1 |
|
/****************************************************************************** |
2 |
|
* Top contributors (to current version): |
3 |
|
* Andrew Reynolds, Haniel Barbosa, Aina Niemetz |
4 |
|
* |
5 |
|
* This file is part of the cvc5 project. |
6 |
|
* |
7 |
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS |
8 |
|
* in the top-level source directory and their institutional affiliations. |
9 |
|
* All rights reserved. See the file COPYING in the top-level source |
10 |
|
* directory for licensing information. |
11 |
|
* **************************************************************************** |
12 |
|
* |
13 |
|
* Implementation of module for processing proof nodes. |
14 |
|
*/ |
15 |
|
|
16 |
|
#include "smt/proof_post_processor.h" |
17 |
|
|
18 |
|
#include "expr/skolem_manager.h" |
19 |
|
#include "options/proof_options.h" |
20 |
|
#include "preprocessing/assertion_pipeline.h" |
21 |
|
#include "proof/proof_node_manager.h" |
22 |
|
#include "smt/smt_engine.h" |
23 |
|
#include "theory/arith/arith_utilities.h" |
24 |
|
#include "theory/builtin/proof_checker.h" |
25 |
|
#include "theory/bv/bitblast/bitblast_proof_generator.h" |
26 |
|
#include "theory/bv/bitblast/proof_bitblaster.h" |
27 |
|
#include "theory/rewriter.h" |
28 |
|
#include "theory/strings/infer_proof_cons.h" |
29 |
|
#include "theory/theory.h" |
30 |
|
#include "util/rational.h" |
31 |
|
|
32 |
|
using namespace cvc5::kind; |
33 |
|
using namespace cvc5::theory; |
34 |
|
|
35 |
|
namespace cvc5 { |
36 |
|
namespace smt { |
37 |
|
|
38 |
3796 |
ProofPostprocessCallback::ProofPostprocessCallback(Env& env, |
39 |
|
ProofGenerator* pppg, |
40 |
|
rewriter::RewriteDb* rdb, |
41 |
3796 |
bool updateScopedAssumptions) |
42 |
|
: d_env(env), |
43 |
3796 |
d_pnm(env.getProofNodeManager()), |
44 |
|
d_pppg(pppg), |
45 |
|
d_wfpm(env.getProofNodeManager()), |
46 |
7592 |
d_updateScopedAssumptions(updateScopedAssumptions) |
47 |
|
{ |
48 |
3796 |
d_true = NodeManager::currentNM()->mkConst(true); |
49 |
3796 |
} |
50 |
|
|
51 |
2820 |
void ProofPostprocessCallback::initializeUpdate() |
52 |
|
{ |
53 |
2820 |
d_assumpToProof.clear(); |
54 |
2820 |
d_wfAssumptions.clear(); |
55 |
2820 |
} |
56 |
|
|
57 |
13068 |
void ProofPostprocessCallback::setEliminateRule(PfRule rule) |
58 |
|
{ |
59 |
13068 |
d_elimRules.insert(rule); |
60 |
13068 |
} |
61 |
|
|
62 |
2510723 |
bool ProofPostprocessCallback::shouldUpdate(std::shared_ptr<ProofNode> pn, |
63 |
|
const std::vector<Node>& fa, |
64 |
|
bool& continueUpdate) |
65 |
|
{ |
66 |
2510723 |
PfRule id = pn->getRule(); |
67 |
2510723 |
if (d_elimRules.find(id) != d_elimRules.end()) |
68 |
|
{ |
69 |
156912 |
return true; |
70 |
|
} |
71 |
|
// other than elimination rules, we always update assumptions as long as |
72 |
|
// d_updateScopedAssumptions is true or they are *not* in scope, i.e., not in |
73 |
|
// fa |
74 |
4707622 |
if (id != PfRule::ASSUME |
75 |
6781489 |
|| (!d_updateScopedAssumptions |
76 |
2353811 |
&& std::find(fa.begin(), fa.end(), pn->getResult()) != fa.end())) |
77 |
|
{ |
78 |
4147734 |
Trace("smt-proof-pp-debug") |
79 |
2073867 |
<< "... not updating in-scope assumption " << pn->getResult() << "\n"; |
80 |
2073867 |
return false; |
81 |
|
} |
82 |
279944 |
return true; |
83 |
|
} |
84 |
|
|
85 |
501877 |
bool ProofPostprocessCallback::update(Node res, |
86 |
|
PfRule id, |
87 |
|
const std::vector<Node>& children, |
88 |
|
const std::vector<Node>& args, |
89 |
|
CDProof* cdp, |
90 |
|
bool& continueUpdate) |
91 |
|
{ |
92 |
1003754 |
Trace("smt-proof-pp-debug") << "- Post process " << id << " " << children |
93 |
501877 |
<< " / " << args << std::endl; |
94 |
|
|
95 |
501877 |
if (id == PfRule::ASSUME) |
96 |
|
{ |
97 |
|
// we cache based on the assumption node, not the proof node, since there |
98 |
|
// may be multiple occurrences of the same node. |
99 |
559888 |
Node f = args[0]; |
100 |
559888 |
std::shared_ptr<ProofNode> pfn; |
101 |
|
std::map<Node, std::shared_ptr<ProofNode>>::iterator it = |
102 |
279944 |
d_assumpToProof.find(f); |
103 |
279944 |
if (it != d_assumpToProof.end()) |
104 |
|
{ |
105 |
245171 |
Trace("smt-proof-pp-debug") << "...already computed" << std::endl; |
106 |
245171 |
pfn = it->second; |
107 |
|
} |
108 |
|
else |
109 |
|
{ |
110 |
34773 |
Trace("smt-proof-pp-debug") << "...get proof" << std::endl; |
111 |
34773 |
Assert(d_pppg != nullptr); |
112 |
|
// get proof from preprocess proof generator |
113 |
34773 |
pfn = d_pppg->getProofFor(f); |
114 |
34773 |
Trace("smt-proof-pp-debug") << "...finished get proof" << std::endl; |
115 |
|
// print for debugging |
116 |
34773 |
if (pfn == nullptr) |
117 |
|
{ |
118 |
32918 |
Trace("smt-proof-pp-debug") |
119 |
16459 |
<< "...no proof, possibly an input assumption" << std::endl; |
120 |
|
} |
121 |
|
else |
122 |
|
{ |
123 |
18314 |
Assert(pfn->getResult() == f); |
124 |
18314 |
if (Trace.isOn("smt-proof-pp")) |
125 |
|
{ |
126 |
|
Trace("smt-proof-pp") |
127 |
|
<< "=== Connect proof for preprocessing: " << f << std::endl; |
128 |
|
