1 |
|
/****************************************************************************** |
2 |
|
* Top contributors (to current version): |
3 |
|
* Gereon Kremer, Andrew Reynolds |
4 |
|
* |
5 |
|
* This file is part of the cvc5 project. |
6 |
|
* |
7 |
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS |
8 |
|
* in the top-level source directory and their institutional affiliations. |
9 |
|
* All rights reserved. See the file COPYING in the top-level source |
10 |
|
* directory for licensing information. |
11 |
|
* **************************************************************************** |
12 |
|
* |
13 |
|
* Utilities for transcendental lemmas. |
14 |
|
*/ |
15 |
|
|
16 |
|
#ifndef CVC5__THEORY__ARITH__NL__TRANSCENDENTAL__TRANSCENDENTAL_STATE_H |
17 |
|
#define CVC5__THEORY__ARITH__NL__TRANSCENDENTAL__TRANSCENDENTAL_STATE_H |
18 |
|
|
19 |
|
#include "expr/node.h" |
20 |
|
#include "proof/proof_set.h" |
21 |
|
#include "theory/arith/nl/nl_lemma_utils.h" |
22 |
|
#include "theory/arith/nl/transcendental/proof_checker.h" |
23 |
|
#include "theory/arith/nl/transcendental/taylor_generator.h" |
24 |
|
|
25 |
|
namespace cvc5 { |
26 |
|
class CDProof; |
27 |
|
namespace theory { |
28 |
|
namespace arith { |
29 |
|
|
30 |
|
class InferenceManager; |
31 |
|
|
32 |
|
namespace nl { |
33 |
|
|
34 |
|
class NlModel; |
35 |
|
|
36 |
|
namespace transcendental { |
37 |
|
|
38 |
|
/** |
39 |
|
* This enum indicates whether some function is convex, concave or unknown at |
40 |
|
* some point. |
41 |
|
*/ |
42 |
|
enum class Convexity |
43 |
|
{ |
44 |
|
CONVEX, |
45 |
|
CONCAVE, |
46 |
|
UNKNOWN |
47 |
|
}; |
48 |
|
inline std::ostream& operator<<(std::ostream& os, Convexity c) { |
49 |
|
switch (c) { |
50 |
|
case Convexity::CONVEX: return os << "CONVEX"; |
51 |
|
case Convexity::CONCAVE: return os << "CONCAVE"; |
52 |
|
default: return os << "UNKNOWN"; |
53 |
|
} |
54 |
|
} |
55 |
|
|
56 |
|
/** |
57 |
|
* Holds common state and utilities for transcendental solvers. |
58 |
|
* |
59 |
|
* This includes common lookups and caches as well as generic utilities for |
60 |
|
* secant plane lemmas and taylor approximations. |
61 |
|
*/ |
62 |
5134 |
struct TranscendentalState |
63 |
|
{ |
64 |
|
TranscendentalState(InferenceManager& im, |
65 |
|
NlModel& model, |
66 |
|
ProofNodeManager* pnm, |
67 |
|
context::UserContext* c); |
68 |
|
|
69 |
|
/** |
70 |
|
* Checks whether proofs are enabled. |
71 |
|
*/ |
72 |
|
bool isProofEnabled() const; |
73 |
|
/** |
74 |
|
* Creates and returns a new LazyCDProof that can be used to prove some lemma. |
75 |
|
*/ |
76 |
|
CDProof* getProof(); |
77 |
|
|
78 |
|
/** init last call |
79 |
|
* |
80 |
|
* This is called at the beginning of last call effort check xts is the set of |
81 |
|
* extended function terms that are active in the current context. |
82 |
|
* |
83 |
|
* This call may add lemmas to lems based on registering term |
84 |
|
* information (for example to ensure congruence of terms). |
85 |
|
* It puts terms that need to be treated further as a master term on their own |
86 |
|
* (for example purification of sine terms) into needsMaster. |
87 |
|
*/ |
88 |
|
void init(const std::vector<Node>& xts, std::vector<Node>& needsMaster); |
89 |
|
|
90 |
|
/** |
91 |
|
* Checks for terms that are congruent but disequal to a. |
92 |
|
* If any are found, appropriate lemmas are sent. |
93 |
|
* @param a Some node |
94 |
|
* @param argTrie Lookup for equivalence classes |
95 |
|
*/ |
96 |
|
void ensureCongruence(TNode a, std::map<Kind, ArgTrie>& argTrie); |
97 |
|
|
98 |
|
/** Initialize members for pi-related values */ |
99 |
|
void mkPi(); |
100 |
|
/** Get current bounds for pi as a lemma */ |
