263 |
27 |
argTypes.push_back(nm->integerType()); |
264 |
|
Node u = |
265 |
54 |
sm->mkDummySkolem("U", nm->mkFunctionType(argTypes, nm->integerType())); |
266 |
|
|
267 |
54 |
Node lem = nm->mkNode(GEQ, leni, one); |
268 |
27 |
conc.push_back(lem); |
269 |
|
|
270 |
27 |
lem = n.eqNode(nm->mkNode(APPLY_UF, u, leni)); |
271 |
27 |
conc.push_back(lem); |
272 |
|
|
273 |
27 |
lem = zero.eqNode(nm->mkNode(APPLY_UF, u, zero)); |
274 |
27 |
conc.push_back(lem); |
275 |
|
|
276 |
54 |
Node x = SkolemCache::mkIndexVar(t); |
277 |
54 |
Node xPlusOne = nm->mkNode(PLUS, x, one); |
278 |
54 |
Node xbv = nm->mkNode(BOUND_VAR_LIST, x); |
279 |
54 |
Node g = nm->mkNode(AND, nm->mkNode(GEQ, x, zero), nm->mkNode(LT, x, leni)); |
280 |
54 |
Node sx = nm->mkNode(STRING_SUBSTR, itost, x, one); |
281 |
54 |
Node ux = nm->mkNode(APPLY_UF, u, x); |
282 |
54 |
Node ux1 = nm->mkNode(APPLY_UF, u, xPlusOne); |
283 |
54 |
Node c0 = nm->mkNode(STRING_TO_CODE, nm->mkConst(String("0"))); |
284 |
54 |
Node c = nm->mkNode(MINUS, nm->mkNode(STRING_TO_CODE, sx), c0); |
285 |
|
|
286 |
54 |
Node ten = nm->mkConst(Rational(10)); |
287 |
54 |
Node eq = ux1.eqNode(nm->mkNode(PLUS, c, nm->mkNode(MULT, ten, ux))); |
288 |
|
Node leadingZeroPos = |
289 |
54 |
nm->mkNode(AND, x.eqNode(zero), nm->mkNode(GT, leni, one)); |
290 |
|
Node cb = nm->mkNode( |
291 |
|
AND, |
292 |
54 |
nm->mkNode(GEQ, c, nm->mkNode(ITE, leadingZeroPos, one, zero)), |
293 |
108 |
nm->mkNode(LT, c, ten)); |
294 |
|
|
295 |
54 |
Node ux1lem = nm->mkNode(GEQ, n, ux1); |
296 |
|
|
297 |
27 |
lem = nm->mkNode(OR, g.negate(), nm->mkNode(AND, eq, cb, ux1lem)); |
298 |
27 |
lem = mkForallInternal(xbv, lem); |
299 |
27 |
conc.push_back(lem); |
300 |
|
|
301 |
54 |
Node nonneg = nm->mkNode(GEQ, n, zero); |
302 |
|
|
303 |
54 |
Node emp = Word::mkEmptyWord(t.getType()); |
304 |
27 |
lem = nm->mkNode(ITE, nonneg, nm->mkNode(AND, conc), itost.eqNode(emp)); |
305 |
27 |
asserts.push_back(lem); |
306 |
|
// assert: |
307 |
|
// IF n>=0 |
308 |
|
// THEN: |
309 |
|
// len( itost ) >= 1 ^ |
310 |
|
// n = U( len( itost ) ) ^ U( 0 ) = 0 ^ |
311 |
|
// forall x. (x>=0 ^ x < str.len(itost)) => |
312 |
|
// U( x+1 ) = (str.code( str.at(itost, x) )-48) + 10*U( x ) ^ |
313 |
|
// ite( x=0 AND str.len(itost)>1, 49, 48 ) <= |
314 |
|
// str.code( str.at(itost, x) ) < 58 ^ |
315 |
|
// n >= U(x + 1) |
316 |
|
// ELSE |
317 |
|
// itost = "" |
318 |
|
// thus: |
319 |
|
// int.to.str( n ) = itost |
320 |
|
// |
321 |
|
// Note: The conjunct `n >= U(x + 1)` is not needed for correctness but is |
322 |
|
// just an optimization. |
323 |
|
|
324 |
|
// The function U is an accumulator, where U( x ) for x>0 is the value of |
325 |
|
// str.to.int( str.substr( int.to.str( n ), 0, x ) ). For example, for |
326 |
|
// n=345, we have that U(1), U(2), U(3) = 3, 34, 345. |
327 |
|
// Above, we use str.code to map characters to their integer value, where |
328 |
|
// note that str.code( "0" ) = 48. Further notice that |
329 |
|
// ite( x=0 AND str.len(itost)>1, 49, 48 ) |
330 |
|
// enforces that int.to.str( n ) has no leading zeroes. |
331 |
27 |
retNode = itost; |
332 |
1972 |
} else if( t.getKind() == kind::STRING_STOI ) { |
333 |
50 |
Node s = t[0]; |
334 |
|
Node stoit = sc->mkTypedSkolemCached( |
335 |
50 |
nm->integerType(), t, SkolemCache::SK_PURIFY, "stoit"); |
336 |
50 |
Node lens = nm->mkNode(STRING_LENGTH, s); |
337 |
|
|
338 |
50 |
std::vector<Node> conc1; |
339 |
50 |
Node lem = stoit.eqNode(negOne); |
340 |
25 |
conc1.push_back(lem); |
341 |
|
|
342 |
50 |
Node emp = Word::mkEmptyWord(s.getType()); |
343 |
50 |
Node sEmpty = s.eqNode(emp); |
344 |
50 |
Node k = sm->mkDummySkolem("k", nm->integerType()); |
345 |
50 |
Node kc1 = nm->mkNode(GEQ, k, zero); |
346 |
50 |
Node kc2 = nm->mkNode(LT, k, lens); |
347 |
50 |
Node c0 = nm->mkNode(STRING_TO_CODE, nm->mkConst(String("0"))); |
348 |
|
Node codeSk = nm->mkNode( |
349 |
|
MINUS, |
350 |
50 |
nm->mkNode(STRING_TO_CODE, nm->mkNode(STRING_SUBSTR, s, k, one)), |
351 |
100 |
c0); |
352 |
50 |
Node ten = nm->mkConst(Rational(10)); |
353 |
|
Node kc3 = nm->mkNode( |
354 |
50 |