Trace("smt-proof-pp") << *pfn.get() << std::endl; |
129 |
|
} |
130 |
|
} |
131 |
34773 |
d_assumpToProof[f] = pfn; |
132 |
|
} |
133 |
279944 |
if (pfn == nullptr || pfn->getRule() == PfRule::ASSUME) |
134 |
|
{ |
135 |
263323 |
Trace("smt-proof-pp-debug") << "...do not add proof" << std::endl; |
136 |
|
// no update |
137 |
263323 |
return false; |
138 |
|
} |
139 |
16621 |
Trace("smt-proof-pp-debug") << "...add proof" << std::endl; |
140 |
|
// connect the proof |
141 |
16621 |
cdp->addProof(pfn); |
142 |
16621 |
return true; |
143 |
|
} |
144 |
443866 |
Node ret = expandMacros(id, children, args, cdp); |
145 |
221933 |
Trace("smt-proof-pp-debug") << "...expanded = " << !ret.isNull() << std::endl; |
146 |
221933 |
return !ret.isNull(); |
147 |
|
} |
148 |
|
|
149 |
65021 |
bool ProofPostprocessCallback::updateInternal(Node res, |
150 |
|
PfRule id, |
151 |
|
const std::vector<Node>& children, |
152 |
|
const std::vector<Node>& args, |
153 |
|
CDProof* cdp) |
154 |
|
{ |
155 |
65021 |
bool continueUpdate = true; |
156 |
65021 |
return update(res, id, children, args, cdp, continueUpdate); |
157 |
|
} |
158 |
|
|
159 |
37982 |
Node ProofPostprocessCallback::eliminateCrowdingLits( |
160 |
|
const std::vector<Node>& clauseLits, |
161 |
|
const std::vector<Node>& targetClauseLits, |
162 |
|
const std::vector<Node>& children, |
163 |
|
const std::vector<Node>& args, |
164 |
|
CDProof* cdp) |
165 |
|
{ |
166 |
37982 |
Trace("smt-proof-pp-debug2") << push; |
167 |
37982 |
NodeManager* nm = NodeManager::currentNM(); |
168 |
75964 |
Node trueNode = nm->mkConst(true); |
169 |
|
// get crowding lits and the position of the last clause that includes |
170 |
|
// them. The factoring step must be added after the last inclusion and before |
171 |
|
// its elimination. |
172 |
75964 |
std::unordered_set<TNode> crowding; |
173 |
75964 |
std::vector<std::pair<Node, size_t>> lastInclusion; |
174 |
|
// positions of eliminators of crowding literals, which are the positions of |
175 |
|
// the clauses that eliminate crowding literals *after* their last inclusion |
176 |
75964 |
std::vector<size_t> eliminators; |
177 |
1886699 |
for (size_t i = 0, size = clauseLits.size(); i < size; ++i) |
178 |
|
{ |
179 |
5546151 |
if (!crowding.count(clauseLits[i]) |
180 |
8769941 |
&& std::find( |
181 |
1611895 |
targetClauseLits.begin(), targetClauseLits.end(), clauseLits[i]) |
182 |
5072507 |
== targetClauseLits.end()) |
183 |
|
{ |
184 |
545718 |
Node crowdLit = clauseLits[i]; |
185 |
272859 |
crowding.insert(crowdLit); |
186 |
272859 |
Trace("smt-proof-pp-debug2") << "crowding lit " << crowdLit << "\n"; |
187 |
|
// found crowding lit, now get its last inclusion position, which is the |
188 |
|
// position of the last resolution link that introduces the crowding |
189 |
|
// literal. Note that this position has to be *before* the last link, as a |
190 |
|
// link *after* the last inclusion must eliminate the crowding literal. |
191 |
|
size_t j; |
192 |
5529758 |
for (j = children.size() - 1; j > 0; --j) |
193 |
|
{ |
194 |
|
// notice that only non-singleton clauses may be introducing the |
195 |
|
// crowding literal, so we only care about non-singleton OR nodes. We |
196 |
|
// check then against the kind and whether the whole OR node occurs as a |
197 |
|
// pivot of the respective resolution |
198 |
5529758 |
if (children[j - 1].getKind() != kind::OR) |
199 |
|
{ |
200 |
871225 |
continue; |
201 |
|
} |
202 |
4658533 |
uint64_t pivotIndex = 2 * (j - 1); |
203 |
9317066 |
if (args[pivotIndex] == children[j - 1] |
204 |
9317066 |
|| args[pivotIndex].notNode() == children[j - 1]) |
205 |
|
{ |
206 |
15099 |
continue; |
207 |
|
} |
208 |
13930302 |
if (std::find(children[j - 1].begin(), children[j - 1].end(), crowdLit) |
209 |
13930302 |
!= children[j - 1].end()) |
210 |
|
{ |
211 |
272859 |
break; |
212 |
|
} |
213 |
|
} |
214 |
272859 |
Assert(j > 0); |
215 |
272859 |
lastInclusion.emplace_back(crowdLit, j - 1); |
216 |
|
|
217 |
272859 |
Trace("smt-proof-pp-debug2") << "last inc " << j - 1 << "\n"; |
218 |
|
// get elimination position, starting from the following link as the last |
219 |
|
// inclusion one. The result is the last (in the chain, but first from |
220 |
|
// this point on) resolution link that eliminates the crowding literal. A |
221 |
|
// literal l is eliminated by a link if it contains a literal l' with |
222 |
|
// opposite polarity to l. |
223 |
1949583 |
for (; j < children.size(); ++j) |
224 |
|
{ |
225 |
1111221 |
bool posFirst = args[(2 * j) - 1] == trueNode; |
226 |
1949583 |
Node pivot = args[(2 * j)]; |
227 |
2222442 |
Trace("smt-proof-pp-debug2") |
228 |
1111221 |
<< "\tcheck w/ args " << posFirst << " / " << pivot << "\n"; |
229 |
|
// To eliminate the crowding literal (crowdLit), the clause must contain |
230 |
|
// it with opposite polarity. There are three successful cases, |
231 |
|
// according to the pivot and its sign |
232 |
|
// |
233 |
|
// - crowdLit is the same as the pivot and posFirst is true, which means |
234 |
|
