1 |
|
/****************************************************************************** |
2 |
|
* Top contributors (to current version): |
3 |
|
* Andrew Reynolds, Tim King, Alex Ozdemir |
4 |
|
* |
5 |
|
* This file is part of the cvc5 project. |
6 |
|
* |
7 |
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS |
8 |
|
* in the top-level source directory and their institutional affiliations. |
9 |
|
* All rights reserved. See the file COPYING in the top-level source |
10 |
|
* directory for licensing information. |
11 |
|
* **************************************************************************** |
12 |
|
* |
13 |
|
* Arithmetic theory. |
14 |
|
*/ |
15 |
|
|
16 |
|
#include "theory/arith/theory_arith.h" |
17 |
|
|
18 |
|
#include "options/smt_options.h" |
19 |
|
#include "proof/proof_checker.h" |
20 |
|
#include "proof/proof_rule.h" |
21 |
|
#include "smt/smt_statistics_registry.h" |
22 |
|
#include "theory/arith/arith_rewriter.h" |
23 |
|
#include "theory/arith/equality_solver.h" |
24 |
|
#include "theory/arith/infer_bounds.h" |
25 |
|
#include "theory/arith/nl/nonlinear_extension.h" |
26 |
|
#include "theory/arith/theory_arith_private.h" |
27 |
|
#include "theory/ext_theory.h" |
28 |
|
#include "theory/rewriter.h" |
29 |
|
#include "theory/theory_model.h" |
30 |
|
|
31 |
|
using namespace std; |
32 |
|
using namespace cvc5::kind; |
33 |
|
|
34 |
|
namespace cvc5 { |
35 |
|
namespace theory { |
36 |
|
namespace arith { |
37 |
|
|
38 |
9838 |
TheoryArith::TheoryArith(context::Context* c, |
39 |
|
context::UserContext* u, |
40 |
|
OutputChannel& out, |
41 |
|
Valuation valuation, |
42 |
|
const LogicInfo& logicInfo, |
43 |
9838 |
ProofNodeManager* pnm) |
44 |
|
: Theory(THEORY_ARITH, c, u, out, valuation, logicInfo, pnm), |
45 |
9838 |
d_ppRewriteTimer(smtStatisticsRegistry().registerTimer( |
46 |
19676 |
"theory::arith::ppRewriteTimer")), |
47 |
|
d_astate(c, u, valuation), |
48 |
|
d_im(*this, d_astate, pnm), |
49 |
|
d_ppre(c, pnm), |
50 |
|
d_bab(d_astate, d_im, d_ppre, pnm), |
51 |
|
d_eqSolver(nullptr), |
52 |
9838 |
d_internal(new TheoryArithPrivate(*this, c, u, d_bab, pnm)), |
53 |
|
d_nonlinearExtension(nullptr), |
54 |
|
d_opElim(pnm, logicInfo), |
55 |
|
d_arithPreproc(d_astate, d_im, pnm, d_opElim), |
56 |
39352 |
d_rewriter(d_opElim) |
57 |
|
{ |
58 |
|
// currently a cyclic dependency to TheoryArithPrivate |
59 |
9838 |
d_astate.setParent(d_internal); |
60 |
|
// indicate we are using the theory state object and inference manager |
61 |
9838 |
d_theoryState = &d_astate; |
62 |
9838 |
d_inferManager = &d_im; |
63 |
|
|
64 |
9838 |
if (options::arithEqSolver()) |
65 |
|
{ |
66 |
39 |
d_eqSolver.reset(new EqualitySolver(d_astate, d_im)); |
67 |
|
} |
68 |
9838 |
} |
69 |
|
|
70 |
29514 |
TheoryArith::~TheoryArith(){ |
71 |
9838 |
delete d_internal; |
72 |
19676 |
} |
73 |
|
|
74 |
9838 |
TheoryRewriter* TheoryArith::getTheoryRewriter() { return &d_rewriter; } |
75 |
|
|
76 |
3756 |