OR, nm->mkNode(LT, codeSk, zero), nm->mkNode(GEQ, codeSk, ten)); |
355 |
25 |
conc1.push_back(nm->mkNode(OR, sEmpty, nm->mkNode(AND, kc1, kc2, kc3))); |
356 |
|
|
357 |
50 |
std::vector<Node> conc2; |
358 |
50 |
std::vector< TypeNode > argTypes; |
359 |
25 |
argTypes.push_back(nm->integerType()); |
360 |
|
Node u = |
361 |
50 |
sm->mkDummySkolem("U", nm->mkFunctionType(argTypes, nm->integerType())); |
362 |
|
|
363 |
25 |
lem = stoit.eqNode(nm->mkNode(APPLY_UF, u, lens)); |
364 |
25 |
conc2.push_back(lem); |
365 |
|
|
366 |
25 |
lem = zero.eqNode(nm->mkNode(APPLY_UF, u, zero)); |
367 |
25 |
conc2.push_back(lem); |
368 |
|
|
369 |
25 |
lem = nm->mkNode(GT, lens, zero); |
370 |
25 |
conc2.push_back(lem); |
371 |
|
|
372 |
50 |
Node x = SkolemCache::mkIndexVar(t); |
373 |
50 |
Node xbv = nm->mkNode(BOUND_VAR_LIST, x); |
374 |
50 |
Node g = nm->mkNode(AND, nm->mkNode(GEQ, x, zero), nm->mkNode(LT, x, lens)); |
375 |
50 |
Node sx = nm->mkNode(STRING_SUBSTR, s, x, one); |
376 |
50 |
Node ux = nm->mkNode(APPLY_UF, u, x); |
377 |
50 |
Node ux1 = nm->mkNode(APPLY_UF, u, nm->mkNode(PLUS, x, one)); |
378 |
50 |
Node c = nm->mkNode(MINUS, nm->mkNode(STRING_TO_CODE, sx), c0); |
379 |
|
|
380 |
50 |
Node eq = ux1.eqNode(nm->mkNode(PLUS, c, nm->mkNode(MULT, ten, ux))); |
381 |
50 |
Node cb = nm->mkNode(AND, nm->mkNode(GEQ, c, zero), nm->mkNode(LT, c, ten)); |
382 |
|
|
383 |
50 |
Node ux1lem = nm->mkNode(GEQ, stoit, ux1); |
384 |
|
|
385 |
25 |
lem = nm->mkNode(OR, g.negate(), nm->mkNode(AND, eq, cb, ux1lem)); |
386 |
25 |
lem = mkForallInternal(xbv, lem); |
387 |
25 |
conc2.push_back(lem); |
388 |
|
|
389 |
50 |
Node sneg = nm->mkNode(LT, stoit, zero); |
390 |
25 |
lem = nm->mkNode(ITE, sneg, nm->mkNode(AND, conc1), nm->mkNode(AND, conc2)); |
391 |
25 |
asserts.push_back(lem); |
392 |
|
|
393 |
|
// assert: |
394 |
|
// IF stoit < 0 |
395 |
|
// THEN: |
396 |
|
// stoit = -1 ^ |
397 |
|
// ( s = "" OR |
398 |
|
// ( k>=0 ^ k<len( s ) ^ ( str.code( str.at(s, k) ) < 48 OR |
399 |
|
// str.code( str.at(s, k) ) >= 58 ))) |
400 |
|
// ELSE: |
401 |
|
// stoit = U( len( s ) ) ^ U( 0 ) = 0 ^ |
402 |
|
// str.len( s ) > 0 ^ |
403 |
|
// forall x. (x>=0 ^ x < str.len(s)) => |
404 |
|
// U( x+1 ) = ( str.code( str.at(s, x) ) - 48 ) + 10*U( x ) ^ |
405 |
|
// 48 <= str.code( str.at(s, x) ) < 58 ^ |
406 |
|
// stoit >= U( x+1 ) |
407 |
|
// Thus, str.to.int( s ) = stoit |
408 |
|
// |
409 |
|
// Note: The conjunct `stoit >= U( x+1 )` is not needed for correctness but |
410 |
|
// is just an optimization. |
411 |
|
|
412 |
25 |
retNode = stoit; |
413 |
|
} |
414 |
1947 |
else if (t.getKind() == kind::SEQ_NTH) |
415 |
|
{ |
416 |
|
// processing term: str.nth( s, n) |
417 |
|
// similar to substr. |
418 |
76 |
Node s = t[0]; |
419 |
76 |
Node n = t[1]; |
420 |
76 |
Node skt = sc->mkSkolemCached(t, SkolemCache::SK_PURIFY, "sst"); |
421 |
76 |
Node t12 = nm->mkNode(PLUS, n, one); |
422 |
76 |
Node lt0 = nm->mkNode(STRING_LENGTH, s); |
423 |
|
// start point is greater than or equal zero |
424 |
76 |
Node c1 = nm->mkNode(GEQ, n, zero); |
425 |
|
// start point is less than end of string |
426 |
76 |
Node c2 = nm->mkNode(GT, lt0, n); |
427 |
|
// check whether this application of seq.nth is defined. |
428 |
76 |
Node cond = nm->mkNode(AND, c1, c2); |
429 |
|
|
430 |
|
// nodes for the case where `seq.nth` is defined. |
431 |
76 |
Node sk1 = sc->mkSkolemCached(s, n, SkolemCache::SK_PREFIX, "sspre"); |
432 |
76 |
Node sk2 = sc->mkSkolemCached(s, t12, SkolemCache::SK_SUFFIX_REM, "sssufr"); |
433 |
76 |
Node unit = nm->mkNode(SEQ_UNIT, skt); |
434 |
76 |
Node b11 = s.eqNode(nm->mkNode(STRING_CONCAT, sk1, unit, sk2)); |
435 |
|
// length of first skolem is second argument |
436 |
76 |
Node b12 = nm->mkNode(STRING_LENGTH, sk1).eqNode(n); |
437 |
76 |
Node lsk2 = nm->mkNode(STRING_LENGTH, sk2); |
438 |
76 |
Node b13 = nm->mkNode(EQUAL, lsk2, nm->mkNode(MINUS, lt0, t12)); |
439 |
76 |
Node b1 = nm->mkNode(AND, b11, b12, b13); |
440 |
|
|
441 |
|
// nodes for the case where `seq.nth` is undefined. |
442 |
76 |
Node uf = SkolemCache::mkSkolemSeqNth(s.getType(), "Uf"); |
443 |
76 |
