1 |
|
/****************************************************************************** |
2 |
|
* Top contributors (to current version): |
3 |
|
* Clark Barrett, Andrew Reynolds, Morgan Deters |
4 |
|
* |
5 |
|
* This file is part of the cvc5 project. |
6 |
|
* |
7 |
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS |
8 |
|
* in the top-level source directory and their institutional affiliations. |
9 |
|
* All rights reserved. See the file COPYING in the top-level source |
10 |
|
* directory for licensing information. |
11 |
|
* **************************************************************************** |
12 |
|
* |
13 |
|
* Implementation of the theory of arrays. |
14 |
|
*/ |
15 |
|
|
16 |
|
#include "theory/arrays/theory_arrays.h" |
17 |
|
|
18 |
|
#include <map> |
19 |
|
#include <memory> |
20 |
|
|
21 |
|
#include "expr/array_store_all.h" |
22 |
|
#include "expr/kind.h" |
23 |
|
#include "expr/node_algorithm.h" |
24 |
|
#include "options/arrays_options.h" |
25 |
|
#include "options/smt_options.h" |
26 |
|
#include "proof/proof_checker.h" |
27 |
|
#include "smt/logic_exception.h" |
28 |
|
#include "smt/smt_statistics_registry.h" |
29 |
|
#include "theory/arrays/skolem_cache.h" |
30 |
|
#include "theory/arrays/theory_arrays_rewriter.h" |
31 |
|
#include "theory/decision_manager.h" |
32 |
|
#include "theory/rewriter.h" |
33 |
|
#include "theory/theory_model.h" |
34 |
|
#include "theory/trust_substitutions.h" |
35 |
|
#include "theory/valuation.h" |
36 |
|
|
37 |
|
using namespace std; |
38 |
|
|
39 |
|
namespace cvc5 { |
40 |
|
namespace theory { |
41 |
|
namespace arrays { |
42 |
|
|
43 |
|
// These are the options that produce the best empirical results on QF_AX benchmarks. |
44 |
|
// eagerLemmas = true |
45 |
|
// eagerIndexSplitting = false |
46 |
|
|
47 |
|
// Use static configuration of options for now |
48 |
|
const bool d_ccStore = false; |
49 |
|
//const bool d_eagerLemmas = false; |
50 |
|
const bool d_preprocess = true; |
51 |
|
const bool d_solveWrite = true; |
52 |
|
const bool d_solveWrite2 = false; |
53 |
|
// These are now options |
54 |
|
//const bool d_propagateLemmas = true; |
55 |
|
//bool d_useNonLinearOpt = true; |
56 |
|
//bool d_eagerIndexSplitting = false; |
57 |
|
|
58 |
9853 |
TheoryArrays::TheoryArrays(context::Context* c, |
59 |
|
context::UserContext* u, |
60 |
|
OutputChannel& out, |
61 |
|
Valuation valuation, |
62 |
|
const LogicInfo& logicInfo, |
63 |
|
ProofNodeManager* pnm, |
64 |
9853 |
std::string name) |
65 |
|
: Theory(THEORY_ARRAYS, c, u, out, valuation, logicInfo, pnm, name), |
66 |
|
d_numRow( |
67 |
19706 |
smtStatisticsRegistry().registerInt(name + "number of Row lemmas")), |
68 |
|
d_numExt( |
69 |
19706 |
smtStatisticsRegistry().registerInt(name + "number of Ext lemmas")), |
70 |
|
d_numProp( |
71 |
19706 |
smtStatisticsRegistry().registerInt(name + "number of propagations")), |
72 |
|
d_numExplain( |
73 |
19706 |
smtStatisticsRegistry().registerInt(name + "number of explanations")), |
74 |
9853 |
d_numNonLinear(smtStatisticsRegistry().registerInt( |
75 |
19706 |
name + "number of calls to setNonLinear")), |
76 |
9853 |
d_numSharedArrayVarSplits(smtStatisticsRegistry().registerInt( |
77 |
19706 |
name + "number of shared array var splits")), |
78 |
9853 |
d_numGetModelValSplits(smtStatisticsRegistry().registerInt( |
79 |
19706 |
name + "number of getModelVal splits")), |
80 |
9853 |
d_numGetModelValConflicts(smtStatisticsRegistry().registerInt( |
81 |
19706 |
name + "number of getModelVal conflicts")), |
82 |
9853 |
d_numSetModelValSplits(smtStatisticsRegistry().registerInt( |
83 |
19706 |
name + "number of setModelVal splits")), |
84 |
9853 |
d_numSetModelValConflicts(smtStatisticsRegistry().registerInt( |
85 |
19706 |
name + "number of setModelVal conflicts")), |
86 |
19706 |
d_ppEqualityEngine(u, name + "pp", true), |
87 |
|
d_ppFacts(u), |
88 |
|
d_rewriter(pnm), |
89 |
|
d_state(c, u, valuation), |
90 |
|
d_im(*this, d_state, pnm), |
91 |
|
d_literalsToPropagate(c), |
92 |
|
d_literalsToPropagateIndex(c, 0), |
93 |
|
d_isPreRegistered(c), |
94 |
19706 |
d_mayEqualEqualityEngine(c, name + "mayEqual", true), |
95 |
|
d_notify(*this), |
96 |
|
d_backtracker(c), |
97 |
|
d_infoMap(c, &d_backtracker, name), |
98 |
|
d_mergeQueue(c), |
99 |
|
d_mergeInProgress(false), |
100 |
|
d_RowQueue(c), |
101 |
|
d_RowAlreadyAdded(u), |
102 |
|
d_sharedArrays(c), |
103 |
|
d_sharedOther(c), |
104 |
|
d_sharedTerms(c, false), |
105 |
|
d_reads(c), |
106 |
|
d_constReadsList(c), |
107 |
9853 |
d_constReadsContext(new context::Context()), |
108 |
|
d_contextPopper(c, d_constReadsContext), |
109 |
|
d_skolemIndex(c, 0), |
110 |
|
d_decisionRequests(c), |
111 |
|
d_permRef(c), |
112 |
|
d_modelConstraints(c), |
113 |
|
d_lemmasSaved(c), |
114 |
|
d_defValues(c), |
115 |
9853 |
d_readTableContext(new context::Context()), |
116 |
|
d_arrayMerges(c), |
117 |
|
d_inCheckModel(false), |
118 |
9853 |
d_dstrat(new TheoryArraysDecisionStrategy(this)), |
119 |
187207 |
d_dstratInit(false) |
120 |
|
{ |
121 |
9853 |
d_true = NodeManager::currentNM()->mkConst<bool>(true); |
122 |
9853 |
d_false = NodeManager::currentNM()->mkConst<bool>(false); |
123 |
|
|
124 |
|
// The preprocessing congruence kinds |
125 |
9853 |
d_ppEqualityEngine.addFunctionKind(kind::SELECT); |
126 |
9853 |
d_ppEqualityEngine.addFunctionKind(kind::STORE); |
127 |
|
|
128 |
|
// indicate we are using the default theory state object, and the arrays |
129 |
|
// inference manager |
130 |
9853 |
d_theoryState = &d_state; |
131 |
9853 |
d_inferManager = &d_im; |
132 |
9853 |
} |
133 |
|
|
134 |
29559 |
TheoryArrays::~TheoryArrays() { |
135 |
9853 |
vector<CTNodeList*>::iterator it = d_readBucketAllocations.begin(), iend = d_readBucketAllocations.end(); |
136 |
9853 |
for (; it != iend; ++it) { |
137 |
|
(*it)->deleteSelf(); |
138 |
|
} |
139 |
9853 |
delete d_readTableContext; |
140 |
9853 |
CNodeNListMap::iterator it2 = d_constReads.begin(); |
141 |
11267 |
for( ; it2 != d_constReads.end(); ++it2 ) { |
142 |
707 |
it2->second->deleteSelf(); |
143 |
|
} |
144 |
9853 |
delete d_constReadsContext; |
145 |
19706 |
} |
146 |
|
|
147 |
9853 |
TheoryRewriter* TheoryArrays::getTheoryRewriter() { return &d_rewriter; } |
148 |
|
|
149 |
3768 |
ProofRuleChecker* TheoryArrays::getProofChecker() { return &d_checker; } |
150 |
|
|
151 |
9853 |
bool TheoryArrays::needsEqualityEngine(EeSetupInfo& esi) |
152 |
|
{ |
153 |
9853 |
esi.d_notify = &d_notify; |
154 |
9853 |
esi.d_name = d_instanceName + "ee"; |
155 |
9853 |
esi.d_notifyNewClass = true; |
156 |
9853 |
esi.d_notifyMerge = true; |
157 |
9853 |
return true; |
158 |
|
} |
159 |
|
|
160 |
9853 |
void TheoryArrays::finishInit() |
161 |
|
{ |
162 |
9853 |
Assert(d_equalityEngine != nullptr); |
163 |
|
|
164 |
|
// The kinds we are treating as function application in congruence |
165 |
9853 |
d_equalityEngine->addFunctionKind(kind::SELECT); |
166 |
|
if (d_ccStore) |
167 |
|
{ |
168 |
|
d_equalityEngine->addFunctionKind(kind::STORE); |
169 |
|
} |
170 |
9853 |
} |
171 |
|
|
172 |
|
///////////////////////////////////////////////////////////////////////////// |
173 |
|
// PREPROCESSING |
174 |
|
///////////////////////////////////////////////////////////////////////////// |
175 |
|
|
176 |
|
|
177 |
3221 |
bool TheoryArrays::ppDisequal(TNode a, TNode b) { |
178 |
3221 |
bool termsExist = d_ppEqualityEngine.hasTerm(a) && d_ppEqualityEngine.hasTerm(b); |
179 |
3221 |
Assert(!termsExist || !a.isConst() || !b.isConst() || a == b |
180 |
|
|| d_ppEqualityEngine.areDisequal(a, b, false)); |
181 |
12824 |
return ((termsExist && d_ppEqualityEngine.areDisequal(a, b, false)) || |
182 |
12824 |
Rewriter::rewrite(a.eqNode(b)) == d_false); |
183 |
|
} |
184 |
|
|
185 |
|
|
186 |
1487 |
Node TheoryArrays::solveWrite(TNode term, bool solve1, bool solve2, bool ppCheck) |
187 |
|
{ |
188 |
1487 |
if (!solve1) { |
189 |
|
return term; |
190 |
|
} |
191 |
5660 |
if (term[0].getKind() != kind::STORE && |
192 |
4173 |
term[1].getKind() != kind::STORE) { |
193 |
1185 |
return term; |
194 |
|
} |
195 |
604 |
TNode left = term[0]; |
196 |
604 |
TNode right = term[1]; |
197 |
302 |
int leftWrites = 0, rightWrites = 0; |
198 |
|
|
199 |
|
// Count nested writes |
200 |
604 |
TNode e1 = left; |
201 |
1106 |
while (e1.getKind() == kind::STORE) { |
202 |
402 |
++leftWrites; |
203 |
402 |
e1 = e1[0]; |
204 |
|
} |
205 |
|
|
206 |
604 |
TNode e2 = right; |
207 |
1490 |
while (e2.getKind() == kind::STORE) { |
208 |
594 |
++rightWrites; |
209 |
594 |
e2 = e2[0]; |
210 |
|
} |
211 |
|
|
212 |
302 |
if (rightWrites > leftWrites) { |
213 |
376 |
TNode tmp = left; |
214 |
188 |
left = right; |
215 |
188 |
right = tmp; |
216 |
188 |
int tmpWrites = leftWrites; |
217 |
188 |
leftWrites = rightWrites; |
218 |
188 |
rightWrites = tmpWrites; |
219 |
|
} |
220 |
|
|
221 |
302 |
NodeManager* nm = NodeManager::currentNM(); |
222 |
302 |
if (rightWrites == 0) { |
223 |
208 |
if (e1 != e2) { |
224 |
160 |
return term; |
225 |
|
} |
226 |
|
// write(store, index_0, v_0, index_1, v_1, ..., index_n, v_n) = store IFF |
227 |
|
// |
228 |
|
// read(store, index_n) = v_n & |
229 |
|
// index_{n-1} != index_n -> read(store, index_{n-1}) = v_{n-1} & |
230 |
|
// (index_{n-2} != index_{n-1} & index_{n-2} != index_n) -> read(store, index_{n-2}) = v_{n-2} & |
231 |
|
// ... |
232 |
|
// (index_1 != index_2 & ... & index_1 != index_n) -> read(store, index_1) = v_1 |
233 |
|
// (index_0 != index_1 & index_0 != index_2 & ... & index_0 != index_n) -> read(store, index_0) = v_0 |
234 |
96 |
TNode write_i, write_j, index_i, index_j; |
235 |
96 |
Node conc; |
236 |
96 |
NodeBuilder result(kind::AND); |
237 |
|
int i, j; |
238 |
48 |
write_i = left; |
239 |
134 |
for (i = leftWrites-1; i >= 0; --i) { |
240 |
86 |
index_i = write_i[1]; |
241 |
|
|
242 |
|
// build: [index_i /= index_n && index_i /= index_(n-1) && |
243 |
|
// ... && index_i /= index_(i+1)] -> read(store, index_i) = v_i |
244 |
86 |
write_j = left; |
245 |
|
{ |
246 |
172 |
NodeBuilder hyp(kind::AND); |
247 |
138 |
for (j = leftWrites - 1; j > i; --j) { |
248 |
52 |
index_j = write_j[1]; |
249 |
52 |
if (!ppCheck || !ppDisequal(index_i, index_j)) { |
250 |
44 |
Node hyp2(index_i.eqNode(index_j)); |
251 |
22 |
hyp << hyp2.notNode(); |
252 |
|
} |
253 |
52 |
write_j = write_j[0]; |
254 |
|
} |
255 |
|
|
256 |
172 |
Node r1 = nm->mkNode(kind::SELECT, e1, index_i); |
257 |
86 |
conc = r1.eqNode(write_i[2]); |
258 |
86 |
if (hyp.getNumChildren() != 0) { |
259 |
22 |
if (hyp.getNumChildren() == 1) { |
260 |
22 |
conc = hyp.getChild(0).impNode(conc); |
261 |
|
} |
262 |
|
else { |
263 |
|
r1 = hyp; |
264 |
|
conc = r1.impNode(conc); |
265 |
|
} |
266 |
|
} |
267 |
|
|
268 |
|
// And into result |
269 |
86 |
result << conc; |
270 |
|
|
271 |
|
// Prepare for next iteration |
272 |
86 |
write_i = write_i[0]; |
273 |
|
} |
274 |
|
} |
275 |
48 |
Assert(result.getNumChildren() > 0); |
276 |
48 |
if (result.getNumChildren() == 1) { |
277 |
20 |
return result.getChild(0); |
278 |
|
} |
279 |
28 |
return result; |
280 |
|
} |
281 |
|
else { |
282 |
94 |
if (!solve2) { |
283 |
94 |
return term; |
284 |
|
} |
285 |
|