ProofRuleChecker* TheoryArith::getProofChecker() |
77 |
|
{ |
78 |
3756 |
return d_internal->getProofChecker(); |
79 |
|
} |
80 |
|
|
81 |
9838 |
bool TheoryArith::needsEqualityEngine(EeSetupInfo& esi) |
82 |
|
{ |
83 |
|
// if the equality solver is enabled, then it is responsible for setting |
84 |
|
// up the equality engine |
85 |
9838 |
if (d_eqSolver != nullptr) |
86 |
|
{ |
87 |
39 |
return d_eqSolver->needsEqualityEngine(esi); |
88 |
|
} |
89 |
|
// otherwise, the linear arithmetic solver is responsible for setting up |
90 |
|
// the equality engine |
91 |
9799 |
return d_internal->needsEqualityEngine(esi); |
92 |
|
} |
93 |
9838 |
void TheoryArith::finishInit() |
94 |
|
{ |
95 |
19676 |
if (getLogicInfo().isTheoryEnabled(THEORY_ARITH) |
96 |
9838 |
&& getLogicInfo().areTranscendentalsUsed()) |
97 |
|
{ |
98 |
|
// witness is used to eliminate square root |
99 |
4180 |
d_valuation.setUnevaluatedKind(kind::WITNESS); |
100 |
|
// we only need to add the operators that are not syntax sugar |
101 |
4180 |
d_valuation.setUnevaluatedKind(kind::EXPONENTIAL); |
102 |
4180 |
d_valuation.setUnevaluatedKind(kind::SINE); |
103 |
4180 |
d_valuation.setUnevaluatedKind(kind::PI); |
104 |
|
} |
105 |
|
// only need to create nonlinear extension if non-linear logic |
106 |
9838 |
const LogicInfo& logicInfo = getLogicInfo(); |
107 |
9838 |
if (logicInfo.isTheoryEnabled(THEORY_ARITH) && !logicInfo.isLinear()) |
108 |
|
{ |
109 |
10268 |
d_nonlinearExtension.reset( |
110 |
5134 |
new nl::NonlinearExtension(*this, d_astate, d_equalityEngine, d_pnm)); |
111 |
|
} |
112 |
9838 |
if (d_eqSolver != nullptr) |
113 |
|
{ |
114 |
39 |
d_eqSolver->finishInit(); |
115 |
|
} |
116 |
|
// finish initialize in the old linear solver |
117 |
9838 |
d_internal->finishInit(); |
118 |
9838 |
} |
119 |
|
|
120 |
781005 |
void TheoryArith::preRegisterTerm(TNode n) |
121 |
|
{ |
122 |
781005 |
if (d_nonlinearExtension != nullptr) |
123 |
|
{ |
124 |
382695 |
d_nonlinearExtension->preRegisterTerm(n); |
125 |
|
} |
126 |
781006 |
d_internal->preRegisterTerm(n); |
127 |
781004 |
} |
128 |
|
|
129 |
570356 |
void TheoryArith::notifySharedTerm(TNode n) { d_internal->notifySharedTerm(n); } |
130 |
|
|
131 |
778612 |
TrustNode TheoryArith::ppRewrite(TNode atom, std::vector<SkolemLemma>& lems) |
132 |
|
{ |
133 |
1557224 |
CodeTimer timer(d_ppRewriteTimer, /* allow_reentrant = */ true); |
134 |
778612 |
Debug("arith::preprocess") << "arith::preprocess() : " << atom << endl; |
135 |
|
|
136 |
778612 |
if (atom.getKind() == kind::EQUAL) |
137 |
|
{ |
138 |
30295 |
return d_ppre.ppRewriteEq(atom); |
139 |
|
} |
140 |
748317 |
Assert(Theory::theoryOf(atom) == THEORY_ARITH); |
141 |
|
// Eliminate operators. Notice we must do this here since other |
142 |
|
// theories may generate lemmas that involve non-standard operators. For |
143 |
|
// example, quantifier instantiation may use TO_INTEGER terms; SyGuS may |
144 |
|
// introduce non-standard arithmetic terms appearing in grammars. |