Node b2 = nm->mkNode(EQUAL, skt, nm->mkNode(APPLY_UF, uf, s, n)); |
444 |
|
|
445 |
|
// the full ite, split on definedness of `seq.nth` |
446 |
76 |
Node lemma = nm->mkNode(ITE, cond, b1, b2); |
447 |
|
|
448 |
|
// assert: |
449 |
|
// IF n >=0 AND n < len( s ) |
450 |
|
// THEN: s = sk1 ++ unit(skt) ++ sk2 AND |
451 |
|
// len( sk1 ) = n AND |
452 |
|
// ( len( sk2 ) = len( s )- (n+1) |
453 |
|
// ELSE: skt = Uf(s, n), where Uf is a cached skolem function. |
454 |
38 |
asserts.push_back(lemma); |
455 |
38 |
retNode = skt; |
456 |
|
} |
457 |
1909 |
else if (t.getKind() == kind::STRING_STRREPL) |
458 |
|
{ |
459 |
|
// processing term: replace( x, y, z ) |
460 |
484 |
Node x = t[0]; |
461 |
484 |
Node y = t[1]; |
462 |
484 |
Node z = t[2]; |
463 |
484 |
TypeNode tn = t[0].getType(); |
464 |
|
Node rp1 = |
465 |
484 |
sc->mkSkolemCached(x, y, SkolemCache::SK_FIRST_CTN_PRE, "rfcpre"); |
466 |
|
Node rp2 = |
467 |
484 |
sc->mkSkolemCached(x, y, SkolemCache::SK_FIRST_CTN_POST, "rfcpost"); |
468 |
484 |
Node rpw = sc->mkSkolemCached(t, SkolemCache::SK_PURIFY, "rpw"); |
469 |
|
|
470 |
|
// y = "" |
471 |
484 |
Node emp = Word::mkEmptyWord(tn); |
472 |
484 |
Node cond1 = y.eqNode(emp); |
473 |
|
// rpw = str.++( z, x ) |
474 |
484 |
Node c1 = rpw.eqNode(nm->mkNode(kind::STRING_CONCAT, z, x)); |
475 |
|
|
476 |
|
// contains( x, y ) |
477 |
484 |
Node cond2 = nm->mkNode(kind::STRING_STRCTN, x, y); |
478 |
|
// x = str.++( rp1, y, rp2 ) |
479 |
484 |
Node c21 = x.eqNode(nm->mkNode(kind::STRING_CONCAT, rp1, y, rp2)); |
480 |
|
// rpw = str.++( rp1, z, rp2 ) |
481 |
484 |
Node c22 = rpw.eqNode(nm->mkNode(kind::STRING_CONCAT, rp1, z, rp2)); |
482 |
|
// ~contains( str.++( rp1, substr( y, 0, len(y)-1 ) ), y ) |
483 |
|
Node c23 = |
484 |
968 |
nm->mkNode(kind::STRING_STRCTN, |
485 |
484 |
nm->mkNode( |
486 |
|
kind::STRING_CONCAT, |
487 |
|
rp1, |
488 |
484 |
nm->mkNode(kind::STRING_SUBSTR, |
489 |
|
y, |
490 |
|
zero, |
491 |
968 |
nm->mkNode(kind::MINUS, |
492 |
484 |
nm->mkNode(kind::STRING_LENGTH, y), |
493 |
|
one))), |
494 |
|
y) |
495 |
484 |
.negate(); |
496 |
|
|
497 |
|
// assert: |
498 |
|
// IF y="" |
499 |
|
// THEN: rpw = str.++( z, x ) |
500 |
|
// ELIF: contains( x, y ) |
501 |
|
// THEN: x = str.++( rp1, y, rp2 ) ^ |
502 |
|
// rpw = str.++( rp1, z, rp2 ) ^ |
503 |
|
// ~contains( str.++( rp1, substr( y, 0, len(y)-1 ) ), y ), |
504 |
|
// ELSE: rpw = x |
505 |
|
// for fresh rp1, rp2, rpw |
506 |
|
Node rr = nm->mkNode(kind::ITE, |
507 |
|
cond1, |
508 |
|
c1, |
509 |
968 |
nm->mkNode(kind::ITE, |
510 |
|
cond2, |
511 |
484 |
nm->mkNode(kind::AND, c21, c22, c23), |
512 |
968 |
rpw.eqNode(x))); |
513 |
242 |
asserts.push_back(rr); |
514 |
|
|
515 |
|
// Thus, replace( x, y, z ) = rpw. |
516 |
242 |
retNode = rpw; |
517 |
|
} |
518 |
1667 |
else if (t.getKind() == kind::STRING_STRREPLALL) |
519 |
|
{ |
520 |
|
// processing term: replaceall( x, y, z ) |
521 |
24 |
Node x = t[0]; |
522 |
24 |
Node y = t[1]; |
523 |
24 |
Node z = t[2]; |
524 |
24 |
Node rpaw = sc->mkSkolemCached(t, SkolemCache::SK_PURIFY, "rpaw"); |
525 |
|
|
526 |
|
Node numOcc = sc->mkTypedSkolemCached( |
527 |
24 |
nm->integerType(), x, y, SkolemCache::SK_NUM_OCCUR, "numOcc"); |
528 |
24 |
std::vector<TypeNode> argTypes; |
529 |
12 |
argTypes.push_back(nm->integerType()); |
530 |
|
Node us = |
531 |
24 |
sm->mkDummySkolem("Us", nm->mkFunctionType(argTypes, nm->stringType())); |
532 |
24 |
TypeNode ufType = nm->mkFunctionType(argTypes, nm->integerType()); |
533 |
|
Node uf = sc->mkTypedSkolemCached( |
534 |
24 |
ufType, x, y, SkolemCache::SK_OCCUR_INDEX, "Uf"); |
535 |
|
|
536 |
24 |
Node ufno = nm->mkNode(APPLY_UF, uf, numOcc); |
537 |
24 |
Node usno = nm->mkNode(APPLY_UF, us, numOcc); |
538 |
24 |
Node rem = nm->mkNode(STRING_SUBSTR, x, ufno, nm->mkNode(STRING_LENGTH, x)); |
539 |
|
|
540 |
24 |
std::vector<Node> lem; |
541 |
12 |
lem.push_back(nm->mkNode(GEQ, numOcc, zero)); |
542 |
12 |
lem.push_back(rpaw.eqNode(nm->mkNode(APPLY_UF, us, zero))); |
543 |
12 |
lem.push_back(usno.eqNode(rem)); |
544 |
12 |
lem.push_back(nm->mkNode(APPLY_UF, uf, zero).eqNode(zero)); |
545 |
12 |
