1 |
|
/****************************************************************************** |
2 |
|
* Top contributors (to current version): |
3 |
|
* Gereon Kremer |
4 |
|
* |
5 |
|
* This file is part of the cvc5 project. |
6 |
|
* |
7 |
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS |
8 |
|
* in the top-level source directory and their institutional affiliations. |
9 |
|
* All rights reserved. See the file COPYING in the top-level source |
10 |
|
* directory for licensing information. |
11 |
|
* **************************************************************************** |
12 |
|
* |
13 |
|
* Utilities for working with LibPoly. |
14 |
|
*/ |
15 |
|
|
16 |
|
#include "poly_util.h" |
17 |
|
|
18 |
|
#ifdef CVC5_POLY_IMP |
19 |
|
|
20 |
|
#include <poly/polyxx.h> |
21 |
|
|
22 |
|
#include <map> |
23 |
|
#include <sstream> |
24 |
|
|
25 |
|
#include "base/check.h" |
26 |
|
#include "util/integer.h" |
27 |
|
#include "util/rational.h" |
28 |
|
#include "util/real_algebraic_number.h" |
29 |
|
|
30 |
|
namespace cvc5 { |
31 |
|
namespace poly_utils { |
32 |
|
|
33 |
|
namespace { |
34 |
|
/** |
35 |
|
* Convert arbitrary data using a string as intermediary. |
36 |
|
* Assumes the existence of operator<<(std::ostream&, const From&) and To(const |
37 |
|
* std::string&); should be the last resort for type conversions: it may not |
38 |
|
* only yield bad performance, but is also dependent on compatible string |
39 |
|
* representations. Use with care! |
40 |
|
*/ |
41 |
|
template <typename To, typename From> |
42 |
332 |
To cast_by_string(const From& f) |
43 |
|
{ |
44 |
664 |
std::stringstream s; |
45 |
332 |
s << f; |
46 |
664 |
return To(s.str()); |
47 |
|
} |
48 |
|
} // namespace |
49 |
|
|
50 |
144 |
Integer toInteger(const poly::Integer& i) |
51 |
|
{ |
52 |
144 |
const mpz_class& gi = *poly::detail::cast_to_gmp(&i); |
53 |
|
#ifdef CVC5_GMP_IMP |
54 |
|
return Integer(gi); |
55 |
|
#endif |
56 |
|
#ifdef CVC5_CLN_IMP |
57 |
288 |
if (std::numeric_limits<long>::min() <= gi |
58 |
144 |
&& gi <= std::numeric_limits<long>::max()) |
59 |
|
{ |
60 |
144 |
return Integer(gi.get_si()); |
61 |
|
} |
62 |
|
else |
63 |
|
{ |
64 |
|
return cast_by_string<Integer, poly::Integer>(i); |
65 |
|
} |
66 |
|
#endif |
67 |
|
} |
68 |
30 |
Rational toRational(const poly::Integer& i) { return Rational(toInteger(i)); } |
69 |
36 |
Rational toRational(const poly::Rational& r) |
70 |
|
{ |
71 |
|
#ifdef CVC5_GMP_IMP |
72 |
|
return Rational(*poly::detail::cast_to_gmp(&r)); |
73 |
|
#endif |
74 |
|
#ifdef CVC5_CLN_IMP |
75 |
36 |
return Rational(toInteger(numerator(r)), toInteger(denominator(r))); |
76 |
|
#endif |
77 |
|
} |
78 |
21 |
Rational toRational(const poly::DyadicRational& dr) |
79 |
|
{ |
80 |
21 |
return Rational(toInteger(numerator(dr)), toInteger(denominator(dr))); |
81 |
|
} |
82 |
|
Rational toRationalAbove(const poly::Value& v) |
83 |
|
{ |
84 |
|
if (is_algebraic_number(v)) |
85 |
|
{ |
86 |
|
return toRational(get_upper_bound(as_algebraic_number(v))); |
87 |
|
} |
88 |
|
else if (is_dyadic_rational(v)) |
89 |
|
{ |
90 |
|
return toRational(as_dyadic_rational(v)); |
91 |
|
} |
92 |
|
else if (is_integer(v)) |
93 |
|
{ |
94 |
|
