1 |
|
/****************************************************************************** |
2 |
|
* Top contributors (to current version): |
3 |
|
* Andrew Reynolds, Aina Niemetz |
4 |
|
* |
5 |
|
* This file is part of the cvc5 project. |
6 |
|
* |
7 |
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS |
8 |
|
* in the top-level source directory and their institutional affiliations. |
9 |
|
* All rights reserved. See the file COPYING in the top-level source |
10 |
|
* directory for licensing information. |
11 |
|
* **************************************************************************** |
12 |
|
* |
13 |
|
* Arithmetic utilities regarding monomial sums. |
14 |
|
*/ |
15 |
|
|
16 |
|
#include "theory/arith/arith_msum.h" |
17 |
|
|
18 |
|
#include "theory/rewriter.h" |
19 |
|
#include "util/rational.h" |
20 |
|
|
21 |
|
using namespace cvc5::kind; |
22 |
|
|
23 |
|
namespace cvc5 { |
24 |
|
namespace theory { |
25 |
|
|
26 |
635 |
bool ArithMSum::getMonomial(Node n, Node& c, Node& v) |
27 |
|
{ |
28 |
635 |
if (n.getKind() == MULT && n.getNumChildren() == 2 && n[0].isConst()) |
29 |
|
{ |
30 |
635 |
c = n[0]; |
31 |
635 |
v = n[1]; |
32 |
635 |
return true; |
33 |
|
} |
34 |
|
return false; |
35 |
|
} |
36 |
|
|
37 |
843179 |
bool ArithMSum::getMonomial(Node n, std::map<Node, Node>& msum) |
38 |
|
{ |
39 |
843179 |
if (n.isConst()) |
40 |
|
{ |
41 |
229631 |
if (msum.find(Node::null()) == msum.end()) |
42 |
|
{ |
43 |
229631 |
msum[Node::null()] = n; |
44 |
229631 |
return true; |
45 |
|
} |
46 |
|
} |
47 |
613548 |
else if (n.getKind() == MULT && n.getNumChildren() == 2 && n[0].isConst()) |
48 |
|
{ |
49 |
273362 |
if (msum.find(n[1]) == msum.end()) |
50 |
|
{ |
51 |
273362 |
msum[n[1]] = n[0]; |
52 |
273362 |
return true; |
53 |
|
} |
54 |
|
} |
55 |
|
else |
56 |
|
{ |
57 |
340186 |
if (msum.find(n) == msum.end()) |
58 |
|
{ |
59 |
340186 |
msum[n] = Node::null(); |
60 |
340186 |
return true; |
61 |
|
} |
62 |
|
} |
63 |
|
return false; |
64 |
|
} |
65 |
|
|
66 |
437955 |
bool ArithMSum::getMonomialSum(Node n, std::map<Node, Node>& msum) |
67 |
|
{ |
68 |
437955 |
if (n.getKind() == PLUS) |
69 |
|
{ |
70 |
879302 |
for (Node nc : n) |
71 |
|
{ |
72 |
642263 |
if (!getMonomial(nc, msum)) |
73 |
|
{ |
74 |
|
return false; |
75 |
|
} |
76 |
|
} |
77 |
237039 |
return true; |
78 |
|
} |
79 |
200916 |
return getMonomial(n, msum); |
80 |
|
} |
81 |
|
|
82 |
143262 |
bool ArithMSum::getMonomialSumLit(Node lit, std::map<Node, Node>& msum) |
83 |
|
{ |
84 |
143262 |
if (lit.getKind() == GEQ || lit.getKind() == EQUAL) |
85 |
|
{ |
86 |
111126 |
if (getMonomialSum(lit[0], msum)) |
87 |
|
{ |
88 |
111126 |
if (lit[1].isConst() && lit[1].getConst<Rational>().isZero()) |
89 |
|
{ |
90 |
23612 |
return true; |
91 |
|
} |
92 |
|
else |
93 |
|
{ |
94 |
|
// subtract the other side |
95 |
87514 |
std::map<Node, Node> msum2; |
96 |
87514 |
NodeManager* nm = NodeManager::currentNM(); |
97 |
87514 |
if (getMonomialSum(lit[1], msum2)) |
98 |
|
{ |
99 |
203618 |
for (std::map<Node, Node>::iterator it = msum2.begin(); |
100 |
203618 |
it != msum2.end(); |
101 |
|
++it) |
102 |
|
{ |
103 |
116104 |
std::map<Node, Node>::iterator it2 = msum.find(it->first); |
104 |
116104 |
if (it2 != msum.end()) |
105 |
|
{ |
106 |
|
Node r = nm->mkNode( |
107 |
|
MINUS, |
108 |
2 |
it2->second.isNull() ? nm->mkConst(Rational(1)) : it2->second, |