lem.push_back(nm->mkNode(STRING_STRIDOF, x, y, ufno).eqNode(negOne)); |
546 |
|
|
547 |
24 |
Node i = SkolemCache::mkIndexVar(t); |
548 |
24 |
Node bvli = nm->mkNode(BOUND_VAR_LIST, i); |
549 |
|
Node bound = |
550 |
24 |
nm->mkNode(AND, nm->mkNode(GEQ, i, zero), nm->mkNode(LT, i, numOcc)); |
551 |
24 |
Node ufi = nm->mkNode(APPLY_UF, uf, i); |
552 |
24 |
Node ufip1 = nm->mkNode(APPLY_UF, uf, nm->mkNode(PLUS, i, one)); |
553 |
24 |
Node ii = nm->mkNode(STRING_STRIDOF, x, y, ufi); |
554 |
|
Node cc = nm->mkNode( |
555 |
|
STRING_CONCAT, |
556 |
24 |
nm->mkNode(STRING_SUBSTR, x, ufi, nm->mkNode(MINUS, ii, ufi)), |
557 |
|
z, |
558 |
48 |
nm->mkNode(APPLY_UF, us, nm->mkNode(PLUS, i, one))); |
559 |
|
|
560 |
24 |
std::vector<Node> flem; |
561 |
12 |
flem.push_back(ii.eqNode(negOne).negate()); |
562 |
12 |
flem.push_back(nm->mkNode(APPLY_UF, us, i).eqNode(cc)); |
563 |
12 |
flem.push_back( |
564 |
24 |
ufip1.eqNode(nm->mkNode(PLUS, ii, nm->mkNode(STRING_LENGTH, y)))); |
565 |
|
|
566 |
24 |
Node body = nm->mkNode(OR, bound.negate(), nm->mkNode(AND, flem)); |
567 |
24 |
Node q = mkForallInternal(bvli, body); |
568 |
12 |
lem.push_back(q); |
569 |
|
|
570 |
|
// assert: |
571 |
|
// IF y="" |
572 |
|
// THEN: rpaw = x |
573 |
|
// ELSE: |
574 |
|
// numOcc >= 0 ^ |
575 |
|
// rpaw = Us(0) ^ Us(numOcc) = substr(x, Uf(numOcc), len(x)) ^ |
576 |
|
// Uf(0) = 0 ^ indexof( x, y, Uf(numOcc) ) = -1 ^ |
577 |
|
// forall i. 0 <= i < numOcc => |
578 |
|
// ii != -1 ^ |
579 |
|
// Us( i ) = str.substr( x, Uf(i), ii - Uf(i) ) ++ z ++ Us(i+1) ^ |
580 |
|
// Uf( i+1 ) = ii + len(y) |
581 |
|
// where ii == indexof( x, y, Uf(i) ) |
582 |
|
|
583 |
|
// Conceptually, numOcc is the number of occurrences of y in x, Uf( i ) is |
584 |
|
// the index to begin searching in x for y after the i^th occurrence of y in |
585 |
|
// x, and Us( i ) is the result of processing the remainder after processing |
586 |
|
// the i^th occurrence of y in x. |
587 |
24 |
Node emp = Word::mkEmptyWord(t.getType()); |
588 |
|
Node assert = |
589 |
24 |
nm->mkNode(ITE, y.eqNode(emp), rpaw.eqNode(x), nm->mkNode(AND, lem)); |
590 |
12 |
asserts.push_back(assert); |
591 |
|
|
592 |
|
// Thus, replaceall( x, y, z ) = rpaw |
593 |
12 |
retNode = rpaw; |
594 |
|
} |
595 |
1655 |
else if (t.getKind() == STRING_REPLACE_RE) |
596 |
|
{ |
597 |
32 |
Node x = t[0]; |
598 |
32 |
Node y = t[1]; |
599 |
32 |
Node z = t[2]; |
600 |
32 |
Node k = sc->mkSkolemCached(t, SkolemCache::SK_PURIFY, "k"); |
601 |
|
|
602 |
32 |
std::vector<Node> emptyVec; |
603 |
|
Node sigmaStar = |
604 |
32 |
nm->mkNode(REGEXP_STAR, nm->mkNode(REGEXP_SIGMA, emptyVec)); |
605 |
32 |
Node re = nm->mkNode(REGEXP_CONCAT, sigmaStar, y, sigmaStar); |
606 |
|
// in_re(x, re.++(_*, y, _*)) |
607 |
32 |
Node hasMatch = nm->mkNode(STRING_IN_REGEXP, x, re); |
608 |
|
|
609 |
|
// in_re("", y) |
610 |
|
Node matchesEmpty = |
611 |
32 |
nm->mkNode(STRING_IN_REGEXP, nm->mkConst(String("")), y); |
612 |
|
// k = z ++ x |
613 |
32 |
Node res1 = k.eqNode(nm->mkNode(STRING_CONCAT, z, x)); |
614 |
|
|
615 |
|
Node k1 = |
616 |
32 |
sc->mkSkolemCached(x, y, SkolemCache::SK_FIRST_MATCH_PRE, "rre_pre"); |
617 |
|
Node k2 = |
618 |
32 |
sc->mkSkolemCached(x, y, SkolemCache::SK_FIRST_MATCH, "rre_match"); |
619 |
|
Node k3 = |
620 |
32 |
sc->mkSkolemCached(x, y, SkolemCache::SK_FIRST_MATCH_POST, "rre_post"); |
621 |
|
// x = k1 ++ k2 ++ k3 |
622 |
32 |
Node splitX = x.eqNode(nm->mkNode(STRING_CONCAT, k1, k2, k3)); |
623 |
|
// ~in_re(k1 ++ str.substr(k2, 0, str.len(k2) - 1), re.++(_*, y, _*)) |
624 |
32 |
Node k2len = nm->mkNode(STRING_LENGTH, k2); |
625 |
|
Node firstMatch = |
626 |
64 |
nm->mkNode( |
627 |
|
STRING_IN_REGEXP, |
628 |
32 |
nm->mkNode( |
629 |
|
STRING_CONCAT, |
630 |
|
k1, |
631 |
32 |
nm->mkNode( |
632 |
32 |
STRING_SUBSTR, k2, zero, nm->mkNode(MINUS, k2len, one))), |
633 |
|
re) |
634 |
32 |
.negate(); |
635 |
|
// in_re(k2, y) |
636 |
32 |
Node k2Match = nm->mkNode(STRING_IN_REGEXP, k2, y); |
637 |
|
// k = k1 ++ z ++ k3 |
638 |
32 |
Node res2 = k.eqNode(nm->mkNode(STRING_CONCAT, k1, z, k3)); |
639 |
|
|
640 |
|
// IF in_re(x, re.++(_*, y, _*)) |
641 |
|