101 |
|
void getCurrentPiBounds(); |
102 |
|
|
103 |
|
/** |
104 |
|
* Get the two closest secant points from the once stored already. |
105 |
|
* "closest" is determined according to the current model. |
106 |
|
* @param e The transcendental term (like (exp t)) |
107 |
|
* @param center The point currently under consideration (probably the model |
108 |
|
* of t) |
109 |
|
* @param d The taylor degree. |
110 |
|
*/ |
111 |
|
std::pair<Node, Node> getClosestSecantPoints(TNode e, |
112 |
|
TNode center, |
113 |
|
unsigned d); |
114 |
|
|
115 |
|
/** |
116 |
|
* Construct a secant plane as function in arg between lower and upper |
117 |
|
* @param arg The argument of the transcendental term |
118 |
|
* @param lower Left secant point |
119 |
|
* @param upper Right secant point |
120 |
|
* @param lval Evaluation at lower |
121 |
|
* @param uval Evaluation at upper |
122 |
|
*/ |
123 |
|
Node mkSecantPlane( |
124 |
|
TNode arg, TNode lower, TNode upper, TNode lval, TNode uval); |
125 |
|
|
126 |
|
/** |
127 |
|
* Construct a secant lemma between lower and upper for tf. |
128 |
|
* @param lower Left secant point |
129 |
|
* @param upper Right secant point |
130 |
|
* @param concavity Concavity of the current regions |
131 |
|
* @param tf Current transcendental term |
132 |
|
* @param splane Secant plane as computed by mkSecantPlane() |
133 |
|
*/ |
134 |
|
NlLemma mkSecantLemma(TNode lower, |
135 |
|
TNode upper, |
136 |
|
TNode lapprox, |
137 |
|
TNode uapprox, |
138 |
|
int csign, |
139 |
|
Convexity convexity, |
140 |
|
TNode tf, |
141 |
|
TNode splane, |
142 |
|
unsigned actual_d); |
143 |
|
|
144 |
|
/** |
145 |
|
* Construct and send secant lemmas (if appropriate) |
146 |
|
* @param bounds Secant bounds |
147 |
|
* @param poly_approx Polynomial approximation |
148 |
|
* @param center Current point |
149 |
|
* @param cval Evaluation at c |
150 |
|
* @param tf Current transcendental term |
151 |
|
* @param d Current taylor degree |
152 |
|
* @param concavity Concavity in region of c |
153 |
|
*/ |
154 |
|
void doSecantLemmas(const std::pair<Node, Node>& bounds, |
155 |
|
TNode poly_approx, |
156 |
|
TNode center, |
157 |
|
TNode cval, |
158 |
|
TNode tf, |
159 |
|
Convexity convexity, |
160 |
|
unsigned d, |
161 |
|
unsigned actual_d); |
162 |
|
|
163 |
|
Node d_true; |
164 |
|
Node d_false; |
165 |
|
Node d_zero; |
166 |
|
Node d_one; |
167 |
|
Node d_neg_one; |
168 |
|
|
169 |
|
/** The inference manager that we push conflicts and lemmas to. */ |
170 |
|
InferenceManager& d_im; |
171 |
|
/** Reference to the non-linear model object */ |
172 |
|
NlModel& d_model; |
173 |
|
/** Utility to compute taylor approximations */ |
174 |
|
TaylorGenerator d_taylor; |
175 |
|
/** |
176 |
|
* Pointer to the current proof node manager. nullptr, if proofs are |
177 |
|
* disabled. |
178 |
|
*/ |
179 |
|
ProofNodeManager* d_pnm; |
180 |
|
/** The user context. */ |
181 |
|
context::UserContext* d_ctx; |
182 |
|
/** |
183 |
|
* A CDProofSet that hands out CDProof objects for lemmas. |
184 |
|
*/ |
185 |
|
std::unique_ptr<CDProofSet<CDProof>> d_proof; |
186 |
|
|
187 |
|
/** The proof checker for transcendental proofs */ |
188 |
|
std::unique_ptr<TranscendentalProofRuleChecker> d_proofChecker; |
189 |
|
|
190 |
|
/** |
191 |
|
* Some transcendental functions f(t) are "purified", e.g. we add |
192 |
|
* t = y ^ f(t) = f(y) where y is a fresh variable. Those that are not |
193 |
|
* purified we call "master terms". |
194 |
|
* |
195 |
|
* The maps below maintain a master/slave relationship over |
196 |
|
* transcendental functions (SINE, EXPONENTIAL, PI), where above |
197 |
|
* f(y) is the master of itself and of f(t). |