145 |
|
// call eliminate operators. In contrast to expandDefinitions, we eliminate |
146 |
|
// *all* extended arithmetic operators here, including total ones. |
147 |
748323 |
return d_arithPreproc.eliminate(atom, lems, false); |
148 |
|
} |
149 |
|
|
150 |
11635 |
Theory::PPAssertStatus TheoryArith::ppAssert( |
151 |
|
TrustNode tin, TrustSubstitutionMap& outSubstitutions) |
152 |
|
{ |
153 |
11635 |
return d_internal->ppAssert(tin, outSubstitutions); |
154 |
|
} |
155 |
|
|
156 |
105752 |
void TheoryArith::ppStaticLearn(TNode n, NodeBuilder& learned) |
157 |
|
{ |
158 |
105752 |
d_internal->ppStaticLearn(n, learned); |
159 |
105752 |
} |
160 |
|
|
161 |
1555531 |
bool TheoryArith::preCheck(Effort level) |
162 |
|
{ |
163 |
1555531 |
Trace("arith-check") << "TheoryArith::preCheck " << level << std::endl; |
164 |
1555531 |
return d_internal->preCheck(level); |
165 |
|
} |
166 |
|
|
167 |
1555531 |
void TheoryArith::postCheck(Effort level) |
168 |
|
{ |
169 |
1555531 |
Trace("arith-check") << "TheoryArith::postCheck " << level << std::endl; |
170 |
|
// check with the non-linear solver at last call |
171 |
1555531 |
if (level == Theory::EFFORT_LAST_CALL) |
172 |
|
{ |
173 |
3013 |
if (d_nonlinearExtension != nullptr) |
174 |
|
{ |
175 |
3013 |
d_nonlinearExtension->check(level); |
176 |
|
} |
177 |
3013 |
return; |
178 |
|
} |
179 |
|
// otherwise, check with the linear solver |
180 |
1552518 |
if (d_internal->postCheck(level)) |
181 |
|
{ |
182 |
|
// linear solver emitted a conflict or lemma, return |
183 |
52721 |
return; |
184 |
|
} |
185 |
|
|
186 |
1499797 |
if (Theory::fullEffort(level)) |
187 |
|
{ |
188 |
58206 |
if (d_nonlinearExtension != nullptr) |
189 |
|
{ |
190 |
31878 |
d_nonlinearExtension->check(level); |
191 |
|
} |
192 |
26328 |
else if (d_internal->foundNonlinear()) |
193 |
|
{ |
194 |
|
// set incomplete |
195 |
|
d_im.setIncomplete(IncompleteId::ARITH_NL_DISABLED); |
196 |
|
} |
197 |
|
} |
198 |
|
} |
199 |
|
|
200 |
5576055 |
bool TheoryArith::preNotifyFact( |
201 |
|
TNode atom, bool pol, TNode fact, bool isPrereg, bool isInternal) |
202 |
|
{ |
203 |
11152110 |
Trace("arith-check") << "TheoryArith::preNotifyFact: " << fact |
204 |
5576055 |
<< ", isPrereg=" << isPrereg |
205 |
5576055 |
<< ", isInternal=" << isInternal << std::endl; |
206 |
|
// We do not assert to the equality engine of arithmetic in the standard way, |
207 |
|
// hence we return "true" to indicate we are finished with this fact. |
208 |
5576055 |
bool ret = true; |
209 |
5576055 |
if (d_eqSolver != nullptr) |
210 |
|
{ |
211 |
|
// the equality solver may indicate ret = false, after which the assertion |
212 |
|
// will be asserted to the equality engine in the default way. |
213 |
5263 |
ret = d_eqSolver->preNotifyFact(atom, pol, fact, isPrereg, isInternal); |
214 |
|
} |
215 |
|
// we also always also notify the internal solver |
216 |
5576055 |
d_internal->preNotifyFact(atom, pol, fact); |
217 |
5576055 |