// THEN: |
642 |
|
// IF in_re("", y) |
643 |
|
// THEN: k = z ++ x |
644 |
|
// ELSE: |
645 |
|
// x = k1 ++ k2 ++ k3 ^ |
646 |
|
// ~in_re(k1 ++ substr(k2, 0, str.len(k2) - 1), re.++(_*, y, _*)) ^ |
647 |
|
// in_re(k2, y) ^ k = k1 ++ z ++ k3 |
648 |
|
// ELSE: k = x |
649 |
48 |
asserts.push_back(nm->mkNode( |
650 |
|
ITE, |
651 |
|
hasMatch, |
652 |
32 |
nm->mkNode(ITE, |
653 |
|
matchesEmpty, |
654 |
|
res1, |
655 |
32 |
nm->mkNode(AND, {splitX, firstMatch, k2Match, res2})), |
656 |
32 |
k.eqNode(x))); |
657 |
16 |
retNode = k; |
658 |
|
} |
659 |
1639 |
else if (t.getKind() == STRING_REPLACE_RE_ALL) |
660 |
|
{ |
661 |
4 |
Node x = t[0]; |
662 |
4 |
Node y = t[1]; |
663 |
4 |
Node z = t[2]; |
664 |
4 |
Node k = sc->mkSkolemCached(t, SkolemCache::SK_PURIFY, "k"); |
665 |
|
|
666 |
|
Node numOcc = sc->mkTypedSkolemCached( |
667 |
4 |
nm->integerType(), x, y, SkolemCache::SK_NUM_OCCUR, "numOcc"); |
668 |
4 |
std::vector<TypeNode> argTypes; |
669 |
2 |
argTypes.push_back(nm->integerType()); |
670 |
|
Node us = |
671 |
4 |
sm->mkDummySkolem("Us", nm->mkFunctionType(argTypes, t.getType())); |
672 |
4 |
TypeNode ufType = nm->mkFunctionType(argTypes, nm->integerType()); |
673 |
|
Node uf = sc->mkTypedSkolemCached( |
674 |
4 |
ufType, x, y, SkolemCache::SK_OCCUR_INDEX, "Uf"); |
675 |
|
Node ul = |
676 |
4 |
sc->mkTypedSkolemCached(ufType, x, y, SkolemCache::SK_OCCUR_LEN, "Ul"); |
677 |
|
|
678 |
4 |
Node emp = Word::mkEmptyWord(t.getType()); |
679 |
|
|
680 |
4 |
std::vector<Node> emptyVec; |
681 |
|
Node sigmaStar = |
682 |
4 |
nm->mkNode(REGEXP_STAR, nm->mkNode(REGEXP_SIGMA, emptyVec)); |
683 |
4 |
Node yp = nm->mkNode(REGEXP_DIFF, y, nm->mkNode(STRING_TO_REGEXP, emp)); |
684 |
4 |
Node re = nm->mkNode(REGEXP_CONCAT, sigmaStar, yp, sigmaStar); |
685 |
|
// in_re(x, _* ++ y' ++ _*) |
686 |
4 |
Node hasMatch = nm->mkNode(STRING_IN_REGEXP, x, re); |
687 |
|
|
688 |
4 |
Node ufno = nm->mkNode(APPLY_UF, uf, numOcc); |
689 |
4 |
Node usno = nm->mkNode(APPLY_UF, us, numOcc); |
690 |
4 |
Node rem = nm->mkNode(STRING_SUBSTR, x, ufno, nm->mkNode(STRING_LENGTH, x)); |
691 |
|
|
692 |
4 |
std::vector<Node> lemmas; |
693 |
|
// numOcc > 0 |
694 |
2 |
lemmas.push_back(nm->mkNode(GT, numOcc, zero)); |
695 |
|
// k = Us(0) |
696 |
2 |
lemmas.push_back(k.eqNode(nm->mkNode(APPLY_UF, us, zero))); |
697 |
|
// Us(numOcc) = substr(x, Uf(numOcc)) |
698 |
2 |
lemmas.push_back(usno.eqNode(rem)); |
699 |
|
// Uf(0) = 0 |
700 |
2 |
lemmas.push_back(nm->mkNode(APPLY_UF, uf, zero).eqNode(zero)); |
701 |
|
// not(in_re(substr(x, Uf(numOcc)), re.++(_*, y', _*))) |
702 |
2 |
lemmas.push_back(nm->mkNode(STRING_IN_REGEXP, rem, re).negate()); |
703 |
|
|
704 |
4 |
Node i = SkolemCache::mkIndexVar(t); |
705 |
4 |
Node bvli = nm->mkNode(BOUND_VAR_LIST, i); |
706 |
|
Node bound = |
707 |
4 |
nm->mkNode(AND, nm->mkNode(GEQ, i, zero), nm->mkNode(LT, i, numOcc)); |
708 |
4 |
Node ip1 = nm->mkNode(PLUS, i, one); |
709 |
4 |
Node ufi = nm->mkNode(APPLY_UF, uf, i); |
710 |
4 |
Node uli = nm->mkNode(APPLY_UF, ul, i); |
711 |
4 |
Node ufip1 = nm->mkNode(APPLY_UF, uf, ip1); |
712 |
4 |
Node ii = nm->mkNode(MINUS, ufip1, uli); |
713 |
4 |
Node match = nm->mkNode(STRING_SUBSTR, x, ii, uli); |
714 |
|
Node pfxMatch = |
715 |
4 |
nm->mkNode(STRING_SUBSTR, x, ufi, nm->mkNode(MINUS, ii, ufi)); |
716 |
|
Node nonMatch = |
717 |
|
nm->mkNode(STRING_SUBSTR, |
718 |
|
x, |
719 |
|
ufi, |
720 |
4 |
nm->mkNode(MINUS, nm->mkNode(MINUS, ufip1, one), ufi)); |
721 |
|
|
722 |
4 |
std::vector<Node> flem; |
723 |
|
// Ul(i) > 0 |
724 |
2 |
flem.push_back(nm->mkNode(GT, uli, zero)); |
725 |
|
// Uf(i + 1) >= Uf(i) + Ul(i) |
726 |
2 |
flem.push_back(nm->mkNode(GEQ, ufip1, nm->mkNode(PLUS, ufi, uli))); |
727 |
|
// in_re(substr(x, ii, Ul(i)), y') |
728 |
2 |
flem.push_back(nm->mkNode(STRING_IN_REGEXP, match, yp)); |
729 |
|
// ~in_re(substr(x, Uf(i), Uf(i + 1) - 1 - Uf(i)), re.++(_*, y', _*)) |
730 |
2 |
flem.push_back(nm->mkNode(STRING_IN_REGEXP, nonMatch, re).negate()); |
731 |
|
// Us(i) = substr(x, Uf(i), ii - Uf(i)) ++ z ++ Us(i + 1) |
732 |
2 |
flem.push_back( |
733 |
4 |
nm->mkNode(APPLY_UF, us, i) |
734 |