109 |
4 |
it->second.isNull() ? nm->mkConst(Rational(1)) : it->second); |
110 |
1 |
msum[it->first] = Rewriter::rewrite(r); |
111 |
|
} |
112 |
|
else |
113 |
|
{ |
114 |
186998 |
msum[it->first] = it->second.isNull() ? nm->mkConst(Rational(-1)) |
115 |
70895 |
: negate(it->second); |
116 |
|
} |
117 |
|
} |
118 |
87514 |
return true; |
119 |
|
} |
120 |
|
} |
121 |
|
} |
122 |
|
} |
123 |
32136 |
return false; |
124 |
|
} |
125 |
|
|
126 |
348 |
Node ArithMSum::mkNode(const std::map<Node, Node>& msum) |
127 |
|
{ |
128 |
348 |
NodeManager* nm = NodeManager::currentNM(); |
129 |
696 |
std::vector<Node> children; |
130 |
696 |
for (std::map<Node, Node>::const_iterator it = msum.begin(); it != msum.end(); |
131 |
|
++it) |
132 |
|
{ |
133 |
696 |
Node m; |
134 |
348 |
if (!it->first.isNull()) |
135 |
|
{ |
136 |
246 |
m = mkCoeffTerm(it->second, it->first); |
137 |
|
} |
138 |
|
else |
139 |
|
{ |
140 |
102 |
Assert(!it->second.isNull()); |
141 |
102 |
m = it->second; |
142 |
|
} |
143 |
348 |
children.push_back(m); |
144 |
|
} |
145 |
348 |
return children.size() > 1 |
146 |
|
? nm->mkNode(PLUS, children) |
147 |
696 |
: (children.size() == 1 ? children[0] : nm->mkConst(Rational(0))); |
148 |
|
} |
149 |
|
|
150 |
83984 |
int ArithMSum::isolate( |
151 |
|
Node v, const std::map<Node, Node>& msum, Node& veq_c, Node& val, Kind k) |
152 |
|
{ |
153 |
83984 |
Assert(veq_c.isNull()); |
154 |
83984 |
std::map<Node, Node>::const_iterator itv = msum.find(v); |
155 |
83984 |
if (itv != msum.end()) |
156 |
|
{ |
157 |
82672 |
std::vector<Node> children; |
158 |
|
Rational r = |
159 |
82672 |
itv->second.isNull() ? Rational(1) : itv->second.getConst<Rational>(); |
160 |
82672 |
if (r.sgn() != 0) |
161 |
|
{ |
162 |
298094 |
for (std::map<Node, Node>::const_iterator it = msum.begin(); |
163 |
298094 |
it != msum.end(); |
164 |
|
++it) |
165 |
|
{ |
166 |
215422 |
if (it->first != v) |
167 |
|
{ |
168 |
265500 |
Node m; |
169 |
132750 |
if (!it->first.isNull()) |
170 |
|
{ |
171 |
90919 |
m = mkCoeffTerm(it->second, it->first); |
172 |
|
} |
173 |
|
else |
174 |
|
{ |
175 |
41831 |
m = it->second; |
176 |
|
} |
177 |
132750 |
children.push_back(m); |
178 |
|
} |
179 |
|
} |
180 |
165344 |
val = children.size() > 1 |
181 |
254494 |
? NodeManager::currentNM()->mkNode(PLUS, children) |
182 |
44575 |
: (children.size() == 1 |
183 |
37252 |
? children[0] |
184 |
89995 |
: NodeManager::currentNM()->mkConst(Rational(0))); |
185 |
82672 |
if (!r.isOne() && !r.isNegativeOne()) |
186 |
|
{ |
187 |
3814 |
if (v.getType().isInteger()) |
188 |
|
{ |
189 |
1651 |
veq_c = NodeManager::currentNM()->mkConst(r.abs()); |
190 |
|
} |
191 |
|
else |
192 |
|
{ |
193 |
4326 |
val = NodeManager::currentNM()->mkNode( |
194 |
|
MULT, |
195 |
|
val, |
196 |
4326 |
NodeManager::currentNM()->mkConst(Rational(1) / r.abs())); |
197 |
|
} |
198 |
|
} |
199 |
82672 |
val = r.sgn() == 1 ? negate(val) : Rewriter::rewrite(val); |
200 |
82672 |
return (r.sgn() == 1 || k == EQUAL) ? 1 : -1; |
201 |
|
} |
202 |
|
} |
203 |
1312 |
return 0; |
204 |
|
} |
205 |
|
|
206 |
12219 |
int ArithMSum::isolate( |
207 |
|
Node v, const std::map<Node, Node>& msum, Node& veq, Kind k, bool doCoeff) |
208 |
|
{ |
209 |
24438 |
Node veq_c; |
210 |
24438 |
Node val; |
211 |
|
// isolate v in the (in)equality |
212 |
12219 |
int ires = isolate(v, msum, veq_c, val, k); |