// that the clause contains its negation and eliminates it |
235 |
|
// |
236 |
|
// - crowdLit is the negation of the pivot and posFirst is false, so the |
237 |
|
// clause contains the node whose negation is crowdLit. Note that this |
238 |
|
// case may either be crowdLit.notNode() == pivot or crowdLit == |
239 |
|
// pivot.notNode(). |
240 |
2353374 |
if ((crowdLit == pivot && posFirst) |
241 |
2091510 |
|| (crowdLit.notNode() == pivot && !posFirst) |
242 |
3202731 |
|| (pivot.notNode() == crowdLit && !posFirst)) |
243 |
|
{ |
244 |
272859 |
Trace("smt-proof-pp-debug2") << "\t\tfound it!\n"; |
245 |
272859 |
eliminators.push_back(j); |
246 |
272859 |
break; |
247 |
|
} |
248 |
|
} |
249 |
272859 |
AlwaysAssert(j < children.size()); |
250 |
|
} |
251 |
|
} |
252 |
37982 |
Assert(!lastInclusion.empty()); |
253 |
|
// order map so that we process crowding literals in the order of the clauses |
254 |
|
// that last introduce them |
255 |
813929 |
auto cmp = [](std::pair<Node, size_t>& a, std::pair<Node, size_t>& b) { |
256 |
813929 |
return a.second < b.second; |
257 |
813929 |
}; |
258 |
37982 |
std::sort(lastInclusion.begin(), lastInclusion.end(), cmp); |
259 |
|
// order eliminators |
260 |
37982 |
std::sort(eliminators.begin(), eliminators.end()); |
261 |
37982 |
if (Trace.isOn("smt-proof-pp-debug")) |
262 |
|
{ |
263 |
|
Trace("smt-proof-pp-debug") << "crowding lits last inclusion:\n"; |
264 |
|
for (const auto& pair : lastInclusion) |
265 |
|
{ |
266 |
|
Trace("smt-proof-pp-debug") |
267 |
|
<< "\t- [" << pair.second << "] : " << pair.first << "\n"; |
268 |
|
} |
269 |
|
Trace("smt-proof-pp-debug") << "eliminators:"; |
270 |
|
for (size_t elim : eliminators) |
271 |
|
{ |
272 |
|
Trace("smt-proof-pp-debug") << " " << elim; |
273 |
|
} |
274 |
|
Trace("smt-proof-pp-debug") << "\n"; |
275 |
|
} |
276 |
|
// TODO (cvc4-wishues/issues/77): implement also simpler version and compare |
277 |
|
// |
278 |
|
// We now start to break the chain, one step at a time. Naively this breaking |
279 |
|
// down would be one resolution/factoring to each crowding literal, but we can |
280 |
|
// merge some of the cases. Effectively we do the following: |
281 |
|
// |
282 |
|
// |
283 |
|
// lastClause children[start] ... children[end] |
284 |
|
// ---------------------------------------------- CHAIN_RES |
285 |
|
// C |
286 |
|
// ----------- FACTORING |
287 |
|
// lastClause' children[start'] ... children[end'] |
288 |
|
// -------------------------------------------------------------- CHAIN_RES |
289 |
|
// ... |
290 |
|
// |
291 |
|
// where |
292 |
|
// lastClause_0 = children[0] |
293 |
|
// start_0 = 1 |
294 |
|
// end_0 = eliminators[0] - 1 |
295 |
|
// start_i+1 = nextGuardedElimPos - 1 |
296 |
|
// |
297 |
|
// The important point is how end_i+1 is computed. It is based on what we call |
298 |
|
// the "nextGuardedElimPos", i.e., the next elimination position that requires |
299 |
|
// removal of duplicates. The intuition is that a factoring step may eliminate |
300 |
|
// the duplicates of crowding literals l1 and l2. If the last inclusion of l2 |
301 |
|
// is before the elimination of l1, then we can go ahead and also perform the |
302 |
|
// elimination of l2 without another factoring. However if another literal l3 |
303 |
|
// has its last inclusion after the elimination of l2, then the elimination of |
304 |
|
// l3 is the next guarded elimination. |
305 |
|
// |
306 |
|
// To do the above computation then we determine, after a resolution/factoring |
307 |
|
// step, the first crowded literal to have its last inclusion after "end". The |
308 |
|
// first elimination position to be bigger than the position of that crowded |
309 |
|
// literal is the next guarded elimination position. |
310 |
37982 |
size_t lastElim = 0; |
311 |
37982 |
Node lastClause = children[0]; |
312 |
75964 |
std::vector<Node> childrenRes; |
313 |
75964 |
std::vector<Node> childrenResArgs; |
314 |
75964 |
Node resPlaceHolder; |
315 |
37982 |
size_t nextGuardedElimPos = eliminators[0]; |
316 |
|
do |
317 |
|
{ |
318 |
212978 |
size_t start = lastElim + 1; |
319 |
212978 |
size_t end = nextGuardedElimPos - 1; |
320 |
425956 |
Trace("smt-proof-pp-debug2") |
321 |
212978 |
<< "res with:\n\tlastClause: " << lastClause << "\n\tstart: " << start |
322 |
212978 |
<< "\n\tend: " << end << "\n"; |
323 |
212978 |
childrenRes.push_back(lastClause); |
324 |
|
// note that the interval of insert is exclusive in the end, so we add 1 |
325 |
638934 |
childrenRes.insert(childrenRes.end(), |
326 |
425956 |
children.begin() + start, |
327 |
1064890 |
children.begin() + end + 1); |
328 |
638934 |
childrenResArgs.insert(childrenResArgs.end(), |
329 |
425956 |
args.begin() + (2 * start) - 1, |
330 |
1064890 |
args.begin() + (2 * end) + 1); |
331 |
212978 |
Trace("smt-proof-pp-debug2") << "res children: " << childrenRes << "\n"; |
332 |
212978 |
Trace("smt-proof-pp-debug2") << "res args: " << childrenResArgs << "\n"; |
333 |
425956 |
resPlaceHolder = d_pnm->getChecker()->checkDebug(PfRule::CHAIN_RESOLUTION, |
334 |
|
