1 |
|
/****************************************************************************** |
2 |
|
* Top contributors (to current version): |
3 |
|
* Andrew Reynolds, Tim King, Mathias Preiner |
4 |
|
* |
5 |
|
* This file is part of the cvc5 project. |
6 |
|
* |
7 |
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS |
8 |
|
* in the top-level source directory and their institutional affiliations. |
9 |
|
* All rights reserved. See the file COPYING in the top-level source |
10 |
|
* directory for licensing information. |
11 |
|
* **************************************************************************** |
12 |
|
* |
13 |
|
* Arithmetic instantiator. |
14 |
|
*/ |
15 |
|
|
16 |
|
#include "cvc5_private.h" |
17 |
|
|
18 |
|
#ifndef CVC5__THEORY__QUANTIFIERS__CEG_ARITH_INSTANTIATOR_H |
19 |
|
#define CVC5__THEORY__QUANTIFIERS__CEG_ARITH_INSTANTIATOR_H |
20 |
|
|
21 |
|
#include <vector> |
22 |
|
#include "expr/node.h" |
23 |
|
#include "theory/quantifiers/cegqi/ceg_instantiator.h" |
24 |
|
#include "theory/quantifiers/cegqi/vts_term_cache.h" |
25 |
|
|
26 |
|
namespace cvc5 { |
27 |
|
namespace theory { |
28 |
|
namespace quantifiers { |
29 |
|
|
30 |
|
/** Arithmetic instantiator |
31 |
|
* |
32 |
|
* This implements a selection function for arithmetic, which is based on |
33 |
|
* variants of: |
34 |
|
* - Loos/Weispfenning's method (virtual term substitution) for linear real |
35 |
|
* arithmetic, |
36 |
|
* - Ferrante/Rackoff's method (interior points) for linear real arithmetic, |
37 |
|
* - Cooper's method for linear arithmetic. |
38 |
|
* For details, see Reynolds et al, "Solving Linear Arithmetic Using |
39 |
|
* Counterexample-Guided Instantiation", FMSD 2017. |
40 |
|
* |
41 |
|
* This class contains all necessary information for instantiating a single |
42 |
|
* real or integer typed variable of a single quantified formula. |
43 |
|
*/ |
44 |
|
class ArithInstantiator : public Instantiator |
45 |
|
{ |
46 |
|
public: |
47 |
|
ArithInstantiator(TypeNode tn, VtsTermCache* vtc); |
48 |
3292 |
virtual ~ArithInstantiator() {} |
49 |
|
/** reset */ |
50 |
|
void reset(CegInstantiator* ci, |
51 |
|
SolvedForm& sf, |
52 |
|
Node pv, |
53 |
|
CegInstEffort effort) override; |
54 |
|
/** this instantiator processes equalities */ |
55 |
|
bool hasProcessEquality(CegInstantiator* ci, |
56 |
|
SolvedForm& sf, |
57 |
|
Node pv, |
58 |
|
CegInstEffort effort) override; |
59 |
|
/** |
60 |
|
* Process the equality term[0]=term[1]. If this equality is equivalent to one |
61 |
|
* of the form c * pv = t, then we add the substitution c * pv -> t to sf and |
62 |
|
* recurse. |
63 |
|
*/ |
64 |
|
bool processEquality(CegInstantiator* ci, |
65 |
|
SolvedForm& sf, |
66 |
|
Node pv, |
67 |
|
std::vector<TermProperties>& term_props, |
68 |
|
std::vector<Node>& terms, |
69 |
|
CegInstEffort effort) override; |
70 |
|
/** this instantiator processes assertions */ |
71 |
|
bool hasProcessAssertion(CegInstantiator* ci, |
72 |
|
SolvedForm& sf, |
73 |
|
Node pv, |
74 |
|
CegInstEffort effort) override; |
75 |
|
/** this instantiator processes literals lit of kinds EQUAL and GEQ */ |
76 |
|
Node hasProcessAssertion(CegInstantiator* ci, |
77 |
|
SolvedForm& sf, |
78 |
|
Node pv, |
79 |
|
Node lit, |
80 |
|
CegInstEffort effort) override; |
81 |
|
/** process assertion lit |
82 |
|
* |
83 |
|
* If lit can be turned into a bound of the form c * pv <> t, then we store |
84 |
|
* information about this bound (see d_mbp_bounds). |
85 |
|
* |
86 |
|
* If cbqiModel is false (not the default), we recursively try adding the |
87 |
|
* substitution { c * pv -> t } to sf and recursing. |
88 |
|
*/ |
89 |
|
bool processAssertion(CegInstantiator* ci, |
90 |
|
SolvedForm& sf, |
91 |
|
Node pv, |
92 |
|
Node lit, |
93 |
|
Node alit, |
94 |
|
CegInstEffort effort) override; |
95 |
|
/** process assertions |
96 |
|
* |
97 |
|
* This is called after processAssertion has been called on all current bounds |
98 |
|
* for pv. This method selects the "best" bound of those we have seen, which |
99 |
|
* can be one of the following: |
100 |
|
* - Maximal lower bound, |
101 |
|
* - Minimal upper bound, |
102 |
|
* - Midpoint of maximal lower and minimal upper bounds, [if pv is not Int, |
103 |
|
* and --cbqi-midpoint] |
104 |
|
* - (+-) Infinity, [if no upper (resp. lower) bounds, and --cbqi-use-vts-inf] |
105 |
|
* - Zero, [if no bounds] |
106 |
|
* - Non-optimal bounds. [if the above bounds fail, and --cbqi-nopt] |
107 |
|
*/ |
108 |
|
bool processAssertions(CegInstantiator* ci, |
109 |
|
SolvedForm& sf, |
110 |
|
Node pv, |
111 |
|
CegInstEffort effort) override; |
112 |
|
/** |
113 |
|
* This instantiator needs to postprocess variables that have substitutions |
114 |
|
* with coefficients, i.e. c*x -> t. |
115 |
|
*/ |
116 |
|
bool needsPostProcessInstantiationForVariable(CegInstantiator* ci, |
117 |
|
SolvedForm& sf, |
118 |
|
Node pv, |
119 |
|
CegInstEffort effort) override; |
120 |
|
/** post-process instantiation for variable |
121 |
|
* |
122 |
|
* If the solved form for integer variable pv is a substitution with |
123 |
|
* coefficients c*x -> t, this turns its solved form into x -> div(t,c), where |
124 |
|
* div is integer division. |
125 |
|
*/ |
126 |
|
bool postProcessInstantiationForVariable(CegInstantiator* ci, |
127 |
|
SolvedForm& sf, |
128 |
|
Node pv, |
129 |
|
CegInstEffort effort) override; |
130 |
27791 |
std::string identify() const override { return "Arith"; } |
131 |
|
|
132 |
|
private: |
133 |
|
/** pointer to the virtual term substitution term cache class */ |
134 |
|
VtsTermCache* d_vtc; |
135 |
|
/** zero/one */ |
136 |
|
Node d_zero; |
137 |
|
Node d_one; |
138 |
|
//--------------------------------------current bounds |
139 |
|
/** Virtual term symbols (vts), where 0: infinity, 1: delta. */ |
140 |
|
Node d_vts_sym[2]; |
141 |
|
/** Current 0:lower, 1:upper bounds for the variable to instantiate */ |
142 |
|
std::vector<Node> d_mbp_bounds[2]; |
143 |
|
/** Coefficients for the lower/upper bounds for the variable to instantiate */ |
144 |
|
std::vector<Node> d_mbp_coeff[2]; |
145 |
|
/** Coefficients for virtual terms for each bound. */ |
146 |
|
std::vector<Node> d_mbp_vts_coeff[2][2]; |
147 |
|
/** The source literal (explanation) for each bound. */ |
148 |
|
std::vector<Node> d_mbp_lit[2]; |
149 |
|
//--------------------------------------end current bounds |
150 |
|
/** solve arith |
151 |
|
* |
152 |
|
* Given variable to instantiate pv, this isolates the atom into solved form: |
153 |
|
* veq_c * pv <> val + vts_coeff_delta * delta + vts_coeff_inf * inf |
154 |
|
* where we ensure val has Int type if pv has Int type, and val does not |
155 |
|
* contain vts symbols. |
156 |
|
* |
157 |
|
* It returns a CegTermType: |
158 |
|
* CEG_TT_INVALID if it was not possible to put atom into a solved form, |
159 |
|
* CEG_TT_LOWER if <> in the above equation is >=, |
160 |
|
* CEG_TT_UPPER if <> in the above equation is <=, or |
161 |
|
* CEG_TT_EQUAL if <> in the above equation is =. |
162 |
|
*/ |
163 |
|
CegTermType solve_arith(CegInstantiator* ci, |
164 |
|
Node v, |
165 |
|
Node atom, |
166 |
|
Node& veq_c, |
167 |
|
Node& val, |
168 |
|
Node& vts_coeff_inf, |
169 |
|
Node& vts_coeff_delta); |
170 |
|
/** get model based projection value |
171 |
|
* |
172 |
|
* Given a implied (non-strict) bound: |
173 |
|
* c*e <=/>= t + inf_coeff*INF + delta_coeff*DELTA |
174 |
|
* this method returns ret, the minimal (resp. maximal) term such that: |
175 |
|
* c*ret <> t + inf_coeff*INF + delta_coeff*DELTA |
176 |
|
* is satisfied in the current model M, and such that the divisibilty |
177 |
|
* constraint is also satisfied: |
178 |
|
* ret^M mod c*theta = (c*e)^M mod c*theta |
179 |
|
* where the input theta is a constant (which is assumed to be 1 if null). The |
180 |
|
* values of me and mt are the current model values of e and t respectively. |
181 |
|
* |
182 |
|
* For example, if e has Real type and: |
183 |
|
* isLower = false, e^M = 0, t^M = 2, inf_coeff = 0, delta_coeff = 2 |
184 |
|
* Then, this function returns t+2*delta. |
185 |
|
* |
186 |
|
* For example, if e has Int type and: |
187 |
|
* isLower = true, e^M = 4, t^M = 2, theta = 3 |
188 |
|
* Then, this function returns t+2, noting that (t+2)^M mod 3 = e^M mod 3 = 2. |
189 |
|
* |
190 |
|
* For example, if e has Int type and: |
191 |
|
* isLower = false, e^M = 1, t^M = 5, theta = 3 |
192 |
|
* Then, this function returns t-1, noting that (t-1)^M mod 3 = e^M mod 3 = 1. |
193 |
|
* |
194 |
|
* The value that is added or substracted from t in the return value when e |
195 |
|
* is an integer is the value of "rho" from Figure 6 of Reynolds et al, |
196 |
|
* "Solving Linear Arithmetic Using Counterexample-Guided Instantiation", |
197 |
|
* FMSD 2017. |
198 |
|
*/ |
199 |
|
Node getModelBasedProjectionValue(CegInstantiator* ci, |
200 |
|
Node e, |
201 |
|
Node t, |
202 |
|
bool isLower, |
203 |
|
Node c, |
204 |
|
Node me, |
205 |
|
Node mt, |
206 |
|
Node theta, |
207 |
|
Node inf_coeff, |
208 |
|
Node delta_coeff); |
209 |
|
}; |
210 |
|
|
211 |
|
} // namespace quantifiers |
212 |
|
} // namespace theory |
213 |
|
} // namespace cvc5 |
214 |
|
|
215 |
|
#endif /* CVC5__THEORY__QUANTIFIERS__CEG_ARITH_INSTANTIATOR_H */ |