// store(...) = store(a,i,v) ==> |
286 |
|
// store(store(...),i,select(a,i)) = a && select(store(...),i)=v |
287 |
|
Node l = left; |
288 |
|
Node tmp; |
289 |
|
NodeBuilder nb(kind::AND); |
290 |
|
while (right.getKind() == kind::STORE) { |
291 |
|
tmp = nm->mkNode(kind::SELECT, l, right[1]); |
292 |
|
nb << tmp.eqNode(right[2]); |
293 |
|
tmp = nm->mkNode(kind::SELECT, right[0], right[1]); |
294 |
|
l = nm->mkNode(kind::STORE, l, right[1], tmp); |
295 |
|
right = right[0]; |
296 |
|
} |
297 |
|
nb << solveWrite(l.eqNode(right), solve1, solve2, ppCheck); |
298 |
|
return nb; |
299 |
|
} |
300 |
|
Unreachable(); |
301 |
|
return term; |
302 |
|
} |
303 |
|
|
304 |
22439 |
TrustNode TheoryArrays::ppRewrite(TNode term, std::vector<SkolemLemma>& lems) |
305 |
|
{ |
306 |
|
// first, see if we need to expand definitions |
307 |
44878 |
TrustNode texp = d_rewriter.expandDefinition(term); |
308 |
22439 |
if (!texp.isNull()) |
309 |
|
{ |
310 |
20 |
return texp; |
311 |
|
} |
312 |
|
if (!d_preprocess) |
313 |
|
{ |
314 |
|
return TrustNode::null(); |
315 |
|
} |
316 |
22419 |
d_ppEqualityEngine.addTerm(term); |
317 |
22419 |
NodeManager* nm = NodeManager::currentNM(); |
318 |
44838 |
Node ret; |
319 |
22419 |
switch (term.getKind()) { |
320 |
6382 |
case kind::SELECT: { |
321 |
|
// select(store(a,i,v),j) = select(a,j) |
322 |
|
// IF i != j |
323 |
6382 |
if (term[0].getKind() == kind::STORE && ppDisequal(term[0][1], term[1])) { |
324 |
|
ret = nm->mkNode(kind::SELECT, term[0][0], term[1]); |
325 |
|
} |
326 |
6382 |
break; |
327 |
|
} |
328 |
1358 |
case kind::STORE: { |
329 |
|
// store(store(a,i,v),j,w) = store(store(a,j,w),i,v) |
330 |
|
// IF i != j and j comes before i in the ordering |
331 |
1358 |
if (term[0].getKind() == kind::STORE && (term[1] < term[0][1]) && ppDisequal(term[1],term[0][1])) { |
332 |
|
Node inner = nm->mkNode(kind::STORE, term[0][0], term[1], term[2]); |
333 |
|
Node outer = nm->mkNode(kind::STORE, inner, term[0][1], term[0][2]); |
334 |
|
ret = outer; |
335 |
|
} |
336 |
1358 |
break; |
337 |
|
} |
338 |
1487 |
case kind::EQUAL: { |
339 |
1487 |
ret = solveWrite(term, d_solveWrite, d_solveWrite2, true); |
340 |
1487 |
break; |
341 |
|
} |
342 |
13192 |
default: |
343 |
13192 |
break; |
344 |
|
} |
345 |
22419 |
if (!ret.isNull() && ret != term) |
346 |
|
{ |
347 |
48 |
return TrustNode::mkTrustRewrite(term, ret, nullptr); |
348 |
|
} |
349 |
22371 |
return TrustNode::null(); |
350 |
|
} |
351 |
|
|
352 |
228 |
Theory::PPAssertStatus TheoryArrays::ppAssert( |
353 |
|
TrustNode tin, TrustSubstitutionMap& outSubstitutions) |
354 |
|
{ |
355 |
456 |
TNode in = tin.getNode(); |
356 |
228 |
switch(in.getKind()) { |
357 |
152 |
case kind::EQUAL: |
358 |
|
{ |
359 |
152 |
d_ppFacts.push_back(in); |
360 |
152 |
d_ppEqualityEngine.assertEquality(in, true, in); |
361 |
152 |
if (in[0].isVar() && isLegalElimination(in[0], in[1])) |
362 |
|
{ |
363 |
101 |
outSubstitutions.addSubstitutionSolved(in[0], in[1], tin); |
364 |
101 |
return PP_ASSERT_STATUS_SOLVED; |
365 |
|
} |
366 |
51 |
if (in[1].isVar() && isLegalElimination(in[1], in[0])) |
367 |
|
{ |
368 |
|
outSubstitutions.addSubstitutionSolved(in[1], in[0], tin); |
369 |
|
return PP_ASSERT_STATUS_SOLVED; |
370 |
|
} |
371 |
51 |
break; |
372 |
|
} |
373 |
48 |
case kind::NOT: |
374 |
|
{ |
375 |
48 |
d_ppFacts.push_back(in); |
376 |
48 |
if (in[0].getKind() == kind::EQUAL ) { |
377 |
96 |
Node a = in[0][0]; |
378 |
96 |
Node b = in[0][1]; |
379 |
48 |
d_ppEqualityEngine.assertEquality(in[0], false, in); |
380 |
|
} |
381 |
48 |
break; |
382 |
|
} |
383 |
28 |
default: |
384 |
28 |
break; |
385 |
|
} |
386 |
127 |
return PP_ASSERT_STATUS_UNSOLVED; |
387 |
|
} |
388 |
|
|
389 |
|
|
390 |
|
///////////////////////////////////////////////////////////////////////////// |
391 |
|
// T-PROPAGATION / REGISTRATION |
392 |
|
///////////////////////////////////////////////////////////////////////////// |
393 |
|
|
394 |
209502 |
bool TheoryArrays::propagateLit(TNode literal) |
395 |
|
{ |
396 |
419004 |
Debug("arrays") << spaces(getSatContext()->getLevel()) |
397 |
209502 |
<< "TheoryArrays::propagateLit(" << literal << ")" |
398 |
209502 |
<< std::endl; |
399 |
|
|
400 |
|
// If already in conflict, no more propagation |
401 |
209502 |
if (d_state.isInConflict()) |
402 |
|
{ |
403 |
|
Debug("arrays") << spaces(getSatContext()->getLevel()) |
404 |
|
<< "TheoryArrays::propagateLit(" << literal |
405 |
|
<< "): already in conflict" << std::endl; |
406 |
|
return false; |
407 |
|
} |
408 |
|
|
409 |
|
// Propagate away |
410 |
209502 |
if (d_inCheckModel && getSatContext()->getLevel() != d_topLevel) { |
411 |
|
return true; |
412 |
|
} |
413 |
209502 |
bool ok = d_out->propagate(literal); |
414 |
209502 |
if (!ok) { |
415 |
1960 |
d_state.notifyInConflict(); |
416 |
|
} |
417 |
209502 |
return ok; |
418 |
|
}/* TheoryArrays::propagate(TNode) */ |
419 |
|
|
420 |
|
|
421 |
|
TNode TheoryArrays::weakEquivGetRep(TNode node) { |
422 |
|
TNode pointer; |
423 |
|
while (true) { |
424 |
|
pointer = d_infoMap.getWeakEquivPointer(node); |
425 |
|
if (pointer.isNull()) { |
426 |
|
return node; |
427 |
|
} |
428 |
|
node = pointer; |
429 |
|
} |
430 |
|
} |
431 |
|
|
432 |
|
TNode TheoryArrays::weakEquivGetRepIndex(TNode node, TNode index) { |
433 |
|
Assert(!index.isNull()); |
434 |
|
TNode pointer, index2; |
435 |
|
while (true) { |
436 |
|
pointer = d_infoMap.getWeakEquivPointer(node); |
437 |
|
if (pointer.isNull()) { |
438 |
|
return node; |
439 |
|
} |
440 |
|
index2 = d_infoMap.getWeakEquivIndex(node); |
441 |
|
if (index2.isNull() || !d_equalityEngine->areEqual(index, index2)) |
442 |
|
{ |
443 |
|
node = pointer; |
444 |
|
} |
445 |
|
else { |
446 |
|
TNode secondary = d_infoMap.getWeakEquivSecondary(node); |
447 |
|
if (secondary.isNull()) { |
448 |
|
return node; |
449 |
|
} |
450 |
|
node = secondary; |
451 |
|
} |
452 |
|
} |
453 |
|
} |
454 |
|
|
455 |
|
void TheoryArrays::visitAllLeaves(TNode reason, vector<TNode>& conjunctions) { |
456 |
|
switch (reason.getKind()) { |
457 |
|
case kind::AND: |
458 |
|
Assert(reason.getNumChildren() == 2); |
459 |
|
visitAllLeaves(reason[0], conjunctions); |
460 |
|
visitAllLeaves(reason[1], conjunctions); |
461 |
|
break; |
462 |
|
case kind::NOT: |
463 |
|
conjunctions.push_back(reason); |
464 |
|
break; |
465 |
|
case kind::EQUAL: |
466 |
|
d_equalityEngine->explainEquality( |
467 |
|
reason[0], reason[1], true, conjunctions); |
468 |
|
break; |
469 |
|
default: |
470 |
|
Unreachable(); |
471 |
|
} |
472 |
|
} |
473 |
|
|
474 |
|
void TheoryArrays::weakEquivBuildCond(TNode node, TNode index, vector<TNode>& conjunctions) { |
475 |
|
Assert(!index.isNull()); |
476 |
|
TNode pointer, index2; |
477 |
|
while (true) { |
478 |
|
pointer = d_infoMap.getWeakEquivPointer(node); |
479 |
|
if (pointer.isNull()) { |
480 |
|
return; |
481 |
|
} |
482 |
|
index2 = d_infoMap.getWeakEquivIndex(node); |
483 |
|
if (index2.isNull()) { |
484 |
|
// Null index means these two nodes became equal: explain the equality. |
485 |
|
d_equalityEngine->explainEquality(node, pointer, true, conjunctions); |
486 |
|
node = pointer; |
487 |
|
} |
488 |
|
else if (!d_equalityEngine->areEqual(index, index2)) |
489 |
|
{ |
490 |
|
// If indices are not equal in current context, need to add that to the lemma. |
491 |
|
Node reason = index.eqNode(index2).notNode(); |
492 |
|
d_permRef.push_back(reason); |
493 |
|
conjunctions.push_back(reason); |
494 |
|
node = pointer; |
495 |
|
} |
496 |
|
else { |
497 |
|
TNode secondary = d_infoMap.getWeakEquivSecondary(node); |
498 |
|
if (secondary.isNull()) { |
499 |
|
return; |
500 |
|
} |
501 |
|
TNode reason = d_infoMap.getWeakEquivSecondaryReason(node); |
502 |
|
Assert(!reason.isNull()); |
503 |
|
visitAllLeaves(reason, conjunctions); |
504 |
|
node = secondary; |
505 |
|
} |
506 |
|
} |
507 |
|
} |
508 |
|
|
509 |
|
void TheoryArrays::weakEquivMakeRep(TNode node) { |
510 |
|
TNode pointer = d_infoMap.getWeakEquivPointer(node); |
511 |
|
if (pointer.isNull()) { |
512 |
|
return; |
513 |
|
} |
514 |
|
weakEquivMakeRep(pointer); |
515 |
|
d_infoMap.setWeakEquivPointer(pointer, node); |
516 |
|
d_infoMap.setWeakEquivIndex(pointer, d_infoMap.getWeakEquivIndex(node)); |
517 |
|
d_infoMap.setWeakEquivPointer(node, TNode()); |
518 |
|
weakEquivMakeRepIndex(node); |
519 |
|
} |
520 |
|
|
521 |
|
void TheoryArrays::weakEquivMakeRepIndex(TNode node) { |
522 |
|
TNode secondary = d_infoMap.getWeakEquivSecondary(node); |
523 |
|
if (secondary.isNull()) { |
524 |
|
return; |
525 |
|
} |
526 |
|
TNode index = d_infoMap.getWeakEquivIndex(node); |
527 |
|
Assert(!index.isNull()); |
528 |
|
TNode index2 = d_infoMap.getWeakEquivIndex(secondary); |
529 |
|
Node reason; |
530 |
|
TNode next; |
531 |
|
while (index2.isNull() || !d_equalityEngine->areEqual(index, index2)) |
532 |
|
{ |
533 |
|
next = d_infoMap.getWeakEquivPointer(secondary); |
534 |
|
d_infoMap.setWeakEquivSecondary(node, next); |
535 |
|
reason = d_infoMap.getWeakEquivSecondaryReason(node); |
536 |
|
if (index2.isNull()) { |
537 |
|
reason = reason.andNode(secondary.eqNode(next)); |
538 |
|
} |
539 |
|
else { |
540 |
|
reason = reason.andNode(index.eqNode(index2).notNode()); |
541 |
|
} |
542 |
|
d_permRef.push_back(reason); |
543 |
|
d_infoMap.setWeakEquivSecondaryReason(node, reason); |
544 |
|
if (next.isNull()) { |
545 |
|
return; |
546 |
|
} |
547 |
|
secondary = next; |
548 |
|
index2 = d_infoMap.getWeakEquivIndex(secondary); |
549 |
|
} |
550 |
|
weakEquivMakeRepIndex(secondary); |
551 |
|
d_infoMap.setWeakEquivSecondary(secondary, node); |
552 |
|
d_infoMap.setWeakEquivSecondaryReason(secondary, d_infoMap.getWeakEquivSecondaryReason(node)); |
553 |
|
d_infoMap.setWeakEquivSecondary(node, TNode()); |
554 |
|
d_infoMap.setWeakEquivSecondaryReason(node, TNode()); |
555 |
|
} |
556 |
|
|
557 |
|
void TheoryArrays::weakEquivAddSecondary(TNode index, TNode arrayFrom, TNode arrayTo, TNode reason) { |
558 |
|
std::unordered_set<TNode> marked; |
559 |
|
vector<TNode> index_trail; |
560 |
|
vector<TNode>::iterator it, iend; |
561 |
|
Node equivalence_trail = reason; |
562 |
|
Node current_reason; |
563 |
|
TNode pointer, indexRep; |
564 |
|
if (!index.isNull()) { |
565 |
|
index_trail.push_back(index); |
566 |
|
marked.insert(d_equalityEngine->getRepresentative(index)); |
567 |
|
} |
568 |
|
while (arrayFrom != arrayTo) { |
569 |
|
index = d_infoMap.getWeakEquivIndex(arrayFrom); |
570 |
|
pointer = d_infoMap.getWeakEquivPointer(arrayFrom); |
571 |
|
if (!index.isNull()) { |
572 |
|
indexRep = d_equalityEngine->getRepresentative(index); |
573 |
|
if (marked.find(indexRep) == marked.end() && weakEquivGetRepIndex(arrayFrom, index) != arrayTo) { |
574 |
|
weakEquivMakeRepIndex(arrayFrom); |
575 |
|
d_infoMap.setWeakEquivSecondary(arrayFrom, arrayTo); |
576 |
|
current_reason = equivalence_trail; |
577 |
|
for (it = index_trail.begin(), iend = index_trail.end(); it != iend; ++it) { |
578 |
|
current_reason = current_reason.andNode(index.eqNode(*it).notNode()); |
579 |
|
} |
580 |
|
d_permRef.push_back(current_reason); |
581 |
|
d_infoMap.setWeakEquivSecondaryReason(arrayFrom, current_reason); |
582 |
|
} |
583 |
|