return ret; |
218 |
|
} |
219 |
|
|
220 |
18809 |
bool TheoryArith::needsCheckLastEffort() { |
221 |
18809 |
if (d_nonlinearExtension != nullptr) |
222 |
|
{ |
223 |
10087 |
return d_nonlinearExtension->needsCheckLastEffort(); |
224 |
|
} |
225 |
8722 |
return false; |
226 |
|
} |
227 |
|
|
228 |
23387 |
TrustNode TheoryArith::explain(TNode n) |
229 |
|
{ |
230 |
23387 |
if (d_eqSolver != nullptr) |
231 |
|
{ |
232 |
|
// if the equality solver has an explanation for it, use it |
233 |
50 |
TrustNode texp = d_eqSolver->explain(n); |
234 |
25 |
if (!texp.isNull()) |
235 |
|
{ |
236 |
|
return texp; |
237 |
|
} |
238 |
|
} |
239 |
23387 |
return d_internal->explain(n); |
240 |
|
} |
241 |
|
|
242 |
2484343 |
void TheoryArith::propagate(Effort e) { |
243 |
2484343 |
d_internal->propagate(e); |
244 |
2484343 |
} |
245 |
|
|
246 |
14565 |
bool TheoryArith::collectModelInfo(TheoryModel* m, |
247 |
|
const std::set<Node>& termSet) |
248 |
|
{ |
249 |
|
// this overrides behavior to not assert equality engine |
250 |
14565 |
return collectModelValues(m, termSet); |
251 |
|
} |
252 |
|
|
253 |
14565 |
bool TheoryArith::collectModelValues(TheoryModel* m, |
254 |
|
const std::set<Node>& termSet) |
255 |
|
{ |
256 |
|
// get the model from the linear solver |
257 |
29130 |
std::map<Node, Node> arithModel; |
258 |
14565 |
d_internal->collectModelValues(termSet, arithModel); |
259 |
|
// Double check that the model from the linear solver respects integer types, |
260 |
|
// if it does not, add a branch and bound lemma. This typically should never |
261 |
|
// be necessary, but is needed in rare cases. |
262 |
14565 |
bool addedLemma = false; |
263 |
14565 |
bool badAssignment = false; |
264 |
256008 |
for (const std::pair<const Node, Node>& p : arithModel) |
265 |
|
{ |
266 |
241443 |
if (p.first.getType().isInteger() && !p.second.getType().isInteger()) |
267 |
|
{ |
268 |
|
Assert(false) << "TheoryArithPrivate generated a bad model value for " |
269 |
|
"integer variable " |
270 |
|
<< p.first << " : " << p.second; |
271 |
|
// must branch and bound |
272 |
|
TrustNode lem = |
273 |
|
d_bab.branchIntegerVariable(p.first, p.second.getConst<Rational>()); |
274 |
|
if (d_im.trustedLemma(lem, InferenceId::ARITH_BB_LEMMA)) |
275 |
|
{ |
276 |
|
addedLemma = true; |
277 |
|
} |
278 |
|
badAssignment = true; |
279 |
|
} |
280 |
|
} |
281 |
14565 |
if (addedLemma) |
282 |
|
{ |
283 |
|
// we had to add a branch and bound lemma since the linear solver assigned |
284 |
|
// a non-integer value to an integer variable. |
285 |
|
return false; |
286 |
|
} |
287 |
|
// this would imply that linear arithmetic's model failed to satisfy a branch |
288 |
|
// and bound lemma |
289 |
14565 |
AlwaysAssert(!badAssignment) |
290 |
|
<< "Bad assignment from TheoryArithPrivate::collectModelValues, and no " |
291 |
|
"branching lemma was sent"; |
292 |
|
|
293 |
|
// if non-linear is enabled, intercept the model, which may repair its values |
294 |