4 |
.eqNode(nm->mkNode( |
735 |
4 |
STRING_CONCAT, pfxMatch, z, nm->mkNode(APPLY_UF, us, ip1)))); |
736 |
|
|
737 |
4 |
Node body = nm->mkNode(OR, bound.negate(), nm->mkNode(AND, flem)); |
738 |
4 |
Node forall = mkForallInternal(bvli, body); |
739 |
2 |
lemmas.push_back(forall); |
740 |
|
|
741 |
|
// IF in_re(x, re.++(_*, y', _*)) |
742 |
|
// THEN: |
743 |
|
// numOcc > 0 ^ |
744 |
|
// k = Us(0) ^ Us(numOcc) = substr(x, Uf(numOcc)) ^ |
745 |
|
// Uf(0) = 0 ^ not(in_re(substr(x, Uf(numOcc)), re.++(_*, y', _*))) |
746 |
|
// forall i. 0 <= i < nummOcc => |
747 |
|
// Ul(i) > 0 ^ |
748 |
|
// Uf(i + 1) >= Uf(i) + Ul(i) ^ |
749 |
|
// in_re(substr(x, ii, Ul(i)), y') ^ |
750 |
|
// ~in_re(substr(x, Uf(i), Uf(i + 1) - 1 - Uf(i)), re.++(_*, y', _*)) ^ |
751 |
|
// Us(i) = substr(x, Uf(i), ii - Uf(i)) ++ z ++ Us(i + 1) |
752 |
|
// where ii = Uf(i + 1) - Ul(i) |
753 |
|
// ELSE: k = x |
754 |
|
// where y' = re.diff(y, "") |
755 |
|
// |
756 |
|
// Conceptually, y' is the regex y but excluding the empty string (because |
757 |
|
// we do not want to match empty strings), numOcc is the number of shortest |
758 |
|
// matches of y' in x, Uf(i) is the end position of the i-th match, Ul(i) |
759 |
|
// is the length of the i^th match, and Us(i) is the result of processing |
760 |
|
// the remainder after processing the i^th occurrence of y in x. |
761 |
2 |
asserts.push_back( |
762 |
4 |
nm->mkNode(ITE, hasMatch, nm->mkNode(AND, lemmas), k.eqNode(x))); |
763 |
2 |
retNode = k; |
764 |
|
} |
765 |
1637 |
else if (t.getKind() == STRING_TOLOWER || t.getKind() == STRING_TOUPPER) |
766 |
|
{ |
767 |
12 |
Node x = t[0]; |
768 |
12 |
Node r = sc->mkSkolemCached(t, SkolemCache::SK_PURIFY, "r"); |
769 |
|
|
770 |
12 |
Node lenx = nm->mkNode(STRING_LENGTH, x); |
771 |
12 |
Node lenr = nm->mkNode(STRING_LENGTH, r); |
772 |
12 |
Node eqLenA = lenx.eqNode(lenr); |
773 |
|
|
774 |
12 |
Node i = SkolemCache::mkIndexVar(t); |
775 |
12 |
Node bvi = nm->mkNode(BOUND_VAR_LIST, i); |
776 |
|
|
777 |
12 |
Node ci = nm->mkNode(STRING_TO_CODE, nm->mkNode(STRING_SUBSTR, x, i, one)); |
778 |
12 |
Node ri = nm->mkNode(STRING_TO_CODE, nm->mkNode(STRING_SUBSTR, r, i, one)); |
779 |
|
|
780 |
12 |
Node lb = nm->mkConst(Rational(t.getKind() == STRING_TOUPPER ? 97 : 65)); |
781 |
12 |
Node ub = nm->mkConst(Rational(t.getKind() == STRING_TOUPPER ? 122 : 90)); |
782 |
|
Node offset = |
783 |
12 |
nm->mkConst(Rational(t.getKind() == STRING_TOUPPER ? -32 : 32)); |
784 |
|
|
785 |
|
Node res = nm->mkNode( |
786 |
|
ITE, |
787 |
12 |
nm->mkNode(AND, nm->mkNode(LEQ, lb, ci), nm->mkNode(LEQ, ci, ub)), |
788 |
12 |
nm->mkNode(PLUS, ci, offset), |
789 |
36 |
ci); |
790 |
|
|
791 |
|
Node bound = |
792 |
12 |
nm->mkNode(AND, nm->mkNode(LEQ, zero, i), nm->mkNode(LT, i, lenr)); |
793 |
12 |
Node body = nm->mkNode(OR, bound.negate(), ri.eqNode(res)); |
794 |
12 |
Node rangeA = mkForallInternal(bvi, body); |
795 |
|
|
796 |
|
// upper 65 ... 90 |
797 |
|
// lower 97 ... 122 |
798 |
|
// assert: |
799 |
|
// len(r) = len(x) ^ |
800 |
|
// forall i. 0 <= i < len(r) => |
801 |
|
// str.code( str.substr(r,i,1) ) = ite( 97 <= ci <= 122, ci-32, ci) |
802 |
|
// where ci = str.code( str.substr(x,i,1) ) |
803 |
12 |
Node assert = nm->mkNode(AND, eqLenA, rangeA); |
804 |
6 |
asserts.push_back(assert); |
805 |
|
|
806 |
|
// Thus, toLower( x ) = r |
807 |
6 |
retNode = r; |
808 |
|
} |
809 |
1631 |
else if (t.getKind() == STRING_REV) |
810 |
|
{ |
811 |
36 |
Node x = t[0]; |
812 |
36 |
Node r = sc->mkSkolemCached(t, SkolemCache::SK_PURIFY, "r"); |
813 |
|
|
814 |
36 |
Node lenx = nm->mkNode(STRING_LENGTH, x); |
815 |
36 |
Node lenr = nm->mkNode(STRING_LENGTH, r); |
816 |
36 |
Node eqLenA = lenx.eqNode(lenr); |
817 |
|
|
818 |
36 |
Node i = SkolemCache::mkIndexVar(t); |
819 |
36 |
Node bvi = nm->mkNode(BOUND_VAR_LIST, i); |
820 |
|
|
821 |
|
Node revi = nm->mkNode( |
822 |
36 |
MINUS, nm->mkNode(STRING_LENGTH, x), nm->mkNode(PLUS, i, one)); |
823 |
36 |
Node ssr = nm->mkNode(STRING_SUBSTR, r, i, one); |
824 |
36 |
Node ssx = nm->mkNode(STRING_SUBSTR, x, revi, one); |
825 |
|
|
826 |
|
Node bound = |
827 |
36 |