childrenRes, |
335 |
|
childrenResArgs, |
336 |
425956 |
Node::null(), |
337 |
|
""); |
338 |
425956 |
Trace("smt-proof-pp-debug2") |
339 |
212978 |
<< "resPlaceHorder: " << resPlaceHolder << "\n"; |
340 |
212978 |
cdp->addStep( |
341 |
|
resPlaceHolder, PfRule::CHAIN_RESOLUTION, childrenRes, childrenResArgs); |
342 |
|
// I need to add factoring if end < children.size(). Otherwise, this is |
343 |
|
// to be handled by the caller |
344 |
212978 |
if (end < children.size() - 1) |
345 |
|
{ |
346 |
524988 |
lastClause = d_pnm->getChecker()->checkDebug( |
347 |
524988 |
PfRule::FACTORING, {resPlaceHolder}, {}, Node::null(), ""); |
348 |
174996 |
if (!lastClause.isNull()) |
349 |
|
{ |
350 |
174996 |
cdp->addStep(lastClause, PfRule::FACTORING, {resPlaceHolder}, {}); |
351 |
|
} |
352 |
|
else |
353 |
|
{ |
354 |
|
lastClause = resPlaceHolder; |
355 |
|
} |
356 |
174996 |
Trace("smt-proof-pp-debug2") << "lastClause: " << lastClause << "\n"; |
357 |
|
} |
358 |
|
else |
359 |
|
{ |
360 |
37982 |
lastClause = resPlaceHolder; |
361 |
37982 |
break; |
362 |
|
} |
363 |
|
// update for next round |
364 |
174996 |
childrenRes.clear(); |
365 |
174996 |
childrenResArgs.clear(); |
366 |
174996 |
lastElim = end; |
367 |
|
|
368 |
|
// find the position of the last inclusion of the next crowded literal |
369 |
174996 |
size_t nextCrowdedInclusionPos = lastInclusion.size(); |
370 |
1457839 |
for (size_t i = 0, size = lastInclusion.size(); i < size; ++i) |
371 |
|
{ |
372 |
1419857 |
if (lastInclusion[i].second > lastElim) |
373 |
|
{ |
374 |
137014 |
nextCrowdedInclusionPos = i; |
375 |
137014 |
break; |
376 |
|
} |
377 |
|
} |
378 |
349992 |
Trace("smt-proof-pp-debug2") |
379 |
174996 |
<< "nextCrowdedInclusion/Pos: " |
380 |
174996 |
<< lastInclusion[nextCrowdedInclusionPos].second << "/" |
381 |
174996 |
<< nextCrowdedInclusionPos << "\n"; |
382 |
|
// if there is none, then the remaining literals will be used in the next |
383 |
|
// round |
384 |
174996 |
if (nextCrowdedInclusionPos == lastInclusion.size()) |
385 |
|
{ |
386 |
37982 |
nextGuardedElimPos = children.size(); |
387 |
|
} |
388 |
|
else |
389 |
|
{ |
390 |
137014 |
nextGuardedElimPos = children.size(); |
391 |
1076454 |
for (size_t i = 0, size = eliminators.size(); i < size; ++i) |
392 |
|
{ |
393 |
|
// nextGuardedElimPos is the largest element of |
394 |
|
// eliminators bigger the next crowded literal's last inclusion |
395 |
1076454 |
if (eliminators[i] > lastInclusion[nextCrowdedInclusionPos].second) |
396 |
|
{ |
397 |
137014 |
nextGuardedElimPos = eliminators[i]; |
398 |
137014 |
break; |
399 |
|
} |
400 |
|
} |
401 |
137014 |
Assert(nextGuardedElimPos < children.size()); |
402 |
|
} |
403 |
349992 |
Trace("smt-proof-pp-debug2") |
404 |
349992 |
<< "nextGuardedElimPos: " << nextGuardedElimPos << "\n"; |
405 |
|
} while (true); |
406 |
75964 |
Trace("smt-proof-pp-debug2") << pop; |
407 |
75964 |
return lastClause; |
408 |
|
} |
409 |
|
|
410 |
309618 |
Node ProofPostprocessCallback::expandMacros(PfRule id, |
411 |
|
const std::vector<Node>& children, |
412 |
|
const std::vector<Node>& args, |
413 |
|
CDProof* cdp) |
414 |
|
{ |
415 |
309618 |
if (d_elimRules.find(id) == d_elimRules.end()) |
416 |
|
{ |
417 |
|
// not eliminated |
418 |
6 |
return Node::null(); |
419 |
|
} |
420 |
|
// macro elimination |
421 |
309612 |
if (id == PfRule::MACRO_SR_EQ_INTRO) |
422 |
|
{ |
423 |
|
// (TRANS |
424 |
|
// (SUBS <children> :args args[0:1]) |
425 |
|
// (REWRITE :args <t.substitute(x1,t1). ... .substitute(xn,tn)> args[2])) |
426 |
184514 |
std::vector<Node> tchildren; |
427 |
184514 |
Node t = args[0]; |
428 |
184514 |
Node ts; |
429 |
92257 |
if (!children.empty()) |
430 |
|
{ |
431 |
27836 |
std::vector<Node> sargs; |
432 |
13918 |
sargs.push_back(t); |
433 |
13918 |
MethodId ids = MethodId::SB_DEFAULT; |
434 |
13918 |
if (args.size() >= 2) |
435 |
|
{ |
436 |
10498 |
if (getMethodId(args[1], ids)) |
437 |
|
{ |
438 |
10498 |
sargs.push_back(args[1]); |
439 |
|
} |
440 |
|
} |
441 |
13918 |
MethodId ida = MethodId::SBA_SEQUENTIAL; |
442 |
13918 |
if (args.size() >= 3) |
443 |
|
{ |
444 |
2572 |
if (getMethodId(args[2], ida)) |
445 |
|
{ |
446 |
2572 |
sargs.push_back(args[2]); |
447 |
|
} |
448 |
|
} |
449 |
13918 |
ts = builtin::BuiltinProofRuleChecker::applySubstitution( |
450 |
|
t, children, ids, ida); |
451 |
27836 |
Trace("smt-proof-pp-debug") |
452 |
13918 |
<< "...eq intro subs equality is " << t << " == " << ts << ", from " |
453 |
13918 |
<< ids << " " << ida << std::endl; |
454 |
13918 |
if (ts != t) |
455 |
|
{ |
456 |
16918 |
Node eq = t.eqNode(ts); |
457 |
|
// apply SUBS proof rule if necessary |
458 |
8459 |
if (!updateInternal(eq, PfRule::SUBS, children, sargs, cdp)) |
459 |
|
{ |
460 |
|
// if we specified that we did not want to eliminate, add as step |
461 |
|
cdp->addStep(eq, PfRule::SUBS, children, sargs); |
462 |
|
} |
463 |
8459 |
tchildren.push_back(eq); |
464 |
|
} |
465 |
|
} |
466 |
|
else |
467 |
|
{ |
468 |
|
// no substitute |
469 |
78339 |
ts = t; |
470 |
|
} |
471 |