198 |
|
* |
199 |
|
* This is used for ensuring that the argument y of SINE we process is on |
200 |
|
* the interval [-pi .. pi], and that exponentials are not applied to |
201 |
|
* arguments that contain transcendental functions. |
202 |
|
*/ |
203 |
|
std::map<Node, Node> d_trMaster; |
204 |
|
std::map<Node, std::unordered_set<Node>> d_trSlaves; |
205 |
|
|
206 |
|
/** concavity region for transcendental functions |
207 |
|
* |
208 |
|
* This stores an integer that identifies an interval in |
209 |
|
* which the current model value for an argument of an |
210 |
|
* application of a transcendental function resides. |
211 |
|
* |
212 |
|
* For exp( x ): |
213 |
|
* region #1 is -infty < x < infty |
214 |
|
* For sin( x ): |
215 |
|
* region #0 is pi < x < infty (this is an invalid region) |
216 |
|
* region #1 is pi/2 < x <= pi |
217 |
|
* region #2 is 0 < x <= pi/2 |
218 |
|
* region #3 is -pi/2 < x <= 0 |
219 |
|
* region #4 is -pi < x <= -pi/2 |
220 |
|
* region #5 is -infty < x <= -pi (this is an invalid region) |
221 |
|
* All regions not listed above, as well as regions 0 and 5 |
222 |
|
* for SINE are "invalid". We only process applications |
223 |
|
* of transcendental functions whose arguments have model |
224 |
|
* values that reside in valid regions. |
225 |
|
*/ |
226 |
|
std::unordered_map<Node, int> d_tf_region; |
227 |
|
/** |
228 |
|
* Maps representives of a congruence class to the members of that class. |
229 |
|
* |
230 |
|
* In detail, a congruence class is a set of terms of the form |
231 |
|
* { f(t1), ..., f(tn) } |
232 |
|
* such that t1 = ... = tn in the current context. We choose an arbitrary |
233 |
|
* term among these to be the repesentative of this congruence class. |
234 |
|
* |
235 |
|
* Moreover, notice we compute congruence classes only over terms that |
236 |
|
* are transcendental function applications that are "master terms", |
237 |
|
* see d_trMaster/d_trSlave. |
238 |
|
*/ |
239 |
|
std::map<Node, std::vector<Node>> d_funcCongClass; |
240 |
|
/** |
241 |
|
* A list of all functions for each kind in { EXPONENTIAL, SINE, POW, PI } |
242 |
|
* that are representives of their congruence class. |
243 |
|
*/ |
244 |
|
std::map<Kind, std::vector<Node>> d_funcMap; |
245 |
|
|
246 |
|
/** secant points (sorted list) for transcendental functions |
247 |
|
* |
248 |
|
* This is used for tangent plane refinements for |
249 |
|
* transcendental functions. This is the set |
250 |
|
* "get-previous-secant-points" in "Satisfiability |
251 |
|
* Modulo Transcendental Functions via Incremental |
252 |
|
* Linearization" by Cimatti et al., CADE 2017, for |
253 |
|
* each transcendental function application. We store this set for each |
254 |
|
* Taylor degree. |
255 |
|
*/ |
256 |
|
std::unordered_map<Node, std::map<unsigned, std::vector<Node>>> |
257 |
|
d_secant_points; |
258 |
|
|
259 |
|
/** PI |
260 |
|
* |
261 |
|
* Note that PI is a (symbolic, non-constant) nullary operator. This is |
262 |
|
* because its value cannot be computed exactly. We constraint PI to |
263 |
|
* concrete lower and upper bounds stored in d_pi_bound below. |
264 |
|
*/ |
265 |
|
Node d_pi; |
266 |
|
/** PI/2 */ |
267 |
|
Node d_pi_2; |
268 |
|
/** -PI/2 */ |
269 |
|
Node d_pi_neg_2; |
270 |
|
/** -PI */ |
271 |
|
Node d_pi_neg; |
272 |
|
/** the concrete lower and upper bounds for PI */ |
273 |
|
Node d_pi_bound[2]; |
274 |
|
}; |
275 |
|
|
276 |
|
} // namespace transcendental |
277 |
|
} // namespace nl |
278 |
|
} // namespace arith |
279 |
|
} // namespace theory |
280 |
|
} // namespace cvc5 |
281 |
|
|
282 |
|
#endif /* CVC5__THEORY__ARITH__NL__TRANSCENDENTAL__TRANSCENDENTAL_STATE_H */ |