return toRational(as_integer(v)); |
95 |
|
} |
96 |
|
else if (is_rational(v)) |
97 |
|
{ |
98 |
|
return toRational(as_rational(v)); |
99 |
|
} |
100 |
|
Assert(false) << "Can not convert " << v << " to rational."; |
101 |
|
return Rational(); |
102 |
|
} |
103 |
|
Rational toRationalBelow(const poly::Value& v) |
104 |
|
{ |
105 |
|
if (is_algebraic_number(v)) |
106 |
|
{ |
107 |
|
return toRational(get_lower_bound(as_algebraic_number(v))); |
108 |
|
} |
109 |
|
else if (is_dyadic_rational(v)) |
110 |
|
{ |
111 |
|
return toRational(as_dyadic_rational(v)); |
112 |
|
} |
113 |
|
else if (is_integer(v)) |
114 |
|
{ |
115 |
|
return toRational(as_integer(v)); |
116 |
|
} |
117 |
|
else if (is_rational(v)) |
118 |
|
{ |
119 |
|
return toRational(as_rational(v)); |
120 |
|
} |
121 |
|
Assert(false) << "Can not convert " << v << " to rational."; |
122 |
|
return Rational(); |
123 |
|
} |
124 |
|
|
125 |
2804 |
poly::Integer toInteger(const Integer& i) |
126 |
|
{ |
127 |
|
#ifdef CVC5_GMP_IMP |
128 |
|
return poly::Integer(i.getValue()); |
129 |
|
#endif |
130 |
|
#ifdef CVC5_CLN_IMP |
131 |
8412 |
if (std::numeric_limits<long>::min() <= i.getValue() |
132 |
8412 |
&& i.getValue() <= std::numeric_limits<long>::max()) |
133 |
|
{ |
134 |
2472 |
return poly::Integer(cln::cl_I_to_long(i.getValue())); |
135 |
|
} |
136 |
|
else |
137 |
|
{ |
138 |
332 |
return poly::Integer(cast_by_string<mpz_class, Integer>(i)); |
139 |
|
} |
140 |
|
#endif |
141 |
|
} |
142 |
|
std::vector<poly::Integer> toInteger(const std::vector<Integer>& vi) |
143 |
|
{ |
144 |
|
std::vector<poly::Integer> res; |
145 |
|
for (const auto& i : vi) res.emplace_back(toInteger(i)); |
146 |
|
return res; |
147 |
|
} |
148 |
158 |
poly::Rational toRational(const Rational& r) |
149 |
|
{ |
150 |
|
#ifdef CVC5_GMP_IMP |
151 |
|
return poly::Rational(r.getValue()); |
152 |
|
#endif |
153 |
|
#ifdef CVC5_CLN_IMP |
154 |
316 |
return poly::Rational(toInteger(r.getNumerator()), |
155 |
474 |
toInteger(r.getDenominator())); |
156 |
|
#endif |
157 |
|
} |
158 |
|
|
159 |
10 |
std::optional<poly::DyadicRational> toDyadicRational(const Rational& r) |
160 |
|
{ |
161 |
20 |
Integer den = r.getDenominator(); |
162 |
10 |
if (den.isOne()) |
163 |
|
{ // It's an integer anyway. |
164 |
2 |
return poly::DyadicRational(toInteger(r.getNumerator())); |
165 |
|
} |
166 |
8 |
unsigned long exp = den.isPow2(); |
167 |
8 |
if (exp > 0) |
168 |
|
{ |
169 |
|
// It's a dyadic rational. |
170 |
4 |
return div_2exp(poly::DyadicRational(toInteger(r.getNumerator())), exp - 1); |
171 |
|
} |
172 |
4 |
return std::optional<poly::DyadicRational>(); |
173 |
|
} |
174 |
|
|
175 |
4 |
std::optional<poly::DyadicRational> toDyadicRational(const poly::Rational& r) |
176 |
|
{ |
177 |
8 |
poly::Integer den = denominator(r); |
178 |
4 |
if (den == poly::Integer(1)) |
179 |
|
{ // It's an integer anyway. |
180 |
4 |
return poly::DyadicRational(numerator(r)); |
181 |
|
} |
182 |
|
// Use bit_size as an estimate for the dyadic exponent. |
183 |
|
unsigned long size = bit_size(den) - 1; |
184 |
|
if (mul_pow2(poly::Integer(1), size) == den) |
185 |
|
{ |
186 |
|
// It's a dyadic rational. |
187 |
|
return div_2exp(poly::DyadicRational(numerator(r)), size); |
188 |
|
} |
189 |
|
return std::optional<poly::DyadicRational>(); |
190 |
|
} |
191 |
|
|
192 |
|
poly::Rational approximateToDyadic(const poly::Rational& r, |
193 |
|
const poly::Rational& original) |
194 |
|
{ |
195 |
|
// Multiply both numerator and denominator by two. |
196 |
|
// Increase or decrease the numerator, depending on whether r is too small or |
197 |
|
// too large. |
198 |
|
poly::Integer n = mul_pow2(numerator(r), 1); |
199 |
|
if (r < original) |
200 |
|
{ |
201 |
|
++n; |
202 |
|
} |
203 |
|
else if (r > original) |
204 |
|
{ |
205 |
|
--n; |
206 |
|
} |
207 |
|
return poly::Rational(n, mul_pow2(denominator(r), 1)); |
208 |
|
} |
209 |
|
|
210 |
4 |
poly::AlgebraicNumber toPolyRanWithRefinement(poly::UPolynomial&& p, |
211 |
|
const Rational& lower, |
212 |
|
const Rational& upper) |
213 |
|
{ |
214 |
8 |
std::optional<poly::DyadicRational> ml = toDyadicRational(lower); |
215 |
8 |
std::optional<poly::DyadicRational> mu = toDyadicRational(upper); |
216 |
4 |
if (ml && mu) |
217 |
|
{ |
218 |
2 |
return poly::AlgebraicNumber(std::move(p), |
219 |
4 |
poly::DyadicInterval(ml.value(), mu.value())); |
220 |
|
} |
221 |
|
// The encoded real algebraic number did not have dyadic rational endpoints. |
222 |
4 |
poly::Rational origl = toRational(lower); |
223 |
4 |
poly::Rational origu = toRational(upper); |
224 |
4 |
poly::Rational l(floor(origl)); |
225 |
4 |
poly::Rational u(ceil(origu)); |
226 |
4 |
poly::RationalInterval ri(l, u); |
227 |
2 |
while (count_real_roots(p, ri) != 1) |
228 |
|
{ |
229 |
|
l = approximateToDyadic(l, origl); |
230 |
|
u = approximateToDyadic(u, origu); |
231 |
|
ri = poly::RationalInterval(l, u); |
232 |
|
} |
233 |
2 |
Assert(count_real_roots(p, poly::RationalInterval(l, u)) == 1); |
234 |
2 |
ml = toDyadicRational(l); |
235 |
2 |
mu = toDyadicRational(u); |
236 |
2 |
Assert(ml && mu) << "Both bounds should be dyadic by now."; |
237 |
2 |
return poly::AlgebraicNumber(std::move(p), |
238 |
4 |
poly::DyadicInterval(ml.value(), mu.value())); |
239 |
|
} |
240 |
|
|
241 |
2 |
RealAlgebraicNumber toRanWithRefinement(poly::UPolynomial&& p, |
242 |
|
const Rational& lower, |
243 |
|
const Rational& upper) |
244 |
|
{ |
245 |
|
return RealAlgebraicNumber( |
246 |
2 |
toPolyRanWithRefinement(std::move(p), lower, upper)); |
247 |
|
} |
248 |
|
|
249 |
98150 |
std::size_t totalDegree(const poly::Polynomial& p) |
250 |
|
{ |
251 |
98150 |
std::size_t tdeg = 0; |
252 |
|
|
253 |
98150 |
lp_polynomial_traverse_f f = |
254 |
392560 |
[](const lp_polynomial_context_t* ctx, lp_monomial_t* m, void* data) { |
255 |
196280 |
std::size_t sum = 0; |
256 |
317116 |
for (std::size_t i = 0; i < m->n; ++i) |
257 |
|
{ |
258 |
120836 |
sum += m->p[i].d; |
259 |
|
} |
260 |
|
|
261 |
196280 |
std::size_t* td = static_cast<std::size_t*>(data); |
262 |
196280 |
*td = std::max(*td, sum); |
263 |
392560 |
}; |
264 |
|
|
265 |
98150 |
lp_polynomial_traverse(p.get_internal(), f, &tdeg); |
266 |
|
|
267 |
98150 |
return tdeg; |
268 |
|
} |
269 |
|
|
270 |
|
std::ostream& operator<<(std::ostream& os, const VariableInformation& vi) |
271 |
|
{ |
272 |
|
if (vi.var == poly::Variable()) |
273 |
|
{ |
274 |
|
os << "Totals: "; |
275 |
|
os << "max deg " << vi.max_degree; |
276 |
|
os << ", sum term deg " << vi.sum_term_degree; |
277 |
|
os << ", sum poly deg " << vi.sum_poly_degree; |
278 |
|
os << ", num polys " << vi.num_polynomials; |
279 |
|
os << ", num terms " << vi.num_terms; |
280 |
|
} |
281 |
|
else |
282 |
|
{ |
283 |
|
os << "Info for " << vi.var << ": "; |
284 |
|
os << "max deg " << vi.max_degree; |
285 |
|
os << ", max lc deg: " << vi.max_lc_degree; |
286 |
|
os << ", max term tdeg: " << vi.max_terms_tdegree; |
287 |
|
os << ", sum term deg " << vi.sum_term_degree; |
288 |
|
os << ", sum poly deg " << vi.sum_poly_degree; |
289 |
|
os << ", num polys " << vi.num_polynomials; |
290 |
|
os << ", num terms " << vi.num_terms; |
291 |
|
} |
292 |
|
return os; |
293 |
|
} |
294 |
|
|
295 |
2248 |
struct GetVarInfo |
296 |
|
{ |
297 |
|
VariableInformation* info; |
298 |
|
std::size_t cur_var_degree = 0; |
299 |
|
std::size_t cur_lc_degree = 0; |
300 |
|
}; |
301 |
2248 |
void getVariableInformation(VariableInformation& vi, |
302 |
|
const poly::Polynomial& poly) |
303 |
|
{ |
304 |
2248 |
GetVarInfo varinfo; |
305 |
2248 |
varinfo.info = &vi; |
306 |
2248 |
lp_polynomial_traverse_f f = |
307 |
9626 |
[](const lp_polynomial_context_t* ctx, lp_monomial_t* m, void* data) { |
308 |
4813 |
GetVarInfo* gvi = static_cast<GetVarInfo*>(data); |
309 |
4813 |
VariableInformation* info = gvi->info; |
310 |
|
// Total degree of this term |
311 |
4813 |
std::size_t tdeg = 0; |
312 |
|
// Degree of this variable within this term |
313 |
4813 |
std::size_t vardeg = 0; |
314 |
8577 |
for (std::size_t i = 0; i < m->n; ++i) |
315 |
|
{ |
316 |
3764 |
tdeg += m->p[i].d; |
317 |
3764 |
if (m->p[i].x == info->var) |
318 |
|
{ |
319 |
1597 |
info->max_degree = std::max(info->max_degree, m->p[i].d); |
320 |
1597 |
info->sum_term_degree += m->p[i].d; |
321 |
1597 |
vardeg = m->p[i].d; |
322 |
|
} |
323 |
|
} |
324 |
4813 |
if (info->var == poly::Variable()) |
325 |
|
{ |
326 |
|
++info->num_terms; |
327 |
|
info->max_degree = std::max(info->max_degree, tdeg); |
328 |
|
info->sum_term_degree += tdeg; |
329 |
|
} |
330 |
4813 |
else if (vardeg > 0) |
331 |
|
{ |
332 |
1597 |
++info->num_terms; |
333 |
1597 |
if (gvi->cur_var_degree < vardeg) |
334 |
|
{ |
335 |
1597 |
gvi->cur_lc_degree = tdeg - vardeg; |
336 |
|
} |
337 |
1597 |
info->max_terms_tdegree = std::max(info->max_terms_tdegree, tdeg); |
338 |
|
} |
339 |
9626 |
}; |
340 |
2248 |
std::size_t tmp_max_degree = vi.max_degree; |
341 |
2248 |
std::size_t tmp_num_terms = vi.num_terms; |
342 |
2248 |
vi.max_degree = 0; |
343 |
2248 |
vi.num_terms = 0; |
344 |
2248 |
lp_polynomial_traverse(poly.get_internal(), f, &varinfo); |
345 |
2248 |
vi.max_lc_degree = std::max(vi.max_lc_degree, varinfo.cur_lc_degree); |
346 |
2248 |
if (vi.num_terms > 0) |
347 |
|
{ |
348 |
1405 |
++vi.num_polynomials; |
349 |
|
} |
350 |
2248 |
vi.sum_poly_degree += vi.max_degree; |
351 |
2248 |
vi.max_degree = std::max(vi.max_degree, tmp_max_degree); |
352 |
2248 |
vi.num_terms += tmp_num_terms; |
353 |
2248 |
} |
354 |
|
|
355 |
|
} // namespace poly_utils |
356 |
29511 |
} // namespace cvc5 |
357 |
|
|
358 |
|
#endif |