184514 |
std::vector<Node> rargs; |
472 |
92257 |
rargs.push_back(ts); |
473 |
92257 |
MethodId idr = MethodId::RW_REWRITE; |
474 |
92257 |
if (args.size() >= 4) |
475 |
|
{ |
476 |
51 |
if (getMethodId(args[3], idr)) |
477 |
|
{ |
478 |
51 |
rargs.push_back(args[3]); |
479 |
|
} |
480 |
|
} |
481 |
92257 |
Rewriter* rr = d_env.getRewriter(); |
482 |
184514 |
Node tr = rr->rewriteViaMethod(ts, idr); |
483 |
184514 |
Trace("smt-proof-pp-debug") |
484 |
92257 |
<< "...eq intro rewrite equality is " << ts << " == " << tr << ", from " |
485 |
92257 |
<< idr << std::endl; |
486 |
92257 |
if (ts != tr) |
487 |
|
{ |
488 |
113124 |
Node eq = ts.eqNode(tr); |
489 |
|
// apply REWRITE proof rule |
490 |
56562 |
if (!updateInternal(eq, PfRule::REWRITE, {}, rargs, cdp)) |
491 |
|
{ |
492 |
|
// if not elimianted, add as step |
493 |
|
cdp->addStep(eq, PfRule::REWRITE, {}, rargs); |
494 |
|
} |
495 |
56562 |
tchildren.push_back(eq); |
496 |
|
} |
497 |
92257 |
if (t == tr) |
498 |
|
{ |
499 |
|
// typically not necessary, but done to be robust |
500 |
34465 |
cdp->addStep(t.eqNode(tr), PfRule::REFL, {}, {t}); |
501 |
34465 |
return t.eqNode(tr); |
502 |
|
} |
503 |
|
// must add TRANS if two step |
504 |
57792 |
return addProofForTrans(tchildren, cdp); |
505 |
|
} |
506 |
217355 |
else if (id == PfRule::MACRO_SR_PRED_INTRO) |
507 |
|
{ |
508 |
15698 |
std::vector<Node> tchildren; |
509 |
15698 |
std::vector<Node> sargs = args; |
510 |
|
// take into account witness form, if necessary |
511 |
7849 |
bool reqWitness = d_wfpm.requiresWitnessFormIntro(args[0]); |
512 |
15698 |
Trace("smt-proof-pp-debug") |
513 |
7849 |
<< "...pred intro reqWitness=" << reqWitness << std::endl; |
514 |
|
// (TRUE_ELIM |
515 |
|
// (TRANS |
516 |
|
// (MACRO_SR_EQ_INTRO <children> :args (t args[1:])) |
517 |
|
// ... proof of apply_SR(t) = toWitness(apply_SR(t)) ... |
518 |
|
// (MACRO_SR_EQ_INTRO {} {toWitness(apply_SR(t))}) |
519 |
|
// )) |
520 |
|
// Notice this is an optimized, one sided version of the expansion of |
521 |
|
// MACRO_SR_PRED_TRANSFORM below. |
522 |
|
// We call the expandMacros method on MACRO_SR_EQ_INTRO, where notice |
523 |
|
// that this rule application is immediately expanded in the recursive |
524 |
|
// call and not added to the proof. |
525 |
15698 |
Node conc = expandMacros(PfRule::MACRO_SR_EQ_INTRO, children, sargs, cdp); |
526 |
15698 |
Trace("smt-proof-pp-debug") |
527 |
7849 |
<< "...pred intro conclusion is " << conc << std::endl; |
528 |
7849 |
Assert(!conc.isNull()); |
529 |
7849 |
Assert(conc.getKind() == EQUAL); |
530 |
7849 |
Assert(conc[0] == args[0]); |
531 |
7849 |
tchildren.push_back(conc); |
532 |
7849 |
if (reqWitness) |
533 |
|
{ |
534 |
5760 |
Node weq = addProofForWitnessForm(conc[1], cdp); |
535 |
2880 |
Trace("smt-proof-pp-debug") << "...weq is " << weq << std::endl; |
536 |
2880 |
if (addToTransChildren(weq, tchildren)) |
537 |
|
{ |
538 |
|
// toWitness(apply_SR(t)) = apply_SR(toWitness(apply_SR(t))) |
539 |
|
// rewrite again, don't need substitution. Also we always use the |
540 |
|
// default rewriter, due to the definition of MACRO_SR_PRED_INTRO. |
541 |
5496 |
Node weqr = expandMacros(PfRule::MACRO_SR_EQ_INTRO, {}, {weq[1]}, cdp); |
542 |
2748 |
addToTransChildren(weqr, tchildren); |
543 |
|
} |
544 |
|
} |
545 |
|
// apply transitivity if necessary |
546 |
15698 |
Node eq = addProofForTrans(tchildren, cdp); |
547 |
7849 |
Assert(!eq.isNull()); |
548 |
7849 |
Assert(eq.getKind() == EQUAL); |
549 |
7849 |
Assert(eq[0] == args[0]); |
550 |
7849 |
Assert(eq[1] == d_true); |
551 |
|
|
552 |
7849 |
cdp->addStep(eq[0], PfRule::TRUE_ELIM, {eq}, {}); |
553 |
7849 |
return eq[0]; |
554 |
|
} |
555 |
209506 |
else if (id == PfRule::MACRO_SR_PRED_ELIM) |
556 |
|
{ |
557 |
|
// (EQ_RESOLVE |
558 |
|
// children[0] |
559 |
|
// (MACRO_SR_EQ_INTRO children[1:] :args children[0] ++ args)) |
560 |
4726 |
std::vector<Node> schildren(children.begin() + 1, children.end()); |
561 |
4726 |
std::vector<Node> srargs; |
562 |
2363 |
srargs.push_back(children[0]); |
563 |
2363 |
srargs.insert(srargs.end(), args.begin(), args.end()); |
564 |
4726 |
Node conc = expandMacros(PfRule::MACRO_SR_EQ_INTRO, schildren, srargs, cdp); |
565 |
2363 |
Assert(!conc.isNull()); |
566 |
2363 |
Assert(conc.getKind() == EQUAL); |
567 |
2363 |
Assert(conc[0] == children[0]); |
568 |
|
// apply equality resolve |
569 |
2363 |
cdp->addStep(conc[1], PfRule::EQ_RESOLVE, {children[0], conc}, {}); |
570 |
2363 |
return conc[1]; |
571 |
|
} |
572 |
207143 |
else if (id == PfRule::MACRO_SR_PRED_TRANSFORM) |
573 |
|
{ |
574 |
|
// (EQ_RESOLVE |
575 |
|
// children[0] |
576 |
|
// (TRANS |
577 |
|
// (MACRO_SR_EQ_INTRO children[1:] :args (children[0] args[1:])) |
578 |
|
// ... proof of c = wc |
579 |
|
// (MACRO_SR_EQ_INTRO {} wc) |
580 |
|
// (SYMM |
581 |
|
// (MACRO_SR_EQ_INTRO children[1:] :args <args>) |
582 |
|
// ... proof of a = wa |
583 |
|
// (MACRO_SR_EQ_INTRO {} wa)))) |
584 |
|
// where |
585 |
|
// wa = toWitness(apply_SR(args[0])) and |
586 |
|
// wc = toWitness(apply_SR(children[0])). |
587 |
77534 |
Trace("smt-proof-pp-debug") |
588 |
38767 |
<< "Transform " << children[0] << " == " << args[0] << std::endl; |
589 |
38767 |
if (CDProof::isSame(children[0], args[0])) |
590 |
|
{ |
591 |
4373 |
Trace("smt-proof-pp-debug") << "...nothing to do" << std::endl; |
592 |
|
// nothing to do |
593 |
4373 |
return children[0]; |
594 |
|
} |
595 |
68788 |
std::vector<Node> tchildren; |
596 |
68788 |
std::vector<Node> schildren(children.begin() + 1, children.end()); |
597 |
68788 |
std::vector<Node> sargs = args; |
598 |
|
// first, compute if we need |
599 |
34394 |
bool reqWitness = d_wfpm.requiresWitnessFormTransform(children[0], args[0]); |
600 |
34394 |
Trace("smt-proof-pp-debug") << "...reqWitness=" << reqWitness << std::endl; |
601 |
|
// convert both sides, in three steps, take symmetry of second chain |
602 |
103182 |
for (unsigned r = 0; r < 2; r++) |
603 |
|
{ |
604 |
137576 |
std::vector<Node> tchildrenr; |
605 |
|
// first rewrite children[0], then args[0] |
606 |
68788 |
sargs[0] = r == 0 ? children[0] : args[0]; |
607 |
|
// t = apply_SR(t) |
608 |
137576 |
Node eq = expandMacros(PfRule::MACRO_SR_EQ_INTRO, schildren, sargs, cdp); |
609 |
137576 |
Trace("smt-proof-pp-debug") |
610 |
68788 |
<< "transform subs_rewrite (" << r << "): " << eq << std::endl; |
611 |
68788 |
Assert(!eq.isNull() && eq.getKind() == EQUAL && eq[0] == sargs[0]); |
612 |
68788 |
addToTransChildren(eq, tchildrenr); |
613 |
|
// apply_SR(t) = toWitness(apply_SR(t)) |
614 |
68788 |
if (reqWitness) |
615 |
|
{ |
616 |
23332 |
Node weq = addProofForWitnessForm(eq[1], cdp); |
617 |
23332 |
Trace("smt-proof-pp-debug") |
618 |
11666 |
<< "transform toWitness (" << r << "): " << weq << std::endl; |
619 |
11666 |
if (addToTransChildren(weq, tchildrenr)) |
620 |
|
{ |
621 |
|
// toWitness(apply_SR(t)) = apply_SR(toWitness(apply_SR(t))) |
622 |
|
// rewrite again, don't need substitution. Also, we always use the |
623 |
|
// default rewriter, due to the definition of MACRO_SR_PRED_TRANSFORM. |
624 |
|
Node weqr = |
625 |
11862 |
expandMacros(PfRule::MACRO_SR_EQ_INTRO, {}, {weq[1]}, cdp); |
626 |
11862 |
Trace("smt-proof-pp-debug") << "transform rewrite_witness (" << r |
627 |
5931 |
<< "): " << weqr << std::endl; |
628 |
5931 |
addToTransChildren(weqr, tchildrenr); |
629 |
|
} |
630 |
|
} |
631 |
137576 |
Trace("smt-proof-pp-debug") |
632 |
68788 |
<< "transform connect (" << r << ")" << std::endl; |
633 |
|
// add to overall chain |
634 |
68788 |
if (r == 0) |
635 |
|
{ |
636 |
|
// add the current chain to the overall chain |
637 |
34394 |
tchildren.insert(tchildren.end(), tchildrenr.begin(), tchildrenr.end()); |
638 |
|
} |
639 |
|
else |
640 |
|
{ |
641 |
|
// add the current chain to cdp |
642 |
68788 |
Node eqr = addProofForTrans(tchildrenr, cdp); |
643 |
34394 |
if (!eqr.isNull()) |
644 |
|
{ |
645 |
43240 |
Trace("smt-proof-pp-debug") << "transform connect sym " << tchildren |
646 |
21620 |
<< " " << eqr << std::endl; |
647 |
|
// take symmetry of above and add it to the overall chain |
648 |
21620 |
addToTransChildren(eqr, tchildren, true); |
649 |
|
} |
650 |
|
} |
651 |
137576 |
Trace("smt-proof-pp-debug") |
652 |
68788 |
<< "transform finish (" << r << ")" << std::endl; |
653 |
|
} |
654 |
|
|
655 |
|
// apply transitivity if necessary |
656 |
68788 |
Node eq = addProofForTrans(tchildren, cdp); |
657 |
|
|
658 |
34394 |
cdp->addStep(args[0], PfRule::EQ_RESOLVE, {children[0], eq}, {}); |
659 |
34394 |
return args[0]; |
660 |
|
} |
661 |
168376 |
else if (id == PfRule::MACRO_RESOLUTION |
662 |
168376 |
|| id == PfRule::MACRO_RESOLUTION_TRUST) |
663 |
|
{ |
664 |
|
// first generate the naive chain_resolution |
665 |
179718 |
std::vector<Node> chainResArgs{args.begin() + 1, args.end()}; |
666 |
89859 |
Node chainConclusion = d_pnm->getChecker()->checkDebug( |
667 |
179718 |
PfRule::CHAIN_RESOLUTION, children, chainResArgs, Node::null(), ""); |
668 |
89859 |
Trace("smt-proof-pp-debug") << "Original conclusion: " << args[0] << "\n"; |
669 |
179718 |
Trace("smt-proof-pp-debug") |
670 |
89859 |
<< "chainRes conclusion: " << chainConclusion << "\n"; |
671 |
|
// There are n cases: |
672 |
|
// - if the conclusion is the same, just replace |
673 |
|
// - if they have the same literals but in different quantity, add a |
674 |
|
// FACTORING step |
675 |
|
// - if the order is not the same, add a REORDERING step |
676 |
|
// - if there are literals in chainConclusion that are not in the original |
677 |
|
// conclusion, we need to transform the MACRO_RESOLUTION into a series of |
678 |
|
// CHAIN_RESOLUTION + FACTORING steps, so that we explicitly eliminate all |
679 |
|
// these "crowding" literals. We do this via FACTORING so we avoid adding |
680 |
|
// an exponential number of premises, which would happen if we just |
681 |
|
// repeated in the premises the clauses needed for eliminating crowding |
682 |
|
// literals, which could themselves add crowding literals. |
683 |
89859 |
if (chainConclusion == args[0]) |
684 |
|
{ |
685 |
34507 |
cdp->addStep( |
686 |
|
chainConclusion, PfRule::CHAIN_RESOLUTION, children, chainResArgs); |
687 |
34507 |
return chainConclusion; |
688 |
|
} |
689 |
55352 |
NodeManager* nm = NodeManager::currentNM(); |
690 |
|
// If we got here, then chainConclusion is NECESSARILY an OR node |
691 |
55352 |
Assert(chainConclusion.getKind() == kind::OR); |
692 |
|
// get the literals in the chain conclusion |
693 |
|
std::vector<Node> chainConclusionLits{chainConclusion.begin(), |
694 |
110704 |
chainConclusion.end()}; |
695 |
|
std::set<Node> chainConclusionLitsSet{chainConclusion.begin(), |
696 |
110704 |
chainConclusion.end()}; |
697 |
|
// is args[0] a singleton clause? If it's not an OR node, then yes. |
698 |
|
// Otherwise, it's only a singleton if it occurs in chainConclusionLitsSet |
699 |
110704 |
std::vector<Node> conclusionLits; |
700 |
|
// whether conclusion is singleton |
701 |
55352 |
if (chainConclusionLitsSet.count(args[0])) |
702 |
|
{ |
703 |
7723 |
conclusionLits.push_back(args[0]); |
704 |
|
} |
705 |
|
else |
706 |
|
{ |
707 |
47629 |
Assert(args[0].getKind() == kind::OR); |
708 |
47629 |
conclusionLits.insert( |
709 |
95258 |
conclusionLits.end(), args[0].begin(), args[0].end()); |
710 |
|
} |
711 |
|
std::set<Node> conclusionLitsSet{conclusionLits.begin(), |
712 |
110704 |
conclusionLits.end()}; |
713 |
|
// If the sets are different, there are "crowding" literals, i.e. literals |
714 |
|
// that were removed by implicit multi-usage of premises in the resolution |
715 |
|
// chain. |
716 |
55352 |
if (chainConclusionLitsSet != conclusionLitsSet) |
717 |
|
{ |
718 |
37982 |
chainConclusion = eliminateCrowdingLits( |
719 |
|
chainConclusionLits, conclusionLits, children, args, cdp); |
720 |
|
// update vector of lits. Note that the set is no longer used, so we don't |
721 |
|
// need to update it |
722 |
|
// |
723 |
|
// We need again to check whether chainConclusion is a singleton |
724 |
|
// clause. As above, it's a singleton if it's in the original |
725 |
|
// chainConclusionLitsSet. |
726 |
37982 |
chainConclusionLits.clear(); |
727 |
37982 |
if (chainConclusionLitsSet.count(chainConclusion)) |
728 |
|
{ |
729 |
|
chainConclusionLits.push_back(chainConclusion); |
730 |
|
} |
731 |
|
else |
732 |
|
{ |
733 |
37982 |
Assert(chainConclusion.getKind() == kind::OR); |
734 |
113946 |
chainConclusionLits.insert(chainConclusionLits.end(), |
735 |
|
chainConclusion.begin(), |
736 |
113946 |
chainConclusion.end()); |
737 |
|
} |
738 |
|
} |
739 |
|
else |
740 |
|
{ |
741 |
17370 |
cdp->addStep( |
742 |
|
chainConclusion, PfRule::CHAIN_RESOLUTION, children, chainResArgs); |
743 |
|
} |
744 |
110704 |
Trace("smt-proof-pp-debug") |
745 |
55352 |
<< "Conclusion after chain_res/elimCrowd: " << chainConclusion << "\n"; |
746 |
110704 |
Trace("smt-proof-pp-debug") |
747 |
55352 |
<< "Conclusion lits: " << chainConclusionLits << "\n"; |
748 |
|
// Placeholder for running conclusion |
749 |
110704 |
Node n = chainConclusion; |
750 |
|
// factoring |
751 |
55352 |
if (chainConclusionLits.size() != conclusionLits.size()) |
752 |
|
{ |
753 |
|
// We build it rather than taking conclusionLits because the order may be |
754 |
|
// different |
755 |
106872 |
std::vector<Node> factoredLits; |
756 |
106872 |
std::unordered_set<TNode> clauseSet; |
757 |
1001434 |
for (size_t i = 0, size = chainConclusionLits.size(); i < size; ++i) |
758 |
|
{ |
759 |
947998 |
if (clauseSet.count(chainConclusionLits[i])) |
760 |
|
{ |
761 |
402211 |
continue; |
762 |
|
} |
763 |
545787 |
factoredLits.push_back(n[i]); |
764 |
545787 |
clauseSet.insert(n[i]); |
765 |
|
} |
766 |
53436 |
Node factored = factoredLits.empty() |
767 |
|
? nm->mkConst(false) |
768 |
53436 |
: factoredLits.size() == 1 |
769 |
7723 |
? factoredLits[0] |
770 |
168031 |
: nm->mkNode(kind::OR, factoredLits); |
771 |
53436 |
cdp->addStep(factored, PfRule::FACTORING, {n}, {}); |
772 |
53436 |
n = factored; |
773 |
|
} |
774 |
|
// either same node or n as a clause |
775 |
55352 |
Assert(n == args[0] || n.getKind() == kind::OR); |
776 |
|
// reordering |
777 |
55352 |
if (n != args[0]) |
778 |
|
{ |
779 |
37825 |
cdp->addStep(args[0], PfRule::REORDERING, {n}, {args[0]}); |
780 |
|
} |
781 |
55352 |
return args[0]; |
782 |
|
} |
783 |
78517 |
else if (id == PfRule::SUBS) |
784 |
|
{ |
785 |
8459 |
NodeManager* nm = NodeManager::currentNM(); |
786 |
|
// Notice that a naive way to reconstruct SUBS is to do a term conversion |
787 |
|
// proof for each substitution. |
788 |
|
// The proof of f(a) * { a -> g(b) } * { b -> c } = f(g(c)) is: |
789 |
|
// TRANS( CONG{f}( a=g(b) ), CONG{f}( CONG{g}( b=c ) ) ) |
790 |
|
// Notice that more optimal proofs are possible that do a single traversal |
791 |
|
// over t. This is done by applying later substitutions to the range of |
792 |
|
// previous substitutions, until a final simultaneous substitution is |
793 |
|
// applied to t. For instance, in the above example, we first prove: |
794 |
|
// CONG{g}( b = c ) |
795 |
|
// by applying the second substitution { b -> c } to the range of the first, |
796 |
|
// giving us a proof of g(b)=g(c). We then construct the updated proof |
797 |
|
// by tranitivity: |
798 |
|
// TRANS( a=g(b), CONG{g}( b=c ) ) |
799 |
|
// We then apply the substitution { a -> g(c), b -> c } to f(a), to obtain: |
800 |
|
// CONG{f}( TRANS( a=g(b), CONG{g}( b=c ) ) ) |
801 |
|
// which notice is more compact than the proof above. |
802 |
16918 |
Node t = args[0]; |
803 |
|
// get the kind of substitution |
804 |
8459 |
MethodId ids = MethodId::SB_DEFAULT; |
805 |
8459 |
if (args.size() >= 2) |
806 |
|
{ |
807 |
6489 |
getMethodId(args[1], ids); |
808 |
|
} |
809 |
8459 |
MethodId ida = MethodId::SBA_SEQUENTIAL; |
810 |
8459 |
if (args.size() >= 3) |
811 |
|
{ |
812 |
2526 |
getMethodId(args[2], ida); |
813 |
|
} |
814 |
16918 |
std::vector<std::shared_ptr<CDProof>> pfs; |
815 |
16918 |
std::vector<TNode> vsList; |
816 |
16918 |
std::vector<TNode> ssList; |
817 |
16918 |
std::vector<TNode> fromList; |
818 |
16918 |
std::vector<ProofGenerator*> pgs; |
819 |
|
// first, compute the entire substitution |
820 |
559405 |
for (size_t i = 0, nchild = children.size(); i < nchild; i++) |
821 |
|
{ |
822 |
|
// get the substitution |
823 |
1101892 |
builtin::BuiltinProofRuleChecker::getSubstitutionFor( |
824 |
550946 |
children[i], vsList, ssList, fromList, ids); |
825 |
|
// ensure proofs for each formula in fromList |
826 |
550946 |
if (children[i].getKind() == AND && ids == MethodId::SB_DEFAULT) |
827 |
|
{ |
828 |
|
for (size_t j = 0, nchildi = children[i].getNumChildren(); j < nchildi; |
829 |
|
j++) |
830 |
|
{ |
831 |
|
Node nodej = nm->mkConst(Rational(j)); |
832 |
|
cdp->addStep( |
833 |
|
children[i][j], PfRule::AND_ELIM, {children[i]}, {nodej}); |
834 |
|
} |
835 |
|
} |
836 |
|
} |
837 |
16918 |
std::vector<Node> vvec; |
838 |
16918 |
std::vector<Node> svec; |
839 |
559405 |
for (size_t i = 0, nvs = vsList.size(); i < nvs; i++) |
840 |
|
{ |
841 |
|
// Note we process in forward order, since later substitution should be |
842 |
|
// applied to earlier ones, and the last child of a SUBS is processed |
843 |
|
// first. |
844 |
1101613 |
TNode var = vsList[i]; |
845 |
1101613 |
TNode subs = ssList[i]; |
846 |
1101613 |
TNode childFrom = fromList[i]; |
847 |
1101892 |
Trace("smt-proof-pp-debug") |
848 |
550946 |
<< "...process " << var << " -> " << subs << " (" << childFrom << ", " |
849 |
550946 |
<< ids << ")" << std::endl; |
850 |
|
// apply the current substitution to the range |
851 |
550946 |
if (!vvec.empty() && ida == MethodId::SBA_SEQUENTIAL) |
852 |
|
{ |
853 |
|
Node ss = |
854 |
1915 |
subs.substitute(vvec.begin(), vvec.end(), svec.begin(), svec.end()); |
855 |
1097 |
if (ss != subs) |
856 |
|
{ |
857 |
558 |
Trace("smt-proof-pp-debug") |
858 |
279 |
<< "......updated to " << var << " -> " << ss |
859 |
279 |
<< " based on previous substitution" << std::endl; |
860 |
|
// make the proof for the tranitivity step |
861 |
558 |
std::shared_ptr<CDProof> pf = std::make_shared<CDProof>(d_pnm); |
862 |
279 |
pfs.push_back(pf); |
863 |
|
// prove the updated substitution |
864 |
|
TConvProofGenerator tcg(d_pnm, |
865 |
|
nullptr, |
866 |
|
TConvPolicy::ONCE, |
867 |
|
TConvCachePolicy::NEVER, |
868 |
|
"nested_SUBS_TConvProofGenerator", |
869 |
|
nullptr, |
870 |
558 |
true); |
871 |
|
// add previous rewrite steps |
872 |
996 |
for (unsigned j = 0, nvars = vvec.size(); j < nvars; j++) |
873 |
|
{ |
874 |
|
// substitutions are pre-rewrites |
875 |
717 |
tcg.addRewriteStep(vvec[j], svec[j], pgs[j], true); |
876 |
|
} |
877 |
|
// get the proof for the update to the current substitution |
878 |
558 |
Node seqss = subs.eqNode(ss); |
879 |
558 |
std::shared_ptr<ProofNode> pfn = tcg.getProofFor(seqss); |
880 |
279 |
Assert(pfn != nullptr); |
881 |
|
// add the proof |
882 |
279 |
pf->addProof(pfn); |
883 |
|
// get proof for childFrom from cdp |
884 |
279 |
pfn = cdp->getProofFor(childFrom); |
885 |
279 |
pf->addProof(pfn); |
886 |
|
// ensure we have a proof of var = subs |
887 |
558 |
Node veqs = addProofForSubsStep(var, subs, childFrom, pf.get()); |
888 |
|
// transitivity |
889 |
279 |
pf->addStep(var.eqNode(ss), PfRule::TRANS, {veqs, seqss}, {}); |
890 |
|
// add to the substitution |
891 |
279 |
vvec.push_back(var); |
892 |
279 |
svec.push_back(ss); |
893 |
279 |
pgs.push_back(pf.get()); |
894 |
279 |
continue; |
895 |
|
} |
896 |
|
} |
897 |
|
// Just use equality from CDProof, but ensure we have a proof in cdp. |
898 |
|
// This may involve a TRUE_INTRO/FALSE_INTRO if the substitution step |
899 |
|
// uses the assumption childFrom as a Boolean assignment (e.g. |
900 |
|
// childFrom = true if we are using MethodId::SB_LITERAL). |
901 |
550667 |
addProofForSubsStep(var, subs, childFrom, cdp); |
902 |
550667 |
vvec.push_back(var); |
903 |
550667 |
svec.push_back(subs); |
904 |
550667 |
pgs.push_back(cdp); |
905 |
|
} |
906 |
|
// should be implied by the substitution now |
907 |
8459 |
TConvPolicy tcpolicy = ida == MethodId::SBA_FIXPOINT ? TConvPolicy::FIXPOINT |
908 |
|
: TConvPolicy::ONCE; