1 |
|
/****************************************************************************** |
2 |
|
* Top contributors (to current version): |
3 |
|
* Andrew Reynolds, Haniel Barbosa, Andres Noetzli |
4 |
|
* |
5 |
|
* This file is part of the cvc5 project. |
6 |
|
* |
7 |
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS |
8 |
|
* in the top-level source directory and their institutional affiliations. |
9 |
|
* All rights reserved. See the file COPYING in the top-level source |
10 |
|
* directory for licensing information. |
11 |
|
* **************************************************************************** |
12 |
|
* |
13 |
|
* cegis with unification techinques. |
14 |
|
*/ |
15 |
|
#include "cvc5_private.h" |
16 |
|
|
17 |
|
#ifndef CVC5__THEORY__QUANTIFIERS__SYGUS__CEGIS_UNIF_H |
18 |
|
#define CVC5__THEORY__QUANTIFIERS__SYGUS__CEGIS_UNIF_H |
19 |
|
|
20 |
|
#include <map> |
21 |
|
#include <vector> |
22 |
|
|
23 |
|
#include "theory/decision_strategy.h" |
24 |
|
#include "theory/quantifiers/sygus/cegis.h" |
25 |
|
#include "theory/quantifiers/sygus/sygus_unif_rl.h" |
26 |
|
|
27 |
|
namespace cvc5 { |
28 |
|
namespace theory { |
29 |
|
namespace quantifiers { |
30 |
|
|
31 |
|
/** Cegis Unif Enumerators Decision Strategy |
32 |
|
* |
33 |
|
* This class enforces a decision strategy that limits the number of |
34 |
|
* unique values given to the set of heads of evaluation points and conditions |
35 |
|
* enumerators for these points, which are variables of sygus datatype type that |
36 |
|
* are introduced by CegisUnif. |
37 |
|
* |
38 |
|
* It maintains a set of guards, call them G_uq_1 ... G_uq_n, where the |
39 |
|
* semantics of G_uq_i is "for each type, the heads of evaluation points of that |
40 |
|
* type are interpreted as a value in a set whose cardinality is at most i". |
41 |
|
* We also enforce that the number of condition enumerators for evaluation |
42 |
|
* points is equal to (n-1). |
43 |
|
* |
44 |
|
* To enforce this, we introduce sygus enumerator(s) of the same type as the |
45 |
|
* heads of evaluation points and condition enumerators registered to this class |
46 |
|
* and add lemmas that enforce that these terms are equal to at least one |
47 |
|
* enumerator (see registerEvalPtAtSize). |
48 |
|
*/ |
49 |
1151 |
class CegisUnifEnumDecisionStrategy : public DecisionStrategyFmf |
50 |
|
{ |
51 |
|
public: |
52 |
|
CegisUnifEnumDecisionStrategy(QuantifiersState& qs, |
53 |
|
QuantifiersInferenceManager& qim, |
54 |
|
TermDbSygus* tds, |
55 |
|
SynthConjecture* parent); |
56 |
|
/** Make the n^th literal of this strategy (G_uq_n). |
57 |
|
* |
58 |
|
* This call may add new lemmas of the form described above |
59 |
|
* registerEvalPtAtValue on the output channel of d_qe. |
60 |
|
*/ |
61 |
|
Node mkLiteral(unsigned n) override; |
62 |
|
/** identify */ |
63 |
60437 |
std::string identify() const override |
64 |
|
{ |
65 |
60437 |
return std::string("cegis_unif_num_enums"); |
66 |
|
} |
67 |
|
|
68 |
|
/** initialize candidates |
69 |
|
* |
70 |
|
* Notify this class that it will be managing enumerators for the vector |
71 |
|
* of strategy points es. This function should only be called once. |
72 |
|
* |
73 |
|
* Each strategy point in es should be such that we are using a |
74 |
|
* synthesis-by-unification approach for its candidate. |
75 |
|
*/ |
76 |
|
void initialize(const std::vector<Node>& es, |
77 |
|
const std::map<Node, Node>& e_to_cond, |
78 |
|
const std::map<Node, std::vector<Node>>& strategy_lemmas); |
79 |
|
|
80 |
|
/* |
81 |
|
* Do not hide the zero-argument version of initialize() inherited from the |
82 |
|
* base class |
83 |
|
*/ |
84 |
|
using DecisionStrategy::initialize; |
85 |
|
|
86 |
|
/** get the current set of enumerators for strategy point e |
87 |
|
* |
88 |
|
* Index 0 adds the set of return value enumerators to es, index 1 adds the |
89 |
|
* set of condition enumerators to es. |
90 |
|
*/ |
91 |
|
void getEnumeratorsForStrategyPt(Node e, |
92 |
|
std::vector<Node>& es, |
93 |
|