14565 |
if (d_nonlinearExtension != nullptr) |
295 |
|
{ |
296 |
|
// Non-linear may repair values to satisfy non-linear constraints (see |
297 |
|
// documentation for NonlinearExtension::interceptModel). |
298 |
8937 |
d_nonlinearExtension->interceptModel(arithModel, termSet); |
299 |
|
} |
300 |
|
// We are now ready to assert the model. |
301 |
254555 |
for (const std::pair<const Node, Node>& p : arithModel) |
302 |
|
{ |
303 |
|
// maps to constant of comparable type |
304 |
239992 |
Assert(p.first.getType().isComparableTo(p.second.getType())); |
305 |
239992 |
if (m->assertEquality(p.first, p.second, true)) |
306 |
|
{ |
307 |
239990 |
continue; |
308 |
|
} |
309 |
|
// If we failed to assert an equality, it is likely due to theory |
310 |
|
// combination, namely the repaired model for non-linear changed |
311 |
|
// an equality status that was agreed upon by both (linear) arithmetic |
312 |
|
// and another theory. In this case, we must add a lemma, or otherwise |
313 |
|
// we would terminate with an invalid model. Thus, we add a splitting |
314 |
|
// lemma of the form ( x = v V x != v ) where v is the model value |
315 |
|
// assigned by the non-linear solver to x. |
316 |
2 |
if (d_nonlinearExtension != nullptr) |
317 |
|
{ |
318 |
4 |
Node eq = p.first.eqNode(p.second); |
319 |
4 |
Node lem = NodeManager::currentNM()->mkNode(kind::OR, eq, eq.negate()); |
320 |
2 |
bool added = d_im.lemma(lem, InferenceId::ARITH_SPLIT_FOR_NL_MODEL); |
321 |
2 |
AlwaysAssert(added) << "The lemma was already in cache. Probably there is something wrong with theory combination..."; |
322 |
|
} |
323 |
2 |
return false; |
324 |
|
} |
325 |
14563 |
return true; |
326 |
|
} |
327 |
|
|
328 |
1748 |
void TheoryArith::notifyRestart(){ |
329 |
1748 |
d_internal->notifyRestart(); |
330 |
1748 |
} |
331 |
|
|
332 |
15189 |
void TheoryArith::presolve(){ |
333 |
15189 |
d_internal->presolve(); |
334 |
15189 |
if (d_nonlinearExtension != nullptr) |
335 |
|
{ |
336 |
6392 |
d_nonlinearExtension->presolve(); |
337 |
|
} |
338 |
15189 |
} |
339 |
|
|
340 |
779969 |
EqualityStatus TheoryArith::getEqualityStatus(TNode a, TNode b) { |
341 |
779969 |
return d_internal->getEqualityStatus(a,b); |
342 |
|
} |
343 |
|
|
344 |
2850 |
Node TheoryArith::getModelValue(TNode var) { |
345 |
2850 |
return d_internal->getModelValue( var ); |
346 |
|
} |
347 |
|
|
348 |
6013 |
std::pair<bool, Node> TheoryArith::entailmentCheck(TNode lit) |
349 |
|
{ |
350 |
12026 |
ArithEntailmentCheckParameters def; |
351 |
6013 |
def.addLookupRowSumAlgorithms(); |
352 |
12026 |
ArithEntailmentCheckSideEffects ase; |
353 |
6013 |
std::pair<bool, Node> res = d_internal->entailmentCheck(lit, def, ase); |
354 |
12026 |
return res; |
355 |
|
} |
356 |
|
eq::ProofEqEngine* TheoryArith::getProofEqEngine() |
357 |
|
{ |
358 |
|
return d_im.getProofEqEngine(); |
359 |
|
} |
360 |
|
|
361 |
|
} // namespace arith |
362 |
|
} // namespace theory |
363 |
29280 |
} // namespace cvc5 |