marked.insert(indexRep); |
584 |
|
} |
585 |
|
else { |
586 |
|
equivalence_trail = equivalence_trail.andNode(arrayFrom.eqNode(pointer)); |
587 |
|
} |
588 |
|
arrayFrom = pointer; |
589 |
|
} |
590 |
|
} |
591 |
|
|
592 |
|
void TheoryArrays::checkWeakEquiv(bool arraysMerged) { |
593 |
|
eq::EqClassesIterator eqcs_i = eq::EqClassesIterator(&d_mayEqualEqualityEngine); |
594 |
|
for (; !eqcs_i.isFinished(); ++eqcs_i) { |
595 |
|
Node eqc = (*eqcs_i); |
596 |
|
if (!eqc.getType().isArray()) { |
597 |
|
continue; |
598 |
|
} |
599 |
|
eq::EqClassIterator eqc_i = eq::EqClassIterator(eqc, &d_mayEqualEqualityEngine); |
600 |
|
TNode rep = d_mayEqualEqualityEngine.getRepresentative(*eqc_i); |
601 |
|
TNode weakEquivRep = weakEquivGetRep(rep); |
602 |
|
for (; !eqc_i.isFinished(); ++eqc_i) { |
603 |
|
TNode n = *eqc_i; |
604 |
|
Assert(!arraysMerged || weakEquivGetRep(n) == weakEquivRep); |
605 |
|
TNode pointer = d_infoMap.getWeakEquivPointer(n); |
606 |
|
TNode index = d_infoMap.getWeakEquivIndex(n); |
607 |
|
TNode secondary = d_infoMap.getWeakEquivSecondary(n); |
608 |
|
Assert(pointer.isNull() == (weakEquivGetRep(n) == n)); |
609 |
|
Assert(!pointer.isNull() || secondary.isNull()); |
610 |
|
Assert(!index.isNull() || secondary.isNull()); |
611 |
|
Assert(d_infoMap.getWeakEquivSecondaryReason(n).isNull() |
612 |
|
|| !secondary.isNull()); |
613 |
|
if (!pointer.isNull()) { |
614 |
|
if (index.isNull()) { |
615 |
|
Assert(d_equalityEngine->areEqual(n, pointer)); |
616 |
|
} |
617 |
|
else { |
618 |
|
Assert( |
619 |
|
(n.getKind() == kind::STORE && n[0] == pointer && n[1] == index) |
620 |
|
|| (pointer.getKind() == kind::STORE && pointer[0] == n |
621 |
|
&& pointer[1] == index)); |
622 |
|
} |
623 |
|
} |
624 |
|
} |
625 |
|
} |
626 |
|
} |
627 |
|
|
628 |
|
/** |
629 |
|
* Stores in d_infoMap the following information for each term a of type array: |
630 |
|
* |
631 |
|
* - all i, such that there exists a term a[i] or a = store(b i v) |
632 |
|
* (i.e. all indices it is being read atl; store(b i v) is implicitly read at |
633 |
|
* position i due to the implicit axiom store(b i v)[i] = v ) |
634 |
|
* |
635 |
|
* - all the stores a is congruent to (this information is context dependent) |
636 |
|
* |
637 |
|
* - all store terms of the form store (a i v) (i.e. in which a appears |
638 |
|
* directly; this is invariant because no new store terms are created) |
639 |
|
* |
640 |
|
* Note: completeness depends on having pre-register called on all the input |
641 |
|
* terms before starting to instantiate lemmas. |
642 |
|
*/ |
643 |
97057 |
void TheoryArrays::preRegisterTermInternal(TNode node) |
644 |
|
{ |
645 |
97057 |
if (d_state.isInConflict()) |
646 |
|
{ |
647 |
64630 |
return; |
648 |
|
} |
649 |
193992 |
Debug("arrays") << spaces(getSatContext()->getLevel()) |
650 |
96996 |
<< "TheoryArrays::preRegisterTerm(" << node << ")" |
651 |
96996 |
<< std::endl; |
652 |
96996 |
Kind nk = node.getKind(); |
653 |
96996 |
if (nk == kind::EQUAL) |
654 |
|
{ |
655 |
|
// Add the trigger for equality |
656 |
|
// NOTE: note that if the equality is true or false already, it might not be added |
657 |
13421 |
d_equalityEngine->addTriggerPredicate(node); |
658 |
13421 |
return; |
659 |
|
} |
660 |
|
// add to equality engine and the may equality engine |
661 |
116063 |
TypeNode nodeType = node.getType(); |
662 |
83575 |
if (nodeType.isArray()) |
663 |
|
{ |
664 |
|
// index type should not be an array, otherwise we throw a logic exception |
665 |
6949 |
if (nodeType.getArrayIndexType().isArray()) |
666 |
|
{ |
667 |
|
std::stringstream ss; |
668 |
|
ss << "Arrays cannot be indexed by array types, offending array type is " |
669 |
|
<< nodeType; |
670 |
|
throw LogicException(ss.str()); |
671 |
|
} |
672 |
6949 |
d_mayEqualEqualityEngine.addTerm(node); |
673 |
|
} |
674 |
83575 |
if (d_equalityEngine->hasTerm(node)) |
675 |
|
{ |
676 |
|
// Notice that array terms may be added to its equality engine before |
677 |
|
// being preregistered in the central equality engine architecture. |
678 |
|
// Prior to this, an assertion in this case was: |
679 |
|
// Assert(nk != kind::SELECT |
680 |
|
// || d_isPreRegistered.find(node) != d_isPreRegistered.end()); |
681 |
51087 |
return; |
682 |
|
} |
683 |
32488 |
d_equalityEngine->addTerm(node); |
684 |
|
|
685 |
32488 |
switch (node.getKind()) |
686 |
|
{ |
687 |
24028 |
case kind::SELECT: |
688 |
|
{ |
689 |
|
// Reads |
690 |
48056 |
TNode store = d_equalityEngine->getRepresentative(node[0]); |
691 |
|
|
692 |
|
// The may equal needs the store |
693 |
24028 |
d_mayEqualEqualityEngine.addTerm(store); |
694 |
|
|
695 |
24028 |
Assert((d_isPreRegistered.insert(node), true)); |
696 |
|
|
697 |
24028 |
Assert(d_equalityEngine->getRepresentative(store) == store); |
698 |
24028 |
d_infoMap.addIndex(store, node[1]); |
699 |
|
|
700 |
|
// Synchronize d_constReadsContext with SAT context |
701 |
24028 |
Assert(d_constReadsContext->getLevel() <= getSatContext()->getLevel()); |
702 |
61924 |
while (d_constReadsContext->getLevel() < getSatContext()->getLevel()) |
703 |
|
{ |
704 |
18948 |
d_constReadsContext->push(); |
705 |
|
} |
706 |
|
|
707 |
|
// Record read in sharing data structure |
708 |
48056 |
TNode index = d_equalityEngine->getRepresentative(node[1]); |
709 |
24028 |
if (!options::arraysWeakEquivalence() && index.isConst()) |
710 |
|
{ |
711 |
|
CTNodeList* temp; |
712 |
4594 |
CNodeNListMap::iterator it = d_constReads.find(index); |
713 |
4594 |
if (it == d_constReads.end()) |
714 |
|
{ |
715 |
510 |
temp = new (true) CTNodeList(d_constReadsContext); |
716 |
510 |
d_constReads[index] = temp; |
717 |
|
} |
718 |
|
else |
719 |
|
{ |
720 |
4084 |
temp = (*it).second; |
721 |
|
} |
722 |
4594 |
temp->push_back(node); |
723 |
4594 |
d_constReadsList.push_back(node); |
724 |
|
} |
725 |
|
else |
726 |
|
{ |
727 |
19434 |
d_reads.push_back(node); |
728 |
|
} |
729 |
|
|
730 |
24028 |
checkRowForIndex(node[1], store); |
731 |
24028 |
break; |
732 |
|
} |
733 |
1112 |
case kind::STORE: |
734 |
|
{ |
735 |
2224 |
TNode a = d_equalityEngine->getRepresentative(node[0]); |
736 |
|
|
737 |
1112 |
if (node.isConst()) |
738 |
|
{ |
739 |
|
// Can't use d_mayEqualEqualityEngine to merge node with a because they |
740 |
|
// are both constants, so just set the default value manually for node. |
741 |
22 |
Assert(a == node[0]); |
742 |
22 |
d_mayEqualEqualityEngine.addTerm(node); |
743 |
22 |
Assert(d_mayEqualEqualityEngine.getRepresentative(node) == node); |
744 |
22 |
Assert(d_mayEqualEqualityEngine.getRepresentative(a) == a); |
745 |
22 |
DefValMap::iterator it = d_defValues.find(a); |
746 |
22 |
Assert(it != d_defValues.end()); |
747 |
22 |
d_defValues[node] = (*it).second; |
748 |
|
} |
749 |
|
else |
750 |
|
{ |
751 |
1090 |
d_mayEqualEqualityEngine.assertEquality(node.eqNode(a), true, d_true); |
752 |
1090 |
Assert(d_mayEqualEqualityEngine.consistent()); |
753 |
|
} |
754 |
|
|
755 |
2224 |
TNode i = node[1]; |
756 |
2224 |
TNode v = node[2]; |
757 |
1112 |
NodeManager* nm = NodeManager::currentNM(); |
758 |
2224 |
Node ni = nm->mkNode(kind::SELECT, node, i); |
759 |
1112 |
if (!d_equalityEngine->hasTerm(ni)) |
760 |
|
{ |
761 |
1112 |
preRegisterTermInternal(ni); |
762 |
|
} |
763 |
|
// Apply RIntro1 Rule |
764 |
1112 |
d_im.assertInference(ni.eqNode(v), |
765 |
|
true, |
766 |
|
InferenceId::ARRAYS_READ_OVER_WRITE_1, |
767 |
|
d_true, |
768 |
|
PfRule::ARRAYS_READ_OVER_WRITE_1); |
769 |
|
|
770 |
1112 |
d_infoMap.addStore(node, node); |
771 |
1112 |
d_infoMap.addInStore(a, node); |
772 |
1112 |
d_infoMap.setModelRep(node, node); |
773 |
|
|
774 |
|
// Add-Store for Weak Equivalence |
775 |
1112 |
if (options::arraysWeakEquivalence()) |
776 |
|
{ |
777 |
|
Assert(weakEquivGetRep(node[0]) == weakEquivGetRep(a)); |
778 |
|
Assert(weakEquivGetRep(node) == node); |
779 |
|
d_infoMap.setWeakEquivPointer(node, node[0]); |
780 |
|
d_infoMap.setWeakEquivIndex(node, node[1]); |
781 |
|
#ifdef CVC5_ASSERTIONS |
782 |
|
checkWeakEquiv(false); |
783 |
|
#endif |
784 |
|
} |
785 |
|
|
786 |
1112 |
checkStore(node); |
787 |
1112 |
break; |
788 |
|
} |
789 |
66 |
case kind::STORE_ALL: { |
790 |
132 |
ArrayStoreAll storeAll = node.getConst<ArrayStoreAll>(); |
791 |
132 |
Node defaultValue = storeAll.getValue(); |
792 |
66 |
if (!defaultValue.isConst()) { |
793 |
|
throw LogicException("Array theory solver does not yet support non-constant default values for arrays"); |
794 |
|
} |
795 |
66 |
d_infoMap.setConstArr(node, node); |
796 |
66 |
Assert(d_mayEqualEqualityEngine.getRepresentative(node) == node); |
797 |
66 |
d_defValues[node] = defaultValue; |
798 |
66 |
break; |
799 |
|
} |
800 |
7282 |
default: |
801 |
|
// Variables etc, already processed above |
802 |
7282 |
break; |
803 |
|
} |
804 |
|
// Invariant: preregistered terms are exactly the terms in the equality engine |
805 |
|
// Disabled, see comment above for kind::EQUAL |
806 |
|
// Assert(d_equalityEngine->hasTerm(node) || |
807 |
|
// !d_equalityEngine->consistent()); |
808 |
|
} |
809 |
|
|
810 |
38651 |
void TheoryArrays::preRegisterTerm(TNode node) |
811 |
|
{ |
812 |
38651 |
preRegisterTermInternal(node); |
813 |
|
// If we have a select from an array of Bools, mark it as a term that can be propagated. |
814 |
|
// Note: do this here instead of in preRegisterTermInternal to prevent internal select |
815 |
|
// terms from being propagated out (as this results in an assertion failure). |
816 |
38651 |
if (node.getKind() == kind::SELECT && node.getType().isBoolean()) { |
817 |
97 |
d_equalityEngine->addTriggerPredicate(node); |
818 |
|
} |
819 |
38651 |
} |
820 |
|
|
821 |
|
void TheoryArrays::explain(TNode literal, Node& explanation) |
822 |
|
{ |
823 |
|
++d_numExplain; |
824 |
|
Debug("arrays") << spaces(getSatContext()->getLevel()) |
825 |
|
<< "TheoryArrays::explain(" << literal << ")" << std::endl; |
826 |
|
std::vector<TNode> assumptions; |
827 |
|
// Do the work |
828 |
|
bool polarity = literal.getKind() != kind::NOT; |
829 |
|
TNode atom = polarity ? literal : literal[0]; |
830 |
|
if (atom.getKind() == kind::EQUAL) |
831 |
|
{ |
832 |
|
d_equalityEngine->explainEquality( |
833 |
|
atom[0], atom[1], polarity, assumptions, nullptr); |
834 |
|
} |
835 |
|
else |
836 |
|
{ |
837 |
|
d_equalityEngine->explainPredicate(atom, polarity, assumptions, nullptr); |
838 |
|
} |
839 |
|
explanation = mkAnd(assumptions); |
840 |
|
} |
841 |
|
|
842 |
12769 |
TrustNode TheoryArrays::explain(TNode literal) |
843 |
|
{ |
844 |
12769 |
return d_im.explainLit(literal); |
845 |
|
} |
846 |
|
|
847 |
|
///////////////////////////////////////////////////////////////////////////// |
848 |
|
// SHARING |
849 |
|
///////////////////////////////////////////////////////////////////////////// |
850 |
|
|
851 |
87222 |
void TheoryArrays::notifySharedTerm(TNode t) |
852 |
|
{ |
853 |
174444 |
Debug("arrays::sharing") << spaces(getSatContext()->getLevel()) |
854 |
87222 |
<< "TheoryArrays::notifySharedTerm(" << t << ")" |
855 |
87222 |
<< std::endl; |
856 |
87222 |
if (t.getType().isArray()) { |
857 |
2490 |
d_sharedArrays.insert(t); |
858 |
|
} |
859 |
|
else { |
860 |
|
#ifdef CVC5_ASSERTIONS |