nm->mkNode(AND, nm->mkNode(LEQ, zero, i), nm->mkNode(LT, i, lenr)); |
828 |
36 |
Node body = nm->mkNode(OR, bound.negate(), ssr.eqNode(ssx)); |
829 |
36 |
Node rangeA = mkForallInternal(bvi, body); |
830 |
|
// assert: |
831 |
|
// len(r) = len(x) ^ |
832 |
|
// forall i. 0 <= i < len(r) => |
833 |
|
// substr(r,i,1) = substr(x,len(x)-(i+1),1) |
834 |
36 |
Node assert = nm->mkNode(AND, eqLenA, rangeA); |
835 |
18 |
asserts.push_back(assert); |
836 |
|
|
837 |
|
// Thus, (str.rev x) = r |
838 |
18 |
retNode = r; |
839 |
|
} |
840 |
1613 |
else if (t.getKind() == kind::STRING_STRCTN) |
841 |
|
{ |
842 |
258 |
Node x = t[0]; |
843 |
258 |
Node s = t[1]; |
844 |
|
//negative contains reduces to existential |
845 |
258 |
Node lenx = NodeManager::currentNM()->mkNode(kind::STRING_LENGTH, x); |
846 |
258 |
Node lens = NodeManager::currentNM()->mkNode(kind::STRING_LENGTH, s); |
847 |
258 |
Node b1 = SkolemCache::mkIndexVar(t); |
848 |
258 |
Node b1v = NodeManager::currentNM()->mkNode(kind::BOUND_VAR_LIST, b1); |
849 |
|
Node body = NodeManager::currentNM()->mkNode( |
850 |
|
kind::AND, |
851 |
258 |
NodeManager::currentNM()->mkNode(kind::LEQ, zero, b1), |
852 |
387 |
NodeManager::currentNM()->mkNode( |
853 |
|
kind::LEQ, |
854 |
|
b1, |
855 |
258 |
NodeManager::currentNM()->mkNode(kind::MINUS, lenx, lens)), |
856 |
516 |
NodeManager::currentNM()->mkNode( |
857 |
|
kind::EQUAL, |
858 |
258 |
NodeManager::currentNM()->mkNode(kind::STRING_SUBSTR, x, b1, lens), |
859 |
903 |
s)); |
860 |
129 |
retNode = NodeManager::currentNM()->mkNode( kind::EXISTS, b1v, body ); |
861 |
|
} |
862 |
1484 |
else if (t.getKind() == kind::STRING_LEQ) |
863 |
|
{ |
864 |
|
Node ltp = sc->mkTypedSkolemCached( |
865 |
64 |
nm->booleanType(), t, SkolemCache::SK_PURIFY, "ltp"); |
866 |
64 |
Node k = SkolemCache::mkIndexVar(t); |
867 |
|
|
868 |
64 |
std::vector<Node> conj; |
869 |
32 |
conj.push_back(nm->mkNode(GEQ, k, zero)); |
870 |
64 |
Node substr[2]; |
871 |
64 |
Node code[2]; |
872 |
96 |
for (unsigned r = 0; r < 2; r++) |
873 |
|
{ |
874 |
128 |
Node ta = t[r]; |
875 |
128 |
Node tb = t[1 - r]; |
876 |
64 |
substr[r] = nm->mkNode(STRING_SUBSTR, ta, zero, k); |
877 |
64 |
code[r] = |
878 |
128 |
nm->mkNode(STRING_TO_CODE, nm->mkNode(STRING_SUBSTR, ta, k, one)); |
879 |
64 |
conj.push_back(nm->mkNode(LEQ, k, nm->mkNode(STRING_LENGTH, ta))); |
880 |
|
} |
881 |
32 |
conj.push_back(substr[0].eqNode(substr[1])); |
882 |
64 |
std::vector<Node> ite_ch; |
883 |
32 |
ite_ch.push_back(ltp); |
884 |
96 |
for (unsigned r = 0; r < 2; r++) |
885 |
|
{ |
886 |
64 |
ite_ch.push_back(nm->mkNode(LT, code[r], code[1 - r])); |
887 |
|
} |
888 |
32 |
conj.push_back(nm->mkNode(ITE, ite_ch)); |
889 |
|
|
890 |
|
Node conjn = nm->mkNode( |
891 |
64 |
EXISTS, nm->mkNode(BOUND_VAR_LIST, k), nm->mkNode(AND, conj)); |
892 |
|
// Intuitively, the reduction says either x and y are equal, or they have |
893 |
|
// some (maximal) common prefix after which their characters at position k |
894 |
|
// are distinct, and the comparison of their code matches the return value |
895 |
|
// of the overall term. |
896 |
|
// Notice the below reduction relies on the semantics of str.code being -1 |
897 |
|
// for the empty string. In particular, say x = "a" and y = "ab", then the |
898 |
|
// reduction below is satisfied for k = 1, since |
899 |
|
// str.code(substr( "a", 1, 1 )) = str.code( "" ) = -1 < |
900 |
|
// str.code(substr( "ab", 1, 1 )) = str.code( "b" ) = 66 |
901 |
|
|
902 |
|
// assert: |
903 |
|
// IF x=y |
904 |
|
// THEN: ltp |
905 |
|
// ELSE: exists k. |
906 |
|
// k >= 0 AND k <= len( x ) AND k <= len( y ) AND |
907 |
|
// substr( x, 0, k ) = substr( y, 0, k ) AND |
908 |
|
// IF ltp |
909 |
|
// THEN: str.code(substr( x, k, 1 )) < str.code(substr( y, k, 1 )) |
910 |
|
// ELSE: str.code(substr( x, k, 1 )) > str.code(substr( y, k, 1 )) |
911 |
64 |
Node assert = nm->mkNode(ITE, t[0].eqNode(t[1]), ltp, conjn); |
912 |
32 |
asserts.push_back(assert); |
913 |
|
|
914 |
|
// Thus, str.<=( x, y ) = ltp |
915 |
32 |
retNode = ltp; |
916 |
|
} |
917 |
6582 |
return retNode; |
918 |
|
} |
919 |
|
|
920 |
2944 |
Node StringsPreprocess::simplify(Node t, std::vector<Node>& asserts) |
921 |
|
{ |
922 |
2944 |
size_t prev_asserts = asserts.size(); |
923 |
|
// call the static reduce routine |
924 |
2944 |
Node retNode = reduce(t, asserts, d_sc); |
925 |
2944 |
if( t!=retNode ){ |
926 |
1492 |
Trace("strings-preprocess") << "StringsPreprocess::simplify: " << t << " -> " << retNode << std::endl; |
927 |
1492 |
if (!asserts.empty()) |
928 |
|
{ |
929 |
2776 |
Trace("strings-preprocess") |
930 |
2776 |
<< " ... new nodes (" << (asserts.size() - prev_asserts) |
931 |
1388 |
<< "):" << std::endl; |
932 |
2757 |
for (size_t i = prev_asserts; i < asserts.size(); ++i) |
933 |
|
{ |
934 |
1369 |
Trace("strings-preprocess") << " " << asserts[i] << std::endl; |
935 |
|
} |
936 |
|
} |
937 |
1492 |
if (d_statReductions != nullptr) |
938 |
|
{ |
939 |
1406 |
(*d_statReductions) << t.getKind(); |
940 |
|
} |
941 |
|
} |
942 |
|
else |
943 |
|
{ |
944 |
2904 |
Trace("strings-preprocess-debug") |
945 |
1452 |
<< "Return " << retNode << " unchanged" << std::endl; |
946 |
|
} |
947 |
2944 |
return retNode; |
948 |
|
} |
949 |
|
|
950 |
2582 |
Node StringsPreprocess::simplifyRec(Node t, std::vector<Node>& asserts) |
951 |
|
{ |
952 |
2582 |
std::map<Node, Node>::iterator it = d_visited.find(t); |
953 |
2582 |
if (it != d_visited.end()) |
954 |
|
{ |
955 |
1036 |
return it->second; |
956 |
|
}else{ |
957 |
3092 |
Node retNode = t; |
958 |
1546 |
if( t.getNumChildren()==0 ){ |
959 |
386 |
retNode = simplify(t, asserts); |
960 |
|
} |
961 |
1160 |
else if (!t.isClosure()) |
962 |
|
{ |
963 |
1152 |
bool changed = false; |
964 |
2304 |
std::vector< Node > cc; |
965 |
1152 |
if( t.getMetaKind() == kind::metakind::PARAMETERIZED ){ |
966 |
12 |
cc.push_back( t.getOperator() ); |
967 |
|
} |
968 |
3587 |
for(unsigned i=0; i<t.getNumChildren(); i++) { |
969 |
4870 |
Node s = simplifyRec(t[i], asserts); |
970 |
2435 |
cc.push_back( s ); |
971 |
2435 |
if( s!=t[i] ) { |
972 |
211 |
changed = true; |
973 |
|
} |
974 |
|
} |
975 |
2304 |
Node tmp = t; |
976 |
1152 |
if( changed ){ |
977 |
184 |
tmp = NodeManager::currentNM()->mkNode( t.getKind(), cc ); |
978 |
|
} |
979 |
1152 |
retNode = simplify(tmp, asserts); |
980 |
|
} |
981 |
1546 |
d_visited[t] = retNode; |
982 |
1546 |
return retNode; |
983 |
|
} |
984 |
|
} |
985 |
|
|
986 |
91 |
Node StringsPreprocess::processAssertion(Node n, std::vector<Node>& asserts) |
987 |
|
{ |
988 |
182 |
std::vector<Node> asserts_curr; |
989 |
91 |
Node ret = simplifyRec(n, asserts_curr); |
990 |
203 |
while (!asserts_curr.empty()) |
991 |
|
{ |
992 |
112 |
Node curr = asserts_curr.back(); |
993 |
56 |
asserts_curr.pop_back(); |
994 |
112 |
std::vector<Node> asserts_tmp; |
995 |
56 |
curr = simplifyRec(curr, asserts_tmp); |
996 |
56 |
asserts_curr.insert( |
997 |
112 |
asserts_curr.end(), asserts_tmp.begin(), asserts_tmp.end()); |
998 |
56 |
asserts.push_back(curr); |
999 |
|
} |
1000 |
182 |
return ret; |
1001 |
|
} |
1002 |
|
|
1003 |
90 |
Node StringsPreprocess::mkForallInternal(Node bvl, Node body) |
1004 |
|
{ |
1005 |
90 |
NodeManager* nm = NodeManager::currentNM(); |
1006 |
|
QInternalVarAttribute qiva; |
1007 |
180 |
Node qvar; |
1008 |
90 |
if (bvl.hasAttribute(qiva)) |
1009 |
|
{ |
1010 |
14 |
qvar = bvl.getAttribute(qiva); |
1011 |
|
} |
1012 |
|
else |
1013 |
|
{ |
1014 |
76 |
SkolemManager* sm = nm->getSkolemManager(); |
1015 |
76 |
qvar = sm->mkDummySkolem("qinternal", nm->booleanType()); |
1016 |
|
// this dummy variable marks that the quantified formula is internal |
1017 |
76 |
qvar.setAttribute(InternalQuantAttribute(), true); |
1018 |
|
// remember the dummy variable |
1019 |
76 |
bvl.setAttribute(qiva, qvar); |
1020 |
|
} |
1021 |
|
// make the internal attribute, and put it in a singleton list |
1022 |
180 |
Node ip = nm->mkNode(INST_ATTRIBUTE, qvar); |
1023 |
180 |
Node ipl = nm->mkNode(INST_PATTERN_LIST, ip); |
1024 |
|
// make the overall formula |
1025 |
180 |
return nm->mkNode(FORALL, bvl, body, ipl); |
1026 |
|
} |
1027 |
|
|
1028 |
|
} // namespace strings |
1029 |
|
} // namespace theory |
1030 |
28191 |
} // namespace cvc5 |