213 |
12219 |
if (ires != 0) |
214 |
|
{ |
215 |
24410 |
Node vc = v; |
216 |
12211 |
if (!veq_c.isNull()) |
217 |
|
{ |
218 |
80 |
if (doCoeff) |
219 |
|
{ |
220 |
68 |
vc = NodeManager::currentNM()->mkNode(MULT, veq_c, vc); |
221 |
|
} |
222 |
|
else |
223 |
|
{ |
224 |
12 |
return 0; |
225 |
|
} |
226 |
|
} |
227 |
12199 |
bool inOrder = ires == 1; |
228 |
12199 |
veq = NodeManager::currentNM()->mkNode( |
229 |
|
k, inOrder ? vc : val, inOrder ? val : vc); |
230 |
|
} |
231 |
12207 |
return ires; |
232 |
|
} |
233 |
|
|
234 |
31758 |
Node ArithMSum::solveEqualityFor(Node lit, Node v) |
235 |
|
{ |
236 |
31758 |
Assert(lit.getKind() == EQUAL); |
237 |
|
// first look directly at sides |
238 |
63516 |
TypeNode tn = lit[0].getType(); |
239 |
52036 |
for (unsigned r = 0; r < 2; r++) |
240 |
|
{ |
241 |
41897 |
if (lit[r] == v) |
242 |
|
{ |
243 |
21619 |
return lit[1 - r]; |
244 |
|
} |
245 |
|
} |
246 |
10139 |
if (tn.isReal()) |
247 |
|
{ |
248 |
10203 |
std::map<Node, Node> msum; |
249 |
10139 |
if (ArithMSum::getMonomialSumLit(lit, msum)) |
250 |
|
{ |
251 |
10203 |
Node val, veqc; |
252 |
10139 |
if (ArithMSum::isolate(v, msum, veqc, val, EQUAL) != 0) |
253 |
|
{ |
254 |
10139 |
if (veqc.isNull()) |
255 |
|
{ |
256 |
|
// in this case, we have an integer equality with a coefficient |
257 |
|
// on the variable we solved for that could not be eliminated, |
258 |
|
// hence we fail. |
259 |
10075 |
return val; |
260 |
|
} |
261 |
|
} |
262 |
|
} |
263 |
|
} |
264 |
64 |
return Node::null(); |
265 |
|
} |
266 |
|
|
267 |
|
bool ArithMSum::decompose(Node n, Node v, Node& coeff, Node& rem) |
268 |
|
{ |
269 |
|
std::map<Node, Node> msum; |
270 |
|
if (getMonomialSum(n, msum)) |
271 |
|
{ |
272 |
|
std::map<Node, Node>::iterator it = msum.find(v); |
273 |
|
if (it == msum.end()) |
274 |
|
{ |
275 |
|
return false; |
276 |
|
} |
277 |
|
else |
278 |
|
{ |
279 |
|
coeff = it->second; |
280 |
|
msum.erase(v); |
281 |
|
rem = mkNode(msum); |
282 |
|
return true; |
283 |
|
} |
284 |
|
} |
285 |
|
return false; |
286 |
|
} |
287 |
|
|
288 |
122488 |
Node ArithMSum::negate(Node t) |
289 |
|
{ |
290 |
|
Node tt = NodeManager::currentNM()->mkNode( |
291 |
122488 |
MULT, NodeManager::currentNM()->mkConst(Rational(-1)), t); |
292 |
122488 |
tt = Rewriter::rewrite(tt); |
293 |
122488 |
return tt; |
294 |
|
} |
295 |
|
|
296 |
964 |
Node ArithMSum::offset(Node t, int i) |
297 |
|
{ |
298 |
|
Node tt = NodeManager::currentNM()->mkNode( |
299 |
964 |
PLUS, NodeManager::currentNM()->mkConst(Rational(i)), t); |
300 |
964 |
tt = Rewriter::rewrite(tt); |
301 |
964 |
return tt; |
302 |
|
} |
303 |
|
|
304 |
3274 |
void ArithMSum::debugPrintMonomialSum(std::map<Node, Node>& msum, const char* c) |
305 |
|
{ |
306 |
10210 |
for (std::map<Node, Node>::iterator it = msum.begin(); it != msum.end(); ++it) |
307 |
|
{ |
308 |
6936 |
Trace(c) << " "; |
309 |
6936 |
if (!it->second.isNull()) |
310 |
|
{ |
311 |
3112 |
Trace(c) << it->second; |
312 |
3112 |
if (!it->first.isNull()) |
313 |
|
{ |
314 |
1666 |
Trace(c) << " * "; |
315 |
|
} |
316 |
|
} |
317 |
6936 |
if (!it->first.isNull()) |
318 |
|
{ |
319 |
5490 |
Trace(c) << it->first; |
320 |
|
} |
321 |
6936 |
Trace(c) << std::endl; |
322 |
|
} |
323 |
3274 |
Trace(c) << std::endl; |
324 |
3274 |
} |
325 |
|
|
326 |
|
} // namespace theory |
327 |
29286 |
} // namespace cvc5 |