861 |
84732 |
d_sharedOther.insert(t); |
862 |
|
#endif |
863 |
84732 |
d_sharedTerms = true; |
864 |
|
} |
865 |
87222 |
} |
866 |
|
|
867 |
267682 |
void TheoryArrays::checkPair(TNode r1, TNode r2) |
868 |
|
{ |
869 |
267682 |
Debug("arrays::sharing") << "TheoryArrays::computeCareGraph(): checking reads " << r1 << " and " << r2 << std::endl; |
870 |
|
|
871 |
269547 |
TNode x = r1[1]; |
872 |
269547 |
TNode y = r2[1]; |
873 |
267682 |
Assert(d_equalityEngine->isTriggerTerm(x, THEORY_ARRAYS)); |
874 |
|
|
875 |
1070728 |
if (d_equalityEngine->hasTerm(x) && d_equalityEngine->hasTerm(y) |
876 |
1573627 |
&& (d_equalityEngine->areEqual(x, y) |
877 |
310398 |
|| d_equalityEngine->areDisequal(x, y, false))) |
878 |
|
{ |
879 |
235217 |
Debug("arrays::sharing") << "TheoryArrays::computeCareGraph(): equality known, skipping" << std::endl; |
880 |
235217 |
return; |
881 |
|
} |
882 |
|
|
883 |
|
// If the terms are already known to be equal, we are also in good shape |
884 |
32465 |
if (d_equalityEngine->areEqual(r1, r2)) |
885 |
|
{ |
886 |
1942 |
Debug("arrays::sharing") << "TheoryArrays::computeCareGraph(): equal, skipping" << std::endl; |
887 |
1942 |
return; |
888 |
|
} |
889 |
|
|
890 |
30523 |
if (r1[0] != r2[0]) { |
891 |
|
// If arrays are known to be disequal, or cannot become equal, we can continue |
892 |
26383 |
Assert(d_mayEqualEqualityEngine.hasTerm(r1[0]) |
893 |
|
&& d_mayEqualEqualityEngine.hasTerm(r2[0])); |
894 |
105532 |
if (r1[0].getType() != r2[0].getType() |
895 |
105532 |
|| d_equalityEngine->areDisequal(r1[0], r2[0], false)) |
896 |
|
{ |
897 |
4001 |
Debug("arrays::sharing") << "TheoryArrays::computeCareGraph(): arrays can't be equal, skipping" << std::endl; |
898 |
4001 |
return; |
899 |
|
} |
900 |
22382 |
else if (!d_mayEqualEqualityEngine.areEqual(r1[0], r2[0])) { |
901 |
69 |
return; |
902 |
|
} |
903 |
|
} |
904 |
|
|
905 |
26453 |
if (!d_equalityEngine->isTriggerTerm(y, THEORY_ARRAYS)) |
906 |
|
{ |
907 |
38 |
Debug("arrays::sharing") << "TheoryArrays::computeCareGraph(): not connected to shared terms, skipping" << std::endl; |
908 |
38 |
return; |
909 |
|
} |
910 |
|
|
911 |
|
// Get representative trigger terms |
912 |
|
TNode x_shared = |
913 |
28280 |
d_equalityEngine->getTriggerTermRepresentative(x, THEORY_ARRAYS); |
914 |
|
TNode y_shared = |
915 |
28280 |
d_equalityEngine->getTriggerTermRepresentative(y, THEORY_ARRAYS); |
916 |
26415 |
EqualityStatus eqStatusDomain = d_valuation.getEqualityStatus(x_shared, y_shared); |
917 |
26415 |
switch (eqStatusDomain) { |
918 |
|
case EQUALITY_TRUE_AND_PROPAGATED: |
919 |
|
// Should have been propagated to us |
920 |
|
Assert(false); |
921 |
|
break; |
922 |
|
case EQUALITY_TRUE: |
923 |
|
// Missed propagation - need to add the pair so that theory engine can force propagation |
924 |
|
Debug("arrays::sharing") << "TheoryArrays::computeCareGraph(): missed propagation" << std::endl; |
925 |
|
break; |
926 |
|
case EQUALITY_FALSE_AND_PROPAGATED: |
927 |
|
Debug("arrays::sharing") << "TheoryArrays::computeCareGraph(): checkPair " |
928 |
|
"called when false in model" |
929 |
|
<< std::endl; |
930 |
|
// Should have been propagated to us |
931 |
|
Assert(false); |
932 |
|
break; |
933 |
24550 |
case EQUALITY_FALSE: CVC5_FALLTHROUGH; |
934 |
|
case EQUALITY_FALSE_IN_MODEL: |
935 |
|
// This is unlikely, but I think it could happen |
936 |
24550 |
Debug("arrays::sharing") << "TheoryArrays::computeCareGraph(): checkPair called when false in model" << std::endl; |
937 |
24550 |
return; |
938 |
1865 |
default: |
939 |
|
// Covers EQUALITY_TRUE_IN_MODEL (common case) and EQUALITY_UNKNOWN |
940 |
1865 |
break; |
941 |
|
} |
942 |
|
|
943 |
|
// Add this pair |
944 |
1865 |
Debug("arrays::sharing") << "TheoryArrays::computeCareGraph(): adding to care-graph" << std::endl; |
945 |
1865 |
addCarePair(x_shared, y_shared); |
946 |
|
} |
947 |
|
|
948 |
|
|
949 |
7540 |
void TheoryArrays::computeCareGraph() |
950 |
|
{ |
951 |
7540 |
if (d_sharedArrays.size() > 0) { |
952 |
378 |
CDNodeSet::key_iterator it1 = d_sharedArrays.key_begin(), it2, iend = d_sharedArrays.key_end(); |
953 |
3842 |
for (; it1 != iend; ++it1) { |
954 |
15892 |
for (it2 = it1, ++it2; it2 != iend; ++it2) { |
955 |
14160 |
if ((*it1).getType() != (*it2).getType()) { |
956 |
4455 |
continue; |
957 |
|
} |
958 |
9705 |
EqualityStatus eqStatusArr = getEqualityStatus((*it1), (*it2)); |
959 |
9705 |
if (eqStatusArr != EQUALITY_UNKNOWN) { |
960 |
9581 |
continue; |
961 |
|
} |
962 |
124 |
Assert(d_valuation.getEqualityStatus((*it1), (*it2)) |
963 |
|
== EQUALITY_UNKNOWN); |
964 |
124 |
addCarePair((*it1), (*it2)); |
965 |
124 |
++d_numSharedArrayVarSplits; |
966 |
248 |
return; |
967 |
|
} |
968 |
|
} |
969 |
|
} |
970 |
7416 |
if (d_sharedTerms) { |
971 |
|
// Synchronize d_constReadsContext with SAT context |
972 |
544 |
Assert(d_constReadsContext->getLevel() <= getSatContext()->getLevel()); |
973 |
9008 |
while (d_constReadsContext->getLevel() < getSatContext()->getLevel()) { |
974 |
4232 |
d_constReadsContext->push(); |
975 |
|
} |
976 |
|
|
977 |
|
// Go through the read terms and see if there are any to split on |
978 |
|
|
979 |
|
// Give constReadsContext a push so that all the work it does here is erased - models can change if context changes at all |
980 |
|
// The context is popped at the end. If this loop is interrupted for some reason, we have to make sure the context still |
981 |
|
// gets popped or the solver will be in an inconsistent state |
982 |
544 |
d_constReadsContext->push(); |
983 |
544 |
unsigned size = d_reads.size(); |
984 |
6820 |
for (unsigned i = 0; i < size; ++ i) { |
985 |
12337 |
TNode r1 = d_reads[i]; |
986 |
|
|
987 |
6276 |
Debug("arrays::sharing") << "TheoryArrays::computeCareGraph(): checking read " << r1 << std::endl; |
988 |
6276 |
Assert(d_equalityEngine->hasTerm(r1)); |
989 |
12337 |
TNode x = r1[1]; |
990 |
|
|
991 |
6491 |
if (!d_equalityEngine->isTriggerTerm(x, THEORY_ARRAYS)) |
992 |
|
{ |
993 |
215 |
Debug("arrays::sharing") << "TheoryArrays::computeCareGraph(): not connected to shared terms, skipping" << std::endl; |
994 |
215 |
continue; |
995 |
|
} |
996 |
|
Node x_shared = |
997 |
12122 |
d_equalityEngine->getTriggerTermRepresentative(x, THEORY_ARRAYS); |
998 |
|
|
999 |
|
// Get the model value of index and find all reads that read from that same model value: these are the pairs we have to check |
1000 |
|
// Also, insert this read in the list at the proper index |
1001 |
|
|
1002 |
6061 |
if (!x_shared.isConst()) { |
1003 |
2737 |
x_shared = d_valuation.getModelValue(x_shared); |
1004 |
|
} |
1005 |
6061 |
if (!x_shared.isNull()) { |
1006 |
|
CTNodeList* temp; |
1007 |
4423 |
CNodeNListMap::iterator it = d_constReads.find(x_shared); |
1008 |
4423 |
if (it == d_constReads.end()) { |
1009 |
|
// This is the only x_shared with this model value - no need to create any splits |
1010 |
197 |
temp = new(true) CTNodeList(d_constReadsContext); |
1011 |
197 |
d_constReads[x_shared] = temp; |
1012 |
|
} |
1013 |
|
else { |
1014 |
4226 |
temp = (*it).second; |
1015 |
207906 |
for (size_t j = 0; j < temp->size(); ++j) { |
1016 |
203680 |
checkPair(r1, (*temp)[j]); |
1017 |
|
} |
1018 |
|
} |
1019 |
4423 |
temp->push_back(r1); |
1020 |
|
} |
1021 |
|
else { |
1022 |
|
// We don't know the model value for x. Just do brute force examination of all pairs of reads |
1023 |
57527 |
for (unsigned j = 0; j < size; ++j) { |
1024 |
111778 |
TNode r2 = d_reads[j]; |
1025 |
55889 |
Assert(d_equalityEngine->hasTerm(r2)); |
1026 |
55889 |
checkPair(r1,r2); |
1027 |
|
} |
1028 |
9751 |
for (unsigned j = 0; j < d_constReadsList.size(); ++j) { |
1029 |
16226 |
TNode r2 = d_constReadsList[j]; |
1030 |
8113 |
Assert(d_equalityEngine->hasTerm(r2)); |
1031 |
8113 |
checkPair(r1,r2); |
1032 |
|
} |
1033 |
|
} |
1034 |
|
} |
1035 |
544 |
d_constReadsContext->pop(); |
1036 |
|
} |
1037 |
|
} |
1038 |
|
|
1039 |
|
|
1040 |
|
///////////////////////////////////////////////////////////////////////////// |
1041 |
|
// MODEL GENERATION |
1042 |
|
///////////////////////////////////////////////////////////////////////////// |
1043 |
|
|
1044 |
5311 |
bool TheoryArrays::collectModelValues(TheoryModel* m, |
1045 |
|
const std::set<Node>& termSet) |
1046 |
|
{ |
1047 |
|
// termSet contains terms appearing in assertions and shared terms, and also |
1048 |
|
// includes additional reads due to the RIntro1 and RIntro2 rules. |
1049 |
5311 |
NodeManager* nm = NodeManager::currentNM(); |
1050 |
|
// Compute arrays that we need to produce representatives for |
1051 |
10622 |
std::vector<Node> arrays; |
1052 |
|
|
1053 |
5311 |
eq::EqClassesIterator eqcs_i = eq::EqClassesIterator(d_equalityEngine); |
1054 |
31577 |
for (; !eqcs_i.isFinished(); ++eqcs_i) |
1055 |
|
{ |
1056 |
14039 |
Node eqc = (*eqcs_i); |
1057 |
13133 |
if (!eqc.getType().isArray()) |
1058 |
|
{ |
1059 |
|
// not an array, skip |
1060 |
12227 |
continue; |
1061 |
|
} |
1062 |
906 |
eq::EqClassIterator eqc_i = eq::EqClassIterator(eqc, d_equalityEngine); |
1063 |
1578 |
for (; !eqc_i.isFinished(); ++eqc_i) |
1064 |
|
{ |
1065 |
1287 |
Node n = *eqc_i; |
1066 |
|
// If this EC is an array type and it contains something other than STORE |
1067 |
|
// nodes, we have to compute a representative explicitly |
1068 |
951 |
if (termSet.find(n) != termSet.end()) |
1069 |
|
{ |
1070 |
910 |
if (n.getKind() != kind::STORE) |
1071 |
|
{ |
1072 |
615 |
arrays.push_back(n); |
1073 |
615 |
break; |
1074 |
|
} |
1075 |
|
} |
1076 |
|
} |
1077 |
|
} |
1078 |
|
|
1079 |
|
// Build a list of all the relevant reads, indexed by the store representative |
1080 |
10622 |
std::map<Node, std::vector<Node> > selects; |
1081 |
5311 |
set<Node>::iterator set_it = termSet.begin(), set_it_end = termSet.end(); |
1082 |
20057 |
for (; set_it != set_it_end; ++set_it) |
1083 |
|
{ |
1084 |
14746 |
Node n = *set_it; |
1085 |
|
// If this term is a select, record that the EC rep of its store parameter |
1086 |
|
// is being read from using this term |
1087 |
7373 |
if (n.getKind() == kind::SELECT) |
1088 |
|
{ |
1089 |
3870 |
selects[d_equalityEngine->getRepresentative(n[0])].push_back(n); |
1090 |
|
} |
1091 |
|
} |
1092 |
|
|
1093 |
10622 |
Node rep; |
1094 |
5311 |
DefValMap::iterator it; |
1095 |
10622 |
TypeSet defaultValuesSet; |
1096 |
|
|
1097 |
|
// Compute all default values already in use |
1098 |
|
// if (fullModel) { |
1099 |
5926 |
for (size_t i = 0; i < arrays.size(); ++i) |
1100 |
|
{ |
1101 |
1230 |
TNode nrep = d_equalityEngine->getRepresentative(arrays[i]); |
1102 |
615 |
d_mayEqualEqualityEngine.addTerm( |
1103 |
|
nrep); // add the term in case it isn't there already |
1104 |
1230 |
TNode mayRep = d_mayEqualEqualityEngine.getRepresentative(nrep); |
1105 |
615 |
it = d_defValues.find(mayRep); |
1106 |
615 |
if (it != d_defValues.end()) |
1107 |
|
{ |
1108 |
115 |
defaultValuesSet.add(nrep.getType().getArrayConstituentType(), |
1109 |
115 |
(*it).second); |
1110 |
|
} |
1111 |
|
} |
1112 |
|
//} |
1113 |
|
|
1114 |
|
// Loop through all array equivalence classes that need a representative |
1115 |
|
// computed |
1116 |
5926 |
for (size_t i = 0; i < arrays.size(); ++i) |
1117 |
|
{ |
1118 |
1230 |
TNode n = arrays[i]; |
1119 |
1230 |
TNode nrep = d_equalityEngine->getRepresentative(n); |
1120 |
|
|
1121 |
|
// if (fullModel) { |
1122 |
|
// Compute default value for this array - there is one default value for |
1123 |
|
// every mayEqual equivalence class |
1124 |
1230 |
TNode mayRep = d_mayEqualEqualityEngine.getRepresentative(nrep); |
1125 |
615 |
it = d_defValues.find(mayRep); |
1126 |
|
// If this mayEqual EC doesn't have a default value associated, get the next |
1127 |
|
// available default value for the associated array element type |
1128 |
615 |
if (it == d_defValues.end()) |
1129 |
|
{ |
1130 |
856 |
TypeNode valueType = nrep.getType().getArrayConstituentType(); |
1131 |
428 |
rep = defaultValuesSet.nextTypeEnum(valueType); |
1132 |
428 |
if (rep.isNull()) |
1133 |
|
{ |
1134 |
|
Assert(defaultValuesSet.getSet(valueType)->begin() |
1135 |
|
!= defaultValuesSet.getSet(valueType)->end()); |
1136 |
|
rep = *(defaultValuesSet.getSet(valueType)->begin()); |
1137 |
|
} |
1138 |
428 |
Trace("arrays-models") << "New default value = " << rep << endl; |
1139 |
428 |
d_defValues[mayRep] = rep; |
1140 |
|
} |
1141 |
|
else |
1142 |
|
{ |
1143 |
187 |
rep = (*it).second; |
1144 |
|
} |
1145 |
|
|
1146 |
|
// Build the STORE_ALL term with the default value |
1147 |
615 |
rep = nm->mkConst(ArrayStoreAll(nrep.getType(), rep)); |
1148 |
|
/* |
1149 |
|
} |
1150 |
|
else { |
1151 |
|
std::unordered_map<Node, Node>::iterator it = d_skolemCache.find(n); |
1152 |
|
if (it == d_skolemCache.end()) { |
1153 |
|
rep = nm->mkSkolem("array_collect_model_var", n.getType(), "base model |
1154 |
|
variable for array collectModelInfo"); d_skolemCache[n] = rep; |
1155 |
|
} |
1156 |
|
else { |
1157 |
|
rep = (*it).second; |
1158 |
|
} |
1159 |
|
} |
1160 |
|
*/ |
1161 |
|
|
1162 |
|
// For each read, require that the rep stores the right value |
1163 |
615 |
vector<Node>& reads = selects[nrep]; |
1164 |
3107 |
for (unsigned j = 0; j < reads.size(); ++j) |
1165 |
|
{ |
1166 |
2492 |
rep = nm->mkNode(kind::STORE, rep, reads[j][1], reads[j]); |
1167 |
|
} |
1168 |
615 |
if (!m->assertEquality(n, rep, true)) |
1169 |
|
{ |
1170 |
|
return false; |
1171 |
|
} |
1172 |
615 |
if (!n.isConst()) |
1173 |
|
{ |
1174 |
550 |
m->assertSkeleton(rep); |
1175 |
|
} |
1176 |
|
} |
1177 |
5311 |
return true; |
1178 |
|
} |
1179 |
|
|
1180 |
|
///////////////////////////////////////////////////////////////////////////// |
1181 |
|
// NOTIFICATIONS |
1182 |
|
///////////////////////////////////////////////////////////////////////////// |
1183 |
|
|
1184 |
|
|
1185 |
15204 |
void TheoryArrays::presolve() |
1186 |
|
{ |
1187 |
15204 |
Trace("arrays")<<"Presolving \n"; |
1188 |
15204 |
if (!d_dstratInit) |
1189 |
|
{ |
1190 |
9404 |
d_dstratInit = true; |
1191 |
|
// add the decision strategy, which is user-context-independent |
1192 |
18808 |
d_im.getDecisionManager()->registerStrategy( |
1193 |
|
DecisionManager::STRAT_ARRAYS, |
1194 |
9404 |
d_dstrat.get(), |
1195 |
|
DecisionManager::STRAT_SCOPE_CTX_INDEPENDENT); |
1196 |
|
} |
1197 |
15204 |
} |
1198 |
|
|
1199 |
|
|
1200 |
|
///////////////////////////////////////////////////////////////////////////// |
1201 |
|
// MAIN SOLVER |
1202 |
|
///////////////////////////////////////////////////////////////////////////// |
1203 |
|
|
1204 |
3045 |
Node TheoryArrays::getSkolem(TNode ref) |
1205 |
|
{ |
1206 |
|
// the call to SkolemCache::getExtIndexSkolem should be deterministic, but use |
1207 |
|
// cache anyways for now |
1208 |
3045 |
Node skolem; |
1209 |
3045 |
std::unordered_map<Node, Node>::iterator it = d_skolemCache.find(ref); |
1210 |
3045 |
if (it == d_skolemCache.end()) { |
1211 |
574 |
Assert(ref.getKind() == kind::NOT && ref[0].getKind() == kind::EQUAL); |
1212 |
|
// make the skolem using the skolem cache utility |
1213 |
574 |
skolem = SkolemCache::getExtIndexSkolem(ref); |
1214 |
574 |
d_skolemCache[ref] = skolem; |
1215 |
|
} |
1216 |
|
else { |
1217 |
2471 |
skolem = (*it).second; |
1218 |
|
} |
1219 |
|
|
1220 |
3045 |
Debug("pf::array") << "Pregistering a Skolem" << std::endl; |
1221 |
3045 |
preRegisterTermInternal(skolem); |
1222 |
3045 |
Debug("pf::array") << "Pregistering a Skolem DONE" << std::endl; |
1223 |
|
|
1224 |
3045 |
Debug("pf::array") << "getSkolem DONE" << std::endl; |
1225 |
3045 |
return skolem; |
1226 |
|
} |
1227 |
|
|
1228 |
93764 |
void TheoryArrays::postCheck(Effort level) |
1229 |
|
{ |
1230 |
281292 |
if ((options::arraysEagerLemmas() || fullEffort(level)) |
1231 |
121182 |
&& !d_state.isInConflict() && options::arraysWeakEquivalence()) |
1232 |
|
{ |
1233 |
|
// Replay all array merges to update weak equivalence data structures |
1234 |
|
context::CDList<Node>::iterator it = d_arrayMerges.begin(), iend = d_arrayMerges.end(); |
1235 |
|
TNode a, b, eq; |
1236 |
|
for (; it != iend; ++it) { |
1237 |
|
eq = *it; |
1238 |
|
a = eq[0]; |
1239 |
|
b = eq[1]; |
1240 |
|
weakEquivMakeRep(b); |
1241 |
|
if (weakEquivGetRep(a) == b) { |
1242 |
|
weakEquivAddSecondary(TNode(), a, b, eq); |
1243 |
|
} |
1244 |
|
else { |
1245 |
|
d_infoMap.setWeakEquivPointer(b, a); |
1246 |
|
d_infoMap.setWeakEquivIndex(b, TNode()); |
1247 |
|
} |
1248 |
|
#ifdef CVC5_ASSERTIONS |
1249 |
|
checkWeakEquiv(false); |
1250 |
|
#endif |
1251 |
|
} |
1252 |
|
#ifdef CVC5_ASSERTIONS |
1253 |
|
checkWeakEquiv(true); |
1254 |
|
#endif |
1255 |
|
|
1256 |
|
d_readTableContext->push(); |
1257 |
|
TNode mayRep, iRep; |
1258 |
|
CTNodeList* bucketList = NULL; |
1259 |
|
CTNodeList::const_iterator i = d_reads.begin(), readsEnd = d_reads.end(); |
1260 |
|
for (; i != readsEnd; ++i) { |
1261 |
|
const TNode& r = *i; |
1262 |
|
|
1263 |
|
Debug("arrays::weak") << "TheoryArrays::check(): checking read " << r << std::endl; |
1264 |
|
|
1265 |
|
// Find the bucket for this read. |
1266 |
|
mayRep = d_mayEqualEqualityEngine.getRepresentative(r[0]); |
1267 |
|
iRep = d_equalityEngine->getRepresentative(r[1]); |
1268 |
|
std::pair<TNode, TNode> key(mayRep, iRep); |
1269 |
|
ReadBucketMap::iterator rbm_it = d_readBucketTable.find(key); |
1270 |
|
if (rbm_it == d_readBucketTable.end()) |
1271 |
|
{ |
1272 |
|
bucketList = new(true) CTNodeList(d_readTableContext); |
1273 |
|
d_readBucketAllocations.push_back(bucketList); |
1274 |
|
d_readBucketTable[key] = bucketList; |
1275 |
|
} |
1276 |
|
else { |
1277 |
|
bucketList = rbm_it->second; |
1278 |
|
} |
1279 |
|
CTNodeList::const_iterator ctnl_it = bucketList->begin(), |
1280 |
|
ctnl_iend = bucketList->end(); |
1281 |
|
for (; ctnl_it != ctnl_iend; ++ctnl_it) |
1282 |
|
{ |
1283 |
|
const TNode& r2 = *ctnl_it; |
1284 |
|
Assert(r2.getKind() == kind::SELECT); |
1285 |
|
Assert(mayRep == d_mayEqualEqualityEngine.getRepresentative(r2[0])); |
1286 |
|
Assert(iRep == d_equalityEngine->getRepresentative(r2[1])); |
1287 |
|
if (d_equalityEngine->areEqual(r, r2)) |
1288 |
|
{ |
1289 |
|
continue; |
1290 |
|
} |
1291 |
|
if (weakEquivGetRepIndex(r[0], r[1]) == weakEquivGetRepIndex(r2[0], r[1])) { |
1292 |
|
// add lemma: r[1] = r2[1] /\ cond(r[0],r2[0]) => r = r2 |
1293 |
|
vector<TNode> conjunctions; |
1294 |
|
Assert(d_equalityEngine->areEqual(r, Rewriter::rewrite(r))); |
1295 |
|
Assert(d_equalityEngine->areEqual(r2, Rewriter::rewrite(r2))); |
1296 |
|
Node lemma = Rewriter::rewrite(r).eqNode(Rewriter::rewrite(r2)).negate(); |
1297 |
|
d_permRef.push_back(lemma); |
1298 |
|
conjunctions.push_back(lemma); |
1299 |
|
if (r[1] != r2[1]) { |
1300 |
|
d_equalityEngine->explainEquality(r[1], r2[1], true, conjunctions); |
1301 |
|
} |
1302 |
|
// TODO: get smaller lemmas by eliminating shared parts of path |
1303 |
|
weakEquivBuildCond(r[0], r[1], conjunctions); |
1304 |
|
weakEquivBuildCond(r2[0], r[1], conjunctions); |
1305 |
|
lemma = mkAnd(conjunctions, true); |
1306 |
|
// LSH FIXME: which kind of arrays lemma is this |
1307 |
|
Trace("arrays-lem") |
1308 |
|
<< "Arrays::addExtLemma (weak-eq) " << lemma << "\n"; |
1309 |
|
d_out->lemma(lemma, LemmaProperty::SEND_ATOMS); |
1310 |
|
d_readTableContext->pop(); |
1311 |
|
Trace("arrays") << spaces(getSatContext()->getLevel()) << "Arrays::check(): done" << endl; |
1312 |
|
return; |
1313 |
|
} |
1314 |
|
} |
1315 |
|
bucketList->push_back(r); |
1316 |
|
} |
1317 |
|
d_readTableContext->pop(); |
1318 |
|
} |
1319 |
|
|
1320 |
281292 |
if (!options::arraysEagerLemmas() && fullEffort(level) |
1321 |
121182 |
&& !d_state.isInConflict() && !options::arraysWeakEquivalence()) |
1322 |
|
{ |
1323 |
|
// generate the lemmas on the worklist |
1324 |
27400 |
Trace("arrays-lem")<< "Arrays::discharging lemmas. Number of queued lemmas: " << d_RowQueue.size() << "\n"; |
1325 |
28000 |
while (d_RowQueue.size() > 0 && !d_state.isInConflict()) |
1326 |
|
{ |
1327 |
1049 |
if (dischargeLemmas()) { |
1328 |
749 |
break; |
1329 |
|
} |
1330 |
|
} |
1331 |
|
} |
1332 |
|
|
1333 |
93764 |
Trace("arrays") << spaces(getSatContext()->getLevel()) << "Arrays::check(): done" << endl; |
1334 |
|
} |
1335 |
|
|
1336 |
217542 |
bool TheoryArrays::preNotifyFact( |
1337 |
|
TNode atom, bool pol, TNode fact, bool isPrereg, bool isInternal) |
1338 |
|
{ |
1339 |
217542 |
if (!isInternal && !isPrereg) |
1340 |
|
{ |
1341 |
168722 |
if (atom.getKind() == kind::EQUAL) |
1342 |
|
{ |
1343 |
168660 |
if (!d_equalityEngine->hasTerm(atom[0])) |
1344 |
|
{ |
1345 |
1683 |
Assert(atom[0].isConst()); |
1346 |
1683 |
d_equalityEngine->addTerm(atom[0]); |
1347 |
|
} |
1348 |
168660 |
if (!d_equalityEngine->hasTerm(atom[1])) |
1349 |
|
{ |
1350 |
543 |
Assert(atom[1].isConst()); |
1351 |
543 |
d_equalityEngine->addTerm(atom[1]); |
1352 |
|
} |
1353 |
|
} |
1354 |
|
} |
1355 |
217542 |
return false; |
1356 |
|
} |
1357 |
|
|
1358 |
217539 |
void TheoryArrays::notifyFact(TNode atom, bool pol, TNode fact, bool isInternal) |
1359 |
|
{ |
1360 |
|
// if a disequality |
1361 |
217539 |
if (atom.getKind() == kind::EQUAL && !pol && !isInternal) |
1362 |
|
{ |
1363 |
|
// Notice that this should be an external assertion, since we do not |
1364 |
|
// internally infer disequalities. |
1365 |
|
// Apply ArrDiseq Rule if diseq is between arrays |
1366 |
43219 |
if (fact[0][0].getType().isArray() && !d_state.isInConflict()) |
1367 |
|
{ |
1368 |
3045 |
NodeManager* nm = NodeManager::currentNM(); |
1369 |
|
|
1370 |
6090 |
TNode k; |
1371 |
|
// k is the skolem for this disequality. |
1372 |
6090 |
Debug("pf::array") << "Check: kind::NOT: array theory making a skolem" |
1373 |
3045 |
<< std::endl; |
1374 |
|
|
1375 |
|
// If not in replay mode, generate a fresh skolem variable |
1376 |
3045 |
k = getSkolem(fact); |
1377 |
|
|
1378 |
6090 |
Node ak = nm->mkNode(kind::SELECT, fact[0][0], k); |
1379 |
6090 |
Node bk = nm->mkNode(kind::SELECT, fact[0][1], k); |
1380 |
6090 |
Node eq = ak.eqNode(bk); |
1381 |
6090 |
Node lemma = fact[0].orNode(eq.notNode()); |
1382 |
|
|
1383 |
9135 |
if (options::arraysPropagate() > 0 && d_equalityEngine->hasTerm(ak) |
1384 |
8457 |
&& d_equalityEngine->hasTerm(bk)) |
1385 |
|
{ |
1386 |
|
// Propagate witness disequality - might produce a conflict |
1387 |
4734 |
Debug("pf::array") << "Asserting to the equality engine:" << std::endl |
1388 |
2367 |
<< "\teq = " << eq << std::endl |
1389 |
2367 |
<< "\treason = " << fact << std::endl; |
1390 |
2367 |
d_im.assertInference(eq, false, InferenceId::ARRAYS_EXT, fact, PfRule::ARRAYS_EXT); |
1391 |
2367 |
++d_numProp; |
1392 |
|
} |
1393 |
|
|
1394 |
|
// If this is the solution pass, generate the lemma. Otherwise, don't |
1395 |
|
// generate it - as this is the lemma that we're reproving... |
1396 |
3045 |
Trace("arrays-lem") << "Arrays::addExtLemma " << lemma << "\n"; |
1397 |
3045 |
d_im.arrayLemma(eq.notNode(), InferenceId::ARRAYS_EXT, fact, PfRule::ARRAYS_EXT); |
1398 |
3045 |
++d_numExt; |
1399 |
|
} |
1400 |
|
else |
1401 |
|
{ |
1402 |
80348 |
Debug("pf::array") << "Check: kind::NOT: array theory NOT making a skolem" |
1403 |
40174 |
<< std::endl; |
1404 |
40174 |
d_modelConstraints.push_back(fact); |
1405 |
|
} |
1406 |
|
} |
1407 |
217539 |
} |
1408 |
|
|
1409 |
|
Node TheoryArrays::mkAnd(std::vector<TNode>& conjunctions, bool invert, unsigned startIndex) |
1410 |
|
{ |
1411 |
|
if (conjunctions.empty()) |
1412 |
|
{ |
1413 |
|
return invert ? d_false : d_true; |
1414 |
|
} |
1415 |
|
|
1416 |
|
std::set<TNode> all; |
1417 |
|
|
1418 |
|
unsigned i = startIndex; |
1419 |
|
TNode t; |
1420 |
|
for (; i < conjunctions.size(); ++i) { |
1421 |
|
t = conjunctions[i]; |
1422 |
|
if (t == d_true) { |
1423 |
|
continue; |
1424 |
|
} |
1425 |
|
else if (t.getKind() == kind::AND) { |
1426 |
|
for(TNode::iterator child_it = t.begin(); child_it != t.end(); ++child_it) { |
1427 |
|
if (*child_it == d_true) { |
1428 |
|
continue; |
1429 |
|
} |
1430 |
|
all.insert(*child_it); |
1431 |
|
} |
1432 |
|
} |
1433 |
|
else { |
1434 |
|
all.insert(t); |
1435 |
|
} |
1436 |
|
} |
1437 |
|
|
1438 |
|
if (all.size() == 0) { |
1439 |
|
return invert ? d_false : d_true; |
1440 |
|
} |
1441 |
|
if (all.size() == 1) { |
1442 |
|
// All the same, or just one |
1443 |
|
if (invert) { |
1444 |
|
return (*(all.begin())).negate(); |
1445 |
|
} |
1446 |
|
else { |
1447 |
|
return *(all.begin()); |
1448 |
|
} |
1449 |
|
} |
1450 |
|
|
1451 |
|
NodeBuilder conjunction(invert ? kind::OR : kind::AND); |
1452 |
|
std::set<TNode>::const_iterator it = all.begin(); |
1453 |
|
std::set<TNode>::const_iterator it_end = all.end(); |
1454 |
|
while (it != it_end) { |
1455 |
|
if (invert) { |
1456 |
|
conjunction << (*it).negate(); |
1457 |
|
} |
1458 |
|
else { |
1459 |
|
conjunction << *it; |
1460 |
|
} |
1461 |
|
++ it; |
1462 |
|
} |
1463 |
|
|
1464 |
|
return conjunction; |
1465 |
|
} |
1466 |
|
|
1467 |
|
|
1468 |
1927 |
void TheoryArrays::setNonLinear(TNode a) |
1469 |
|
{ |
1470 |
2122 |
if (options::arraysWeakEquivalence()) return; |
1471 |
1927 |
if (d_infoMap.isNonLinear(a)) return; |
1472 |
|
|
1473 |
1732 |
Trace("arrays") << spaces(getSatContext()->getLevel()) << "Arrays::setNonLinear (" << a << ")\n"; |
1474 |
1732 |
d_infoMap.setNonLinear(a); |
1475 |
1732 |
++d_numNonLinear; |
1476 |
|
|
1477 |
1732 |
const CTNodeList* i_a = d_infoMap.getIndices(a); |
1478 |
1732 |
const CTNodeList* st_a = d_infoMap.getStores(a); |
1479 |
1732 |
const CTNodeList* inst_a = d_infoMap.getInStores(a); |
1480 |
|
|
1481 |
1732 |
size_t it = 0; |
1482 |
|
|
1483 |
|
// Propagate non-linearity down chain of stores |
1484 |
4140 |
for( ; it < st_a->size(); ++it) { |
1485 |
2408 |
TNode store = (*st_a)[it]; |
1486 |
1204 |
Assert(store.getKind() == kind::STORE); |
1487 |
1204 |
setNonLinear(store[0]); |
1488 |
|
} |
1489 |
|
|
1490 |
|
// Instantiate ROW lemmas that were ignored before |
1491 |
1732 |
size_t it2 = 0; |
1492 |
3464 |
RowLemmaType lem; |
1493 |
20668 |
for(; it2 < i_a->size(); ++it2) { |
1494 |
18936 |
TNode i = (*i_a)[it2]; |
1495 |
9468 |
it = 0; |
1496 |
28480 |
for ( ; it < inst_a->size(); ++it) { |
1497 |
19012 |
TNode store = (*inst_a)[it]; |
1498 |
9506 |
Assert(store.getKind() == kind::STORE); |
1499 |
19012 |
TNode j = store[1]; |
1500 |
19012 |
TNode c = store[0]; |
1501 |
9506 |
lem = std::make_tuple(store, c, j, i); |
1502 |
9506 |
Trace("arrays-lem") << spaces(getSatContext()->getLevel()) <<"Arrays::setNonLinear ("<<store<<", "<<c<<", "<<j<<", "<<i<<")\n"; |
1503 |
9506 |
queueRowLemma(lem); |
1504 |
|
} |
1505 |
|
} |
1506 |
|
|
1507 |
|
} |
1508 |
|
|
1509 |
5807 |
void TheoryArrays::mergeArrays(TNode a, TNode b) |
1510 |
|
{ |
1511 |
|
// Note: a is the new representative |
1512 |
5807 |
Assert(a.getType().isArray() && b.getType().isArray()); |
1513 |
|
|
1514 |
5807 |
if (d_mergeInProgress) { |
1515 |
|
// Nested call to mergeArrays, just push on the queue and return |
1516 |
|
d_mergeQueue.push(a.eqNode(b)); |
1517 |
|
return; |
1518 |
|
} |
1519 |
|
|
1520 |
5807 |
d_mergeInProgress = true; |
1521 |
|
|
1522 |
11614 |
Node n; |
1523 |
|
while (true) { |
1524 |
|
// Normally, a is its own representative, but it's possible for a to have |
1525 |
|
// been merged with another array after it got queued up by the equality engine, |
1526 |
|
// so we take its representative to be safe. |
1527 |
5807 |
a = d_equalityEngine->getRepresentative(a); |
1528 |
5807 |
Assert(d_equalityEngine->getRepresentative(b) == a); |
1529 |
5807 |
Trace("arrays-merge") << spaces(getSatContext()->getLevel()) << "Arrays::merge: (" << a << ", " << b << ")\n"; |
1530 |
|
|
1531 |
5807 |
if (options::arraysOptimizeLinear() && !options::arraysWeakEquivalence()) { |
1532 |
4095 |
bool aNL = d_infoMap.isNonLinear(a); |
1533 |
4095 |
bool bNL = d_infoMap.isNonLinear(b); |
1534 |
4095 |
if (aNL) { |
1535 |
260 |
if (bNL) { |
1536 |
|
// already both marked as non-linear - no need to do anything |
1537 |
|
} |
1538 |
|
else { |
1539 |
|
// Set b to be non-linear |
1540 |
233 |
setNonLinear(b); |
1541 |
|
} |
1542 |
|
} |
1543 |
|
else { |
1544 |
3835 |
if (bNL) { |
1545 |
|
// Set a to be non-linear |
1546 |
48 |
setNonLinear(a); |
1547 |
|
} |
1548 |
|
else { |
1549 |
|
// Check for new non-linear arrays |
1550 |
3787 |
const CTNodeList* astores = d_infoMap.getStores(a); |
1551 |
3787 |
const CTNodeList* bstores = d_infoMap.getStores(b); |
1552 |
3787 |
Assert(astores->size() <= 1 && bstores->size() <= 1); |
1553 |
3787 |
if (astores->size() > 0 && bstores->size() > 0) { |
1554 |
221 |
setNonLinear(a); |
1555 |
221 |
setNonLinear(b); |
1556 |
|
} |
1557 |
|
} |
1558 |
|
} |
1559 |
|
} |
1560 |
|
|
1561 |
5810 |
TNode constArrA = d_infoMap.getConstArr(a); |
1562 |
5810 |
TNode constArrB = d_infoMap.getConstArr(b); |
1563 |
5807 |
if (constArrA.isNull()) { |
1564 |
5644 |
if (!constArrB.isNull()) { |
1565 |
|
d_infoMap.setConstArr(a,constArrB); |
1566 |
|
} |
1567 |
|
} |
1568 |
163 |
else if (!constArrB.isNull()) { |
1569 |
|
if (constArrA != constArrB) { |
1570 |
|
conflict(constArrA,constArrB); |
1571 |
|
} |
1572 |
|
} |
1573 |
|
|
1574 |
5810 |
TNode mayRepA = d_mayEqualEqualityEngine.getRepresentative(a); |
1575 |
5810 |
TNode mayRepB = d_mayEqualEqualityEngine.getRepresentative(b); |
1576 |
|
|
1577 |
|
// If a and b have different default values associated with their mayequal equivalence classes, |
1578 |
|
// things get complicated. Similarly, if two mayequal equivalence classes have different |
1579 |
|
// constant representatives, it's not clear what to do. - disallow these cases for now. -Clark |
1580 |
5807 |
DefValMap::iterator it = d_defValues.find(mayRepA); |
1581 |
5807 |
DefValMap::iterator it2 = d_defValues.find(mayRepB); |
1582 |
5810 |
TNode defValue; |
1583 |
|
|
1584 |
5807 |
if (it != d_defValues.end()) { |
1585 |
260 |
defValue = (*it).second; |
1586 |
521 |
if ((it2 != d_defValues.end() && (defValue != (*it2).second)) || |
1587 |
516 |
(mayRepA.isConst() && mayRepB.isConst() && mayRepA != mayRepB)) { |
1588 |
3 |
throw LogicException("Array theory solver does not yet support write-chains connecting two different constant arrays"); |
1589 |
|
} |
1590 |
|
} |
1591 |
5547 |
else if (it2 != d_defValues.end()) { |
1592 |
|
defValue = (*it2).second; |
1593 |
|
} |
1594 |
5804 |
d_mayEqualEqualityEngine.assertEquality(a.eqNode(b), true, d_true); |
1595 |
5804 |
Assert(d_mayEqualEqualityEngine.consistent()); |
1596 |
5804 |
if (!defValue.isNull()) { |
1597 |
257 |
mayRepA = d_mayEqualEqualityEngine.getRepresentative(a); |
1598 |
257 |
d_defValues[mayRepA] = defValue; |
1599 |
|
} |
1600 |
|
|
1601 |
5804 |
checkRowLemmas(a,b); |
1602 |
5804 |
checkRowLemmas(b,a); |
1603 |
|
|
1604 |
|
// merge info adds the list of the 2nd argument to the first |
1605 |
5804 |
d_infoMap.mergeInfo(a, b); |
1606 |
|
|
1607 |
5804 |
if (options::arraysWeakEquivalence()) { |
1608 |
|
d_arrayMerges.push_back(a.eqNode(b)); |
1609 |
|
} |
1610 |
|
|
1611 |
|
// If no more to do, break |
1612 |
5804 |
if (d_state.isInConflict() || d_mergeQueue.empty()) |
1613 |
|
{ |
1614 |
5804 |
break; |
1615 |
|
} |
1616 |
|
|
1617 |
|
// Otherwise, prepare for next iteration |
1618 |
|
n = d_mergeQueue.front(); |
1619 |
|
a = n[0]; |
1620 |
|
b = n[1]; |
1621 |
|
d_mergeQueue.pop(); |
1622 |
|
} |
1623 |
5804 |
d_mergeInProgress = false; |
1624 |
|
} |
1625 |
|
|
1626 |
|
|
1627 |
1112 |
void TheoryArrays::checkStore(TNode a) { |
1628 |
1112 |
if (options::arraysWeakEquivalence()) return; |
1629 |
1112 |
Trace("arrays-cri")<<"Arrays::checkStore "<<a<<"\n"; |
1630 |
|
|
1631 |
1112 |
if(Trace.isOn("arrays-cri")) { |
1632 |
|
d_infoMap.getInfo(a)->print(); |
1633 |
|
} |
1634 |
1112 |
Assert(a.getType().isArray()); |
1635 |
1112 |
Assert(a.getKind() == kind::STORE); |
1636 |
2224 |
TNode b = a[0]; |
1637 |
2224 |
TNode i = a[1]; |
1638 |
|
|
1639 |
2224 |
TNode brep = d_equalityEngine->getRepresentative(b); |
1640 |
|
|
1641 |
1112 |
if (!options::arraysOptimizeLinear() || d_infoMap.isNonLinear(brep)) { |
1642 |
258 |
const CTNodeList* js = d_infoMap.getIndices(brep); |
1643 |
258 |
size_t it = 0; |
1644 |
516 |
RowLemmaType lem; |
1645 |
828 |
for(; it < js->size(); ++it) { |
1646 |
546 |
TNode j = (*js)[it]; |
1647 |
285 |
if (i == j) continue; |
1648 |
261 |
lem = std::make_tuple(a, b, i, j); |
1649 |
261 |
Trace("arrays-lem") << spaces(getSatContext()->getLevel()) <<"Arrays::checkStore ("<<a<<", "<<b<<", "<<i<<", "<<j<<")\n"; |
1650 |
261 |
queueRowLemma(lem); |
1651 |
|
} |
1652 |
|
} |
1653 |
|
} |
1654 |
|
|
1655 |
|
|
1656 |
24028 |
void TheoryArrays::checkRowForIndex(TNode i, TNode a) |
1657 |
|
{ |
1658 |
24028 |
if (options::arraysWeakEquivalence()) return; |
1659 |
24028 |
Trace("arrays-cri")<<"Arrays::checkRowForIndex "<<a<<"\n"; |
1660 |
24028 |
Trace("arrays-cri")<<" index "<<i<<"\n"; |
1661 |
|
|
1662 |
24028 |
if(Trace.isOn("arrays-cri")) { |
1663 |
|
d_infoMap.getInfo(a)->print(); |
1664 |
|
} |
1665 |
24028 |
Assert(a.getType().isArray()); |
1666 |
24028 |
Assert(d_equalityEngine->getRepresentative(a) == a); |
1667 |
|
|
1668 |
48056 |
TNode constArr = d_infoMap.getConstArr(a); |
1669 |
24028 |
if (!constArr.isNull()) { |
1670 |
510 |
ArrayStoreAll storeAll = constArr.getConst<ArrayStoreAll>(); |
1671 |
510 |
Node defValue = storeAll.getValue(); |
1672 |
510 |
Node selConst = NodeManager::currentNM()->mkNode(kind::SELECT, constArr, i); |
1673 |
255 |
if (!d_equalityEngine->hasTerm(selConst)) |
1674 |
|
{ |
1675 |
9 |
preRegisterTermInternal(selConst); |
1676 |
|
} |
1677 |
255 |
d_im.assertInference(selConst.eqNode(defValue), |
1678 |
|
true, |
1679 |
|
InferenceId::ARRAYS_CONST_ARRAY_DEFAULT, |
1680 |
|
d_true, |
1681 |
|
PfRule::ARRAYS_TRUST); |
1682 |
|
} |
1683 |
|
|
1684 |
24028 |
const CTNodeList* stores = d_infoMap.getStores(a); |
1685 |
24028 |
const CTNodeList* instores = d_infoMap.getInStores(a); |
1686 |
24028 |
size_t it = 0; |
1687 |
48056 |
RowLemmaType lem; |
1688 |
|
|
1689 |
54536 |
for(; it < stores->size(); ++it) { |
1690 |
30395 |
TNode store = (*stores)[it]; |
1691 |
15254 |
Assert(store.getKind() == kind::STORE); |
1692 |
30395 |
TNode j = store[1]; |
1693 |
15254 |
if (i == j) continue; |
1694 |
15141 |
lem = std::make_tuple(store, store[0], j, i); |
1695 |
15141 |
Trace("arrays-lem") << spaces(getSatContext()->getLevel()) <<"Arrays::checkRowForIndex ("<<store<<", "<<store[0]<<", "<<j<<", "<<i<<")\n"; |
1696 |
15141 |
queueRowLemma(lem); |
1697 |
|
} |
1698 |
|
|
1699 |
24028 |
if (!options::arraysOptimizeLinear() || d_infoMap.isNonLinear(a)) { |
1700 |
7654 |
it = 0; |
1701 |
20372 |
for(; it < instores->size(); ++it) { |
1702 |
12471 |
TNode instore = (*instores)[it]; |
1703 |
6359 |
Assert(instore.getKind() == kind::STORE); |
1704 |
12471 |
TNode j = instore[1]; |
1705 |
6359 |
if (i == j) continue; |
1706 |
6112 |
lem = std::make_tuple(instore, instore[0], j, i); |
1707 |
6112 |
Trace("arrays-lem") << spaces(getSatContext()->getLevel()) <<"Arrays::checkRowForIndex ("<<instore<<", "<<instore[0]<<", "<<j<<", "<<i<<")\n"; |
1708 |
6112 |
queueRowLemma(lem); |
1709 |
|
} |
1710 |
|
} |
1711 |
|
} |
1712 |
|
|
1713 |
|
|
1714 |
|
// a just became equal to b |
1715 |
|
// look for new ROW lemmas |
1716 |
11608 |
void TheoryArrays::checkRowLemmas(TNode a, TNode b) |
1717 |
|
{ |
1718 |
11608 |
if (options::arraysWeakEquivalence()) return; |
1719 |
11608 |
Trace("arrays-crl")<<"Arrays::checkLemmas begin \n"<<a<<"\n"; |
1720 |
11608 |
if(Trace.isOn("arrays-crl")) |
1721 |
|
d_infoMap.getInfo(a)->print(); |
1722 |
11608 |
Trace("arrays-crl")<<" ------------ and "<<b<<"\n"; |
1723 |
11608 |
if(Trace.isOn("arrays-crl")) |
1724 |
|
d_infoMap.getInfo(b)->print(); |
1725 |
|
|
1726 |
11608 |
const CTNodeList* i_a = d_infoMap.getIndices(a); |
1727 |
11608 |
size_t it = 0; |
1728 |
23216 |
TNode constArr = d_infoMap.getConstArr(b); |
1729 |
11608 |
if (!constArr.isNull()) { |
1730 |
627 |
for( ; it < i_a->size(); ++it) { |
1731 |
464 |
TNode i = (*i_a)[it]; |
1732 |
464 |
Node selConst = NodeManager::currentNM()->mkNode(kind::SELECT, constArr, i); |
1733 |
232 |
if (!d_equalityEngine->hasTerm(selConst)) |
1734 |
|
{ |
1735 |
232 |
preRegisterTermInternal(selConst); |
1736 |
|
} |
1737 |
|
} |
1738 |
|
} |
1739 |
|
|
1740 |
11608 |
const CTNodeList* st_b = d_infoMap.getStores(b); |
1741 |
11608 |
const CTNodeList* inst_b = d_infoMap.getInStores(b); |
1742 |
|
size_t its; |
1743 |
|
|
1744 |
23216 |
RowLemmaType lem; |
1745 |
|
|
1746 |
63204 |
for(it = 0 ; it < i_a->size(); ++it) { |
1747 |
103192 |
TNode i = (*i_a)[it]; |
1748 |
51596 |
its = 0; |
1749 |
99968 |
for ( ; its < st_b->size(); ++its) { |
1750 |
48372 |
TNode store = (*st_b)[its]; |
1751 |
24186 |
Assert(store.getKind() == kind::STORE); |
1752 |
48372 |
TNode j = store[1]; |
1753 |
48372 |
TNode c = store[0]; |
1754 |
24186 |
lem = std::make_tuple(store, c, j, i); |
1755 |
24186 |
Trace("arrays-lem") << spaces(getSatContext()->getLevel()) <<"Arrays::checkRowLemmas ("<<store<<", "<<c<<", "<<j<<", "<<i<<")\n"; |
1756 |
24186 |
queueRowLemma(lem); |
1757 |
|
} |
1758 |
|
} |
1759 |
|
|
1760 |
11608 |
if (!options::arraysOptimizeLinear() || d_infoMap.isNonLinear(b)) { |
1761 |
29048 |
for(it = 0 ; it < i_a->size(); ++it ) { |
1762 |
49144 |
TNode i = (*i_a)[it]; |
1763 |
24572 |
its = 0; |
1764 |
49174 |
for ( ; its < inst_b->size(); ++its) { |
1765 |
24602 |
TNode store = (*inst_b)[its]; |
1766 |
12301 |
Assert(store.getKind() == kind::STORE); |
1767 |
24602 |
TNode j = store[1]; |
1768 |
24602 |
TNode c = store[0]; |
1769 |
12301 |
lem = std::make_tuple(store, c, j, i); |
1770 |
12301 |
Trace("arrays-lem") << spaces(getSatContext()->getLevel()) <<"Arrays::checkRowLemmas ("<<store<<", "<<c<<", "<<j<<", "<<i<<")\n"; |
1771 |
12301 |
queueRowLemma(lem); |
1772 |
|
} |
1773 |
|
} |
1774 |
|
} |
1775 |
11608 |
Trace("arrays-crl")<<"Arrays::checkLemmas done.\n"; |
1776 |
|
} |
1777 |
|
|
1778 |
22784 |
void TheoryArrays::propagateRowLemma(RowLemmaType lem) |
1779 |
|
{ |
1780 |
45568 |
Debug("pf::array") << "TheoryArrays: RowLemma Propagate called. options::arraysPropagate() = " |
1781 |
22784 |
<< options::arraysPropagate() << std::endl; |
1782 |
|
|
1783 |
35744 |
TNode a, b, i, j; |
1784 |
22784 |
std::tie(a, b, i, j) = lem; |
1785 |
|
|
1786 |
22784 |
Assert(a.getType().isArray() && b.getType().isArray()); |
1787 |
22784 |
if (d_equalityEngine->areEqual(a, b) || d_equalityEngine->areEqual(i, j)) |
1788 |
|
{ |
1789 |
|
return; |
1790 |
|
} |
1791 |
|
|
1792 |
22784 |
NodeManager* nm = NodeManager::currentNM(); |
1793 |
35744 |
Node aj = nm->mkNode(kind::SELECT, a, j); |
1794 |
35744 |
Node bj = nm->mkNode(kind::SELECT, b, j); |
1795 |
|
|
1796 |
|
// Try to avoid introducing new read terms: track whether these already exist |
1797 |
22784 |
bool ajExists = d_equalityEngine->hasTerm(aj); |
1798 |
22784 |
bool bjExists = d_equalityEngine->hasTerm(bj); |
1799 |
22784 |
bool bothExist = ajExists && bjExists; |
1800 |
|
|
1801 |
|
// If propagating, check propagations |
1802 |
22784 |
int prop = options::arraysPropagate(); |
1803 |
22784 |
if (prop > 0) { |
1804 |
22784 |
if (d_equalityEngine->areDisequal(i, j, true) && (bothExist || prop > 1)) |
1805 |
|
{ |
1806 |
9820 |
Trace("arrays-lem") << spaces(getSatContext()->getLevel()) <<"Arrays::queueRowLemma: propagating aj = bj ("<<aj<<", "<<bj<<")\n"; |
1807 |
19640 |
Node aj_eq_bj = aj.eqNode(bj); |
1808 |
|
Node reason = |
1809 |
19640 |
(i.isConst() && j.isConst()) ? d_true : i.eqNode(j).notNode(); |
1810 |
9820 |
d_permRef.push_back(reason); |
1811 |
9820 |
if (!ajExists) { |
1812 |
2991 |
preRegisterTermInternal(aj); |
1813 |
|
} |
1814 |
9820 |
if (!bjExists) { |
1815 |
5682 |
preRegisterTermInternal(bj); |
1816 |
|
} |
1817 |
9820 |
d_im.assertInference( |
1818 |
|
aj_eq_bj, true, InferenceId::ARRAYS_READ_OVER_WRITE, reason, PfRule::ARRAYS_READ_OVER_WRITE); |
1819 |
9820 |
++d_numProp; |
1820 |
9820 |
return; |
1821 |
|
} |
1822 |
12964 |
if (bothExist && d_equalityEngine->areDisequal(aj, bj, true)) |
1823 |
|
{ |
1824 |
4 |
Trace("arrays-lem") << spaces(getSatContext()->getLevel()) <<"Arrays::queueRowLemma: propagating i = j ("<<i<<", "<<j<<")\n"; |
1825 |
|
Node reason = |
1826 |
8 |
(aj.isConst() && bj.isConst()) ? d_true : aj.eqNode(bj).notNode(); |
1827 |
8 |
Node j_eq_i = j.eqNode(i); |
1828 |
4 |
d_im.assertInference( |
1829 |
|
j_eq_i, true, InferenceId::ARRAYS_READ_OVER_WRITE_CONTRA, reason, PfRule::ARRAYS_READ_OVER_WRITE_CONTRA); |
1830 |
4 |
++d_numProp; |
1831 |
4 |
return; |
1832 |
|
} |
1833 |
|
} |
1834 |
|
} |
1835 |
|
|
1836 |
67507 |
void TheoryArrays::queueRowLemma(RowLemmaType lem) |
1837 |
|
{ |
1838 |
67507 |
Debug("pf::array") << "Array solver: queue row lemma called" << std::endl; |
1839 |
|
|
1840 |
67507 |
if (d_state.isInConflict() || d_RowAlreadyAdded.contains(lem)) |
1841 |
|
{ |
1842 |
79767 |
return; |
1843 |
|
} |
1844 |
55247 |
TNode a, b, i, j; |
1845 |
35455 |
std::tie(a, b, i, j) = lem; |
1846 |
|
|
1847 |
35455 |
Assert(a.getType().isArray() && b.getType().isArray()); |
1848 |
35455 |
if (d_equalityEngine->areEqual(a, b) || d_equalityEngine->areEqual(i, j)) |
1849 |
|
{ |
1850 |
14540 |
return; |
1851 |
|
} |
1852 |
|
|
1853 |
20915 |
NodeManager* nm = NodeManager::currentNM(); |
1854 |
40707 |
Node aj = nm->mkNode(kind::SELECT, a, j); |
1855 |
40707 |
Node bj = nm->mkNode(kind::SELECT, b, j); |
1856 |
|
|
1857 |
|
// Try to avoid introducing new read terms: track whether these already exist |
1858 |
20915 |
bool ajExists = d_equalityEngine->hasTerm(aj); |
1859 |
20915 |
bool bjExists = d_equalityEngine->hasTerm(bj); |
1860 |
20915 |
bool bothExist = ajExists && bjExists; |
1861 |
|
|
1862 |
|
// If propagating, check propagations |
1863 |
20915 |
int prop = options::arraysPropagate(); |
1864 |
20915 |
if (prop > 0) { |
1865 |
20915 |
propagateRowLemma(lem); |
1866 |
|
} |
1867 |
|
|
1868 |
|
// Prefer equality between indexes so as not to introduce new read terms |
1869 |
55395 |
if (options::arraysEagerIndexSplitting() && !bothExist |
1870 |
53092 |
&& !d_equalityEngine->areDisequal(i, j, false)) |
1871 |
|
{ |
1872 |
11258 |
Node i_eq_j; |
1873 |
5629 |
i_eq_j = d_valuation.ensureLiteral(i.eqNode(j)); // TODO: think about this |
1874 |
|
#if 0 |
1875 |
|
i_eq_j = i.eqNode(j); |
1876 |
|
#endif |
1877 |
5629 |
getOutputChannel().requirePhase(i_eq_j, true); |
1878 |
5629 |
d_decisionRequests.push(i_eq_j); |
1879 |
|
} |
1880 |
|
|
1881 |
|
// TODO: maybe add triggers here |
1882 |
|
|
1883 |
20915 |
if (options::arraysEagerLemmas() || bothExist) |
1884 |
|
{ |
1885 |
|
// Make sure that any terms introduced by rewriting are appropriately stored in the equality database |
1886 |
4033 |
Node aj2 = Rewriter::rewrite(aj); |
1887 |
2578 |
if (aj != aj2) { |
1888 |
1123 |
if (!ajExists) { |
1889 |
|
preRegisterTermInternal(aj); |
1890 |
|
} |
1891 |
1123 |
if (!d_equalityEngine->hasTerm(aj2)) |
1892 |
|
{ |
1893 |
|
preRegisterTermInternal(aj2); |
1894 |
|
} |
1895 |
1123 |
d_im.assertInference(aj.eqNode(aj2), |
1896 |
|
true, |
1897 |
|
InferenceId::ARRAYS_EQ_TAUTOLOGY, |
1898 |
|
d_true, |
1899 |
|
PfRule::MACRO_SR_PRED_INTRO); |
1900 |
|
} |
1901 |
4033 |
Node bj2 = Rewriter::rewrite(bj); |
1902 |
2578 |
if (bj != bj2) { |
1903 |
732 |
if (!bjExists) { |
1904 |
|
preRegisterTermInternal(bj); |
1905 |
|
} |
1906 |
732 |
if (!d_equalityEngine->hasTerm(bj2)) |
1907 |
|
{ |
1908 |
|
preRegisterTermInternal(bj2); |
1909 |
|
} |
1910 |
732 |
d_im.assertInference(bj.eqNode(bj2), |
1911 |
|
true, |
1912 |
|
InferenceId::ARRAYS_EQ_TAUTOLOGY, |
1913 |
|
d_true, |
1914 |
|
PfRule::MACRO_SR_PRED_INTRO); |
1915 |
|
} |
1916 |
2578 |
if (aj2 == bj2) { |
1917 |
1123 |
return; |
1918 |
|
} |
1919 |
|
|
1920 |
|
// construct lemma |
1921 |
2910 |
Node eq1 = aj2.eqNode(bj2); |
1922 |
2910 |
Node eq1_r = Rewriter::rewrite(eq1); |
1923 |
1455 |
if (eq1_r == d_true) { |
1924 |
|
if (!d_equalityEngine->hasTerm(aj2)) |
1925 |
|
{ |
1926 |
|
preRegisterTermInternal(aj2); |
1927 |
|
} |
1928 |
|
if (!d_equalityEngine->hasTerm(bj2)) |
1929 |
|
{ |
1930 |
|
preRegisterTermInternal(bj2); |
1931 |
|
} |
1932 |
|
d_im.assertInference(eq1, |
1933 |
|
true, |
1934 |
|
InferenceId::ARRAYS_EQ_TAUTOLOGY, |
1935 |
|
d_true, |
1936 |
|
PfRule::MACRO_SR_PRED_INTRO); |
1937 |
|
return; |
1938 |
|
} |
1939 |
|
|
1940 |
2910 |
Node eq2 = i.eqNode(j); |
1941 |
2910 |
Node eq2_r = Rewriter::rewrite(eq2); |
1942 |
1455 |
if (eq2_r == d_true) { |
1943 |
|
d_im.assertInference(eq2, |
1944 |
|
true, |
1945 |
|
InferenceId::ARRAYS_EQ_TAUTOLOGY, |
1946 |
|
d_true, |
1947 |
|
PfRule::MACRO_SR_PRED_INTRO); |
1948 |
|
return; |
1949 |
|
} |
1950 |
|
|
1951 |
2910 |
Node lemma = nm->mkNode(kind::OR, eq2_r, eq1_r); |
1952 |
|
|
1953 |
1455 |
Trace("arrays-lem") << "Arrays::addRowLemma (1) adding " << lemma << "\n"; |
1954 |
1455 |
d_RowAlreadyAdded.insert(lem); |
1955 |
|
// use non-rewritten nodes |
1956 |
2910 |
d_im.arrayLemma( |
1957 |
2910 |
aj.eqNode(bj), InferenceId::ARRAYS_READ_OVER_WRITE, eq2.notNode(), PfRule::ARRAYS_READ_OVER_WRITE); |
1958 |
1455 |
++d_numRow; |
1959 |
|
} |
1960 |
|
else { |
1961 |
18337 |
d_RowQueue.push(lem); |
1962 |
|
} |
1963 |
|
} |
1964 |
|
|
1965 |
2782411 |
Node TheoryArrays::getNextDecisionRequest() |
1966 |
|
{ |
1967 |
2782411 |
if(! d_decisionRequests.empty()) { |
1968 |
31618 |
Node n = d_decisionRequests.front(); |
1969 |
15809 |
d_decisionRequests.pop(); |
1970 |
15809 |
return n; |
1971 |
|
} |
1972 |
2766602 |
return Node::null(); |
1973 |
|
} |
1974 |
|
|
1975 |
|
|
1976 |
1049 |
bool TheoryArrays::dischargeLemmas() |
1977 |
|
{ |
1978 |
1049 |
bool lemmasAdded = false; |
1979 |
1049 |
size_t sz = d_RowQueue.size(); |
1980 |
14518 |
for (unsigned count = 0; count < sz; ++count) { |
1981 |
15286 |
RowLemmaType l = d_RowQueue.front(); |
1982 |
13851 |
d_RowQueue.pop(); |
1983 |
13851 |
if (d_RowAlreadyAdded.contains(l)) { |
1984 |
7863 |
continue; |
1985 |
|
} |
1986 |
|
|
1987 |
7423 |
TNode a, b, i, j; |
1988 |
5988 |
std::tie(a, b, i, j) = l; |
1989 |
5988 |
Assert(a.getType().isArray() && b.getType().isArray()); |
1990 |
|
|
1991 |
5988 |
NodeManager* nm = NodeManager::currentNM(); |
1992 |
7423 |
Node aj = nm->mkNode(kind::SELECT, a, j); |
1993 |
7423 |
Node bj = nm->mkNode(kind::SELECT, b, j); |
1994 |
5988 |
bool ajExists = d_equalityEngine->hasTerm(aj); |
1995 |
5988 |
bool bjExists = d_equalityEngine->hasTerm(bj); |
1996 |
|
|
1997 |
|
// Check for redundant lemma |
1998 |
|
// TODO: more checks possible (i.e. check d_RowAlreadyAdded in context) |
1999 |
23952 |
if (!d_equalityEngine->hasTerm(i) || !d_equalityEngine->hasTerm(j) |
2000 |
11976 |
|| d_equalityEngine->areEqual(i, j) || !d_equalityEngine->hasTerm(a) |
2001 |
9744 |
|| !d_equalityEngine->hasTerm(b) || d_equalityEngine->areEqual(a, b) |
2002 |
21400 |
|| (ajExists && bjExists && d_equalityEngine->areEqual(aj, bj))) |
2003 |
|
{ |
2004 |
4119 |
continue; |
2005 |
|
} |
2006 |
|
|
2007 |
1869 |
int prop = options::arraysPropagate(); |
2008 |
1869 |
if (prop > 0) { |
2009 |
1869 |
propagateRowLemma(l); |
2010 |
1869 |
if (d_state.isInConflict()) |
2011 |
|
{ |
2012 |
382 |
return true; |
2013 |
|
} |
2014 |
|
} |
2015 |
|
|
2016 |
|
// Make sure that any terms introduced by rewriting are appropriately stored in the equality database |
2017 |
2922 |
Node aj2 = Rewriter::rewrite(aj); |
2018 |
1487 |
if (aj != aj2) { |
2019 |
52 |
if (!ajExists) { |
2020 |
52 |
preRegisterTermInternal(aj); |
2021 |
|
} |
2022 |
52 |
if (!d_equalityEngine->hasTerm(aj2)) |
2023 |
|
{ |
2024 |
|
preRegisterTermInternal(aj2); |
2025 |
|
} |
2026 |
52 |
d_im.assertInference(aj.eqNode(aj2), |
2027 |
|
true, |
2028 |
|
InferenceId::ARRAYS_EQ_TAUTOLOGY, |
2029 |
|
d_true, |
2030 |
|
PfRule::MACRO_SR_PRED_INTRO); |
2031 |
|
} |
2032 |
2922 |
Node bj2 = Rewriter::rewrite(bj); |
2033 |
1487 |
if (bj != bj2) { |
2034 |
69 |
if (!bjExists) { |
2035 |
6 |
preRegisterTermInternal(bj); |
2036 |
|
} |
2037 |
69 |
if (!d_equalityEngine->hasTerm(bj2)) |
2038 |
|
{ |
2039 |
|
preRegisterTermInternal(bj2); |
2040 |
|
} |
2041 |
69 |
d_im.assertInference(bj.eqNode(bj2), |
2042 |
|
true, |
2043 |
|
InferenceId::ARRAYS_EQ_TAUTOLOGY, |
2044 |
|
d_true, |
2045 |
|
PfRule::MACRO_SR_PRED_INTRO); |
2046 |
|
} |
2047 |
1487 |
if (aj2 == bj2) { |
2048 |
52 |
continue; |
2049 |
|
} |
2050 |
|
|
2051 |
|
// construct lemma |
2052 |
2870 |
Node eq1 = aj2.eqNode(bj2); |
2053 |
2870 |
Node eq1_r = Rewriter::rewrite(eq1); |
2054 |
1435 |
if (eq1_r == d_true) { |
2055 |
|
if (!d_equalityEngine->hasTerm(aj2)) |
2056 |
|
{ |
2057 |
|
preRegisterTermInternal(aj2); |
2058 |
|
} |
2059 |
|
if (!d_equalityEngine->hasTerm(bj2)) |
2060 |
|
{ |
2061 |
|
preRegisterTermInternal(bj2); |
2062 |
|
} |
2063 |
|
d_im.assertInference(eq1, |
2064 |
|
true, |
2065 |
|
InferenceId::ARRAYS_EQ_TAUTOLOGY, |
2066 |
|
d_true, |
2067 |
|
PfRule::MACRO_SR_PRED_INTRO); |
2068 |
|
continue; |
2069 |
|
} |
2070 |
|
|
2071 |
2870 |
Node eq2 = i.eqNode(j); |
2072 |
2870 |
Node eq2_r = Rewriter::rewrite(eq2); |
2073 |
1435 |
if (eq2_r == d_true) { |
2074 |
|
d_im.assertInference(eq2, |
2075 |
|
true, |
2076 |
|
InferenceId::ARRAYS_EQ_TAUTOLOGY, |
2077 |
|
d_true, |
2078 |
|
PfRule::MACRO_SR_PRED_INTRO); |
2079 |
|
continue; |
2080 |
|
} |
2081 |
|
|
2082 |
2870 |
Node lem = nm->mkNode(kind::OR, eq2_r, eq1_r); |
2083 |
|
|
2084 |
1435 |
Trace("arrays-lem") << "Arrays::addRowLemma (2) adding " << lem << "\n"; |
2085 |
1435 |
d_RowAlreadyAdded.insert(l); |
2086 |
|
// use non-rewritten nodes, theory preprocessing will rewrite |
2087 |
2870 |
d_im.arrayLemma( |
2088 |
2870 |
aj.eqNode(bj), InferenceId::ARRAYS_READ_OVER_WRITE, eq2.notNode(), PfRule::ARRAYS_READ_OVER_WRITE); |
2089 |
1435 |
++d_numRow; |
2090 |
1435 |
lemmasAdded = true; |
2091 |
1435 |
if (options::arraysReduceSharing()) { |
2092 |
|
return true; |
2093 |
|
} |
2094 |
|
} |
2095 |
667 |
return lemmasAdded; |
2096 |
|
} |
2097 |
|
|
2098 |
69 |
void TheoryArrays::conflict(TNode a, TNode b) { |
2099 |
69 |
Debug("pf::array") << "TheoryArrays::Conflict called" << std::endl; |
2100 |
69 |
if (d_inCheckModel) |
2101 |
|
{ |
2102 |
|
// if in check model, don't send the conflict |
2103 |
|
d_state.notifyInConflict(); |
2104 |
|
return; |
2105 |
|
} |
2106 |
69 |
d_im.conflictEqConstantMerge(a, b); |
2107 |
|
} |
2108 |
|
|
2109 |
9853 |
TheoryArrays::TheoryArraysDecisionStrategy::TheoryArraysDecisionStrategy( |
2110 |
9853 |
TheoryArrays* ta) |
2111 |
9853 |
: d_ta(ta) |
2112 |
|
{ |
2113 |
9853 |
} |
2114 |
9404 |
void TheoryArrays::TheoryArraysDecisionStrategy::initialize() {} |
2115 |
2782411 |
Node TheoryArrays::TheoryArraysDecisionStrategy::getNextDecisionRequest() |
2116 |
|
{ |
2117 |
2782411 |
return d_ta->getNextDecisionRequest(); |
2118 |
|
} |
2119 |
2791815 |
std::string TheoryArrays::TheoryArraysDecisionStrategy::identify() const |
2120 |
|
{ |
2121 |
2791815 |
return std::string("th_arrays_dec"); |
2122 |
|
} |
2123 |
|
|
2124 |
5311 |
void TheoryArrays::computeRelevantTerms(std::set<Node>& termSet) |
2125 |
|
{ |
2126 |
5311 |
NodeManager* nm = NodeManager::currentNM(); |
2127 |
|
// make sure RIntro1 reads are included in the relevant set of reads |
2128 |
5311 |
eq::EqClassesIterator eqcs_i = eq::EqClassesIterator(d_equalityEngine); |
2129 |
31577 |
for (; !eqcs_i.isFinished(); ++eqcs_i) |
2130 |
|
{ |
2131 |
14039 |
Node eqc = (*eqcs_i); |
2132 |
13133 |
if (!eqc.getType().isArray()) |
2133 |
|
{ |
2134 |
|
// not an array, skip |
2135 |
12227 |
continue; |
2136 |
|
} |
2137 |
906 |
eq::EqClassIterator eqc_i = eq::EqClassIterator(eqc, d_equalityEngine); |
2138 |
4546 |
for (; !eqc_i.isFinished(); ++eqc_i) |
2139 |
|
{ |
2140 |
3640 |
Node n = *eqc_i; |
2141 |
1820 |
if (termSet.find(n) != termSet.end()) |
2142 |
|
{ |
2143 |
1776 |
if (n.getKind() == kind::STORE) |
2144 |
|
{ |
2145 |
|
// Make sure RIntro1 reads are included |
2146 |
906 |
Node r = nm->mkNode(kind::SELECT, n, n[1]); |
2147 |
906 |
Trace("arrays::collectModelInfo") |
2148 |
453 |
<< "TheoryArrays::collectModelInfo, adding RIntro1 read: " << r |
2149 |
453 |
<< endl; |
2150 |
453 |
termSet.insert(r); |
2151 |
|
} |
2152 |
|
} |
2153 |
|
} |
2154 |
|
} |
2155 |
|
|
2156 |
|
// Now do a fixed-point iteration to get all reads that need to be included |
2157 |
|
// because of RIntro2 rule |
2158 |
|
bool changed; |
2159 |
5392 |
do |
2160 |
|
{ |
2161 |
5392 |
changed = false; |
2162 |
5392 |
eqcs_i = eq::EqClassesIterator(d_equalityEngine); |
2163 |
34258 |
for (; !eqcs_i.isFinished(); ++eqcs_i) |
2164 |
|
{ |
2165 |
28866 |
Node eqc = (*eqcs_i); |
2166 |
14433 |
eq::EqClassIterator eqc_i = eq::EqClassIterator(eqc, d_equalityEngine); |
2167 |
68053 |
for (; !eqc_i.isFinished(); ++eqc_i) |
2168 |
|
{ |
2169 |
53620 |
Node n = *eqc_i; |
2170 |
26810 |
if (n.getKind() == kind::SELECT && termSet.find(n) != termSet.end()) |
2171 |
|
{ |
2172 |
|
// Find all terms equivalent to n[0] and get corresponding read terms |
2173 |
13624 |
Node array_eqc = d_equalityEngine->getRepresentative(n[0]); |
2174 |
|
eq::EqClassIterator array_eqc_i = |
2175 |
6812 |
eq::EqClassIterator(array_eqc, d_equalityEngine); |
2176 |
47246 |
for (; !array_eqc_i.isFinished(); ++array_eqc_i) |
2177 |
|
{ |
2178 |
40434 |
Node arr = *array_eqc_i; |
2179 |
40434 |
if (arr.getKind() == kind::STORE |
2180 |
27568 |
&& termSet.find(arr) != termSet.end() |
2181 |
47785 |
&& !d_equalityEngine->areEqual(arr[1], n[1])) |
2182 |
|
{ |
2183 |
8682 |
Node r = nm->mkNode(kind::SELECT, arr, n[1]); |
2184 |
8682 |
if (termSet.find(r) == termSet.end() |
2185 |
8682 |
&& d_equalityEngine->hasTerm(r)) |
2186 |
|
{ |
2187 |
42 |
Trace("arrays::collectModelInfo") |
2188 |
|
<< "TheoryArrays::collectModelInfo, adding RIntro2(a) " |
2189 |
21 |
"read: " |
2190 |
21 |
<< r << endl; |
2191 |
21 |
termSet.insert(r); |
2192 |
21 |
changed = true; |
2193 |
|
} |
2194 |
4341 |
r = nm->mkNode(kind::SELECT, arr[0], n[1]); |
2195 |
8682 |
if (termSet.find(r) == termSet.end() |
2196 |
8682 |
&& d_equalityEngine->hasTerm(r)) |
2197 |
|
{ |
2198 |
96 |
Trace("arrays::collectModelInfo") |
2199 |
|
<< "TheoryArrays::collectModelInfo, adding RIntro2(b) " |
2200 |
48 |
"read: " |
2201 |
48 |
<< r << endl; |
2202 |
48 |
termSet.insert(r); |
2203 |
48 |
changed = true; |
2204 |
|
} |
2205 |
|
} |
2206 |
|
} |
2207 |
|
|
2208 |
|
// Find all stores in which n[0] appears and get corresponding read |
2209 |
|
// terms |
2210 |
6812 |
const CTNodeList* instores = d_infoMap.getInStores(array_eqc); |
2211 |
6812 |
size_t it = 0; |
2212 |
20458 |
for (; it < instores->size(); ++it) |
2213 |
|
{ |
2214 |
13646 |
TNode instore = (*instores)[it]; |
2215 |
6823 |
Assert(instore.getKind() == kind::STORE); |
2216 |
13646 |
if (termSet.find(instore) != termSet.end() |
2217 |
13646 |
&& !d_equalityEngine->areEqual(instore[1], n[1])) |
2218 |
|
{ |
2219 |
8912 |
Node r = nm->mkNode(kind::SELECT, instore, n[1]); |
2220 |
8912 |
if (termSet.find(r) == termSet.end() |
2221 |
8912 |
&& d_equalityEngine->hasTerm(r)) |
2222 |
|
{ |
2223 |
444 |
Trace("arrays::collectModelInfo") |
2224 |
|
<< "TheoryArrays::collectModelInfo, adding RIntro2(c) " |
2225 |
222 |
"read: " |
2226 |
222 |
<< r << endl; |
2227 |
222 |
termSet.insert(r); |
2228 |
222 |
changed = true; |
2229 |
|
} |
2230 |
4456 |
r = nm->mkNode(kind::SELECT, instore[0], n[1]); |
2231 |
8912 |
if (termSet.find(r) == termSet.end() |
2232 |
8912 |
&& d_equalityEngine->hasTerm(r)) |
2233 |
|
{ |
2234 |
88 |
Trace("arrays::collectModelInfo") |
2235 |
|
<< "TheoryArrays::collectModelInfo, adding RIntro2(d) " |
2236 |
44 |
"read: " |
2237 |
44 |
<< r << endl; |
2238 |
44 |
termSet.insert(r); |
2239 |
44 |
changed = true; |
2240 |
|
} |
2241 |
|
} |
2242 |
|
} |
2243 |
|
} |
2244 |
|
} |
2245 |
|
} |
2246 |
|
} while (changed); |
2247 |
5311 |
} |
2248 |
|
|
2249 |
|
} // namespace arrays |
2250 |
|
} // namespace theory |
2251 |
29340 |
} // namespace cvc5 |