unsigned index) const; |
94 |
|
/** register evaluation point for candidate |
95 |
|
* |
96 |
|
* This notifies this class that eis is a set of heads of evaluation points |
97 |
|
* for strategy point e, where e was passed to initialize in the vector es. |
98 |
|
* |
99 |
|
* This may add new lemmas of the form described above |
100 |
|
* registerEvalPtAtSize on the output channel of d_qe. |
101 |
|
*/ |
102 |
|
void registerEvalPts(const std::vector<Node>& eis, Node e); |
103 |
|
|
104 |
|
private: |
105 |
|
/** Reference to the quantifiers inference manager */ |
106 |
|
QuantifiersInferenceManager& d_qim; |
107 |
|
/** sygus term database of d_qe */ |
108 |
|
TermDbSygus* d_tds; |
109 |
|
/** reference to the parent conjecture */ |
110 |
|
SynthConjecture* d_parent; |
111 |
|
/** |
112 |
|
* Whether we are using condition pool enumeration (Section 4 of Barbosa et al |
113 |
|
* FMCAD 2019). This is determined by option::sygusUnifPi(). |
114 |
|
*/ |
115 |
|
bool d_useCondPool; |
116 |
|
/** whether this module has been initialized */ |
117 |
|
bool d_initialized; |
118 |
|
/** null node */ |
119 |
|
Node d_null; |
120 |
|
/** information per initialized type */ |
121 |
11 |
class StrategyPtInfo |
122 |
|
{ |
123 |
|
public: |
124 |
11 |
StrategyPtInfo() {} |
125 |
|
/** strategy point for this type */ |
126 |
|
Node d_pt; |
127 |
|
/** the set of enumerators we have allocated for this strategy point |
128 |
|
* |
129 |
|
* Index 0 stores the return value enumerators, and index 1 stores the |
130 |
|
* conditional enumerators. We have that |
131 |
|
* d_enums[0].size()==d_enums[1].size()+1. |
132 |
|
*/ |
133 |
|
std::vector<Node> d_enums[2]; |
134 |
|
/** the type of conditional enumerators for this strategy point */ |
135 |
|
TypeNode d_ce_type; |
136 |
|
/** |
137 |
|
* The set of evaluation points of this type. In models, we ensure that |
138 |
|
* each of these are equal to one of d_enums[0]. |
139 |
|
*/ |
140 |
|
std::vector<Node> d_eval_points; |
141 |
|
/** symmetry breaking lemma template for this strategy point |
142 |
|
* |
143 |
|
* Each pair stores (the symmetry breaking lemma template, argument (to be |
144 |
|
* instantiated) of symmetry breaking lemma template). |
145 |
|
* |
146 |
|
* Index 0 stores the symmetry breaking lemma template for return values, |
147 |
|
* index 1 stores the template for conditions. |
148 |
|
*/ |
149 |
|
std::pair<Node, Node> d_sbt_lemma_tmpl[2]; |
150 |
|
}; |
151 |
|
/** map strategy points to the above info */ |
152 |
|
std::map<Node, StrategyPtInfo> d_ce_info; |
153 |
|
/** the "virtual" enumerator |
154 |
|
* |
155 |
|
* This enumerator is used for enforcing fairness. In particular, we relate |
156 |
|
* its size to the number of conditions allocated by this class such that: |
157 |
|
* ~G_uq_i => size(d_virtual_enum) >= floor( log2( i-1 ) ) |
158 |
|
* In other words, if we are using (i-1) conditions in our solution, |
159 |
|
* the size of the virtual enumerator is at least the floor of the log (base |
160 |
|
* two) of (i-1). Due to the default fairness scheme in the quantifier-free |
161 |
|
* datatypes solver (if --sygus-fair-max is enabled), this ensures that other |
162 |
|
* enumerators are allowed to have at least this size. This affect other |
163 |
|
* fairness schemes in an analogous fashion. In particular, we enumerate |
164 |
|
* based on the tuples for (term size, #conditions): |
165 |
|
* (0,0), (0,1) [size 0] |
166 |
|
* (0,2), (0,3), (1,1), (1,2), (1,3) [size 1] |
167 |
|
* (0,4), ..., (0,7), (1,4), ..., (1,7), (2,0), ..., (2,7) [size 2] |
168 |
|
* (0,8), ..., (0,15), (1,8), ..., (1,15), ... [size 3] |
169 |
|
*/ |
170 |
|
Node d_virtual_enum; |
171 |
|
/** Registers an enumerator and adds symmetry breaking lemmas |
172 |
|
* |
173 |
|
* The symmetry breaking lemmas are generated according to the stored |
174 |
|
* information from the enumerator's respective strategy point and whether it |
175 |
|
* is a condition or return value enumerator. For the latter we add symmetry |
176 |
|
* breaking lemmas that force enumerators to consider values in an increasing |
177 |
|
* order of size. |
178 |
|
*/ |
179 |
|
void setUpEnumerator(Node e, StrategyPtInfo& si, unsigned index); |
180 |
|
/** register evaluation point at size |
181 |
|
* |
182 |
|
* This sends a lemma of the form: |
183 |
|
* G_uq_n => ei = d1 V ... V ei = dn |
184 |
|
* on the output channel of d_qe, where d1...dn are sygus enumerators of the |
185 |
|
* same type as e and ei, and ei is an evaluation point of strategy point e. |
186 |
|
*/ |
187 |
|
void registerEvalPtAtSize(Node e, Node ei, Node guq_lit, unsigned n); |
188 |
|
}; |
189 |
|
|
190 |
|
/** Synthesizes functions in a data-driven SyGuS approach |
191 |
|
* |
192 |
|
* Data is derived from refinement lemmas generated through the regular CEGIS |
193 |
|
* approach. SyGuS is used to generate terms for classifying the data |
194 |
|
* (e.g. using decision tree learning) and thus generate a candidates for |
195 |
|
* functions-to-synthesize. |
196 |
|
* |
197 |
|
* This approach is inspired by the divide and conquer synthesis through |
198 |
|
* unification approach by Alur et al. TACAS 2017, by ICE-based invariant |
199 |
|
* synthesis from Garg et al. CAV 2014 and POPL 2016, and Padhi et al. PLDI 2016 |
200 |
|
* |
201 |
|
* This module mantains a set of functions-to-synthesize and a set of term |
202 |
|
* enumerators. When new terms are enumerated it tries to learn new candidate |
203 |
|
* solutions, which are verified outside this module. If verification fails a |
204 |
|
* refinement lemma is generated, which this module sends to the utility that |
205 |
|
* learns candidates. |
206 |
|
*/ |
207 |
|
class CegisUnif : public Cegis |
208 |
|
{ |
209 |
|
public: |
210 |
|
CegisUnif(QuantifiersState& qs, |
211 |
|
QuantifiersInferenceManager& qim, |
212 |
|
TermDbSygus* tds, |
213 |
|
SynthConjecture* p); |
214 |
|
~CegisUnif() override; |
215 |
|
/** Retrieves enumerators for constructing solutions |
216 |
|
* |
217 |
|
* Non-unification candidates have themselves as enumerators, while for |
218 |
|
* unification candidates we add their conditonal enumerators to enums if |
219 |
|
* their respective guards are set in the current model |
220 |
|
*/ |
221 |
|
void getTermList(const std::vector<Node>& candidates, |
222 |
|
std::vector<Node>& enums) override; |
223 |
|
|
224 |
|
/** Communicates refinement lemma to unification utility and external modules |
225 |
|
* |
226 |
|
* For the lemma to be sent to the external modules it adds a guard from the |
227 |
|
* parent conjecture which establishes that if the conjecture has a solution |
228 |
|
* then it must satisfy this refinement lemma |
229 |
|
* |
230 |
|
* For the lemma to be sent to the unification utility it purifies the |
231 |
|
* arguments of the function-to-synthensize such that all of its applications |
232 |
|
* are over concrete values. E.g.: |
233 |
|
* f(f(f(0))) > 1 |
234 |
|
* becomes |
235 |
|
* f(0) != c1 v f(c1) != c2 v f(c2) > 1 |
236 |
|
* in which c1 and c2 are concrete integer values |
237 |
|
* |
238 |
|
* Note that the lemma is in the deep embedding, which means that the above |
239 |
|
* example would actually correspond to |
240 |
|
* eval(d, 0) != c1 v eval(d, c1) != c2 v eval(d, c2) > 1 |
241 |
|
* in which d is the deep embedding of the function-to-synthesize f |
242 |
|
*/ |
243 |
|
void registerRefinementLemma(const std::vector<Node>& vars, |
244 |
|
Node lem) override; |
245 |
|
|
246 |
|
private: |
247 |
|
/** do cegis-implementation-specific initialization for this class */ |
248 |
|
bool processInitialize(Node conj, |
249 |
|
Node n, |
250 |
|
const std::vector<Node>& candidates) override; |
251 |
|
/** Tries to build new candidate solutions with new enumerated expressions |
252 |
|
* |
253 |
|
* This function relies on a data-driven unification-based approach for |
254 |
|
* constructing solutions for the functions-to-synthesize. See SygusUnifRl for |
255 |
|
* more details. |
256 |
|
* |
257 |
|
* Calls to this function are such that terms is the list of active |
258 |
|
* enumerators (returned by getTermList), and term_values are their current |
259 |
|
* model values. This function registers { terms -> terms_values } in |
260 |
|
* the database of values that have been enumerated, which are in turn used |
261 |
|
* for constructing candidate solutions when possible. |
262 |
|
* |
263 |
|
* This function also excludes models where (terms = terms_values) by adding |
264 |
|
* blocking clauses to d_qim pending lemmas. For example, for grammar: |
265 |
|
* A -> A+A | x | 1 | 0 |
266 |
|
* and a call where terms = { d } and term_values = { +( x, 1 ) }, it adds: |
267 |
|
* ~G V ~is_+( d ) V ~is_x( d.1 ) V ~is_1( d.2 ) |
268 |
|
* to d_qim pending lemmas, where G is active guard of the enumerator d (see |
269 |
|
* TermDatabaseSygus::getActiveGuardForEnumerator). This blocking clause |
270 |
|
* indicates that d should not be given the model value +( x, 1 ) anymore, |
271 |
|
* since { d -> +( x, 1 ) } has now been added to the database of this class. |
272 |
|
*/ |
273 |
|
bool processConstructCandidates(const std::vector<Node>& enums, |
274 |
|
const std::vector<Node>& enum_values, |
275 |
|
const std::vector<Node>& candidates, |
276 |
|
std::vector<Node>& candidate_values, |
277 |
|
bool satisfiedRl) override; |
278 |
|
/** communicate condition values to solution building utility |
279 |
|
* |
280 |
|
* for each unification candidate and for each strategy point associated with |
281 |
|
* it, set in d_sygus_unif the condition values (unif_cvalues) for respective |
282 |
|
* condition enumerators (unif_cenums) |
283 |
|
*/ |
284 |
|
void setConditions(const std::map<Node, std::vector<Node>>& unif_cenums, |
285 |
|
const std::map<Node, std::vector<Node>>& unif_cvalues); |
286 |
|
/** set values of condition enumerators based on current enumerator assignment |
287 |
|
* |
288 |
|
* enums and enum_values are the enumerators registered in getTermList and |
289 |
|
* their values retrieved by the parent SynthConjecture module, respectively. |
290 |
|
* |
291 |
|
* unif_cenums and unif_cvalues associate the conditional enumerators of each |
292 |
|
* strategy point of each unification candidate with their respective model |
293 |
|
* values |
294 |
|
* |
295 |
|
* This function also generates inter-enumerator symmetry breaking for return |
296 |
|
* values, such that their model values are ordered by size |
297 |
|
* |
298 |
|
* returns true if no symmetry breaking lemmas were generated for the return |
299 |
|
* value enumerators, false otherwise |
300 |
|
*/ |
301 |
|
bool getEnumValues(const std::vector<Node>& enums, |
302 |
|
const std::vector<Node>& enum_values, |
303 |
|
std::map<Node, std::vector<Node>>& unif_cenums, |
304 |
|
std::map<Node, std::vector<Node>>& unif_cvalues); |
305 |
|
|
306 |
|
/** |
307 |
|
* Whether we are using condition pool enumeration (Section 4 of Barbosa et al |
308 |
|
* FMCAD 2019). This is determined by option::sygusUnifPi(). |
309 |
|
*/ |
310 |
|
bool usingConditionPool() const; |
311 |
|
/** |
312 |
|
* Sygus unif utility. This class implements the core algorithm (e.g. decision |
313 |
|
* tree learning) that this module relies upon. |
314 |
|
*/ |
315 |
|
SygusUnifRl d_sygus_unif; |
316 |
|
/** enumerator manager utility */ |
317 |
|
CegisUnifEnumDecisionStrategy d_u_enum_manager; |
318 |
|
/* The null node */ |
319 |
|
Node d_null; |
320 |
|
/** the unification candidates */ |
321 |
|
std::vector<Node> d_unif_candidates; |
322 |
|
/** the non-unification candidates */ |
323 |
|
std::vector<Node> d_non_unif_candidates; |
324 |
|
/** list of strategy points per candidate */ |
325 |
|
std::map<Node, std::vector<Node>> d_cand_to_strat_pt; |
326 |
|
/** map from conditional enumerators to their strategy point */ |
327 |
|
std::map<Node, Node> d_cenum_to_strat_pt; |
328 |
|
}; /* class CegisUnif */ |
329 |
|
|
330 |
|
} // namespace quantifiers |
331 |
|
} // namespace theory |
332 |
|
} // namespace cvc5 |
333 |
|
|
334 |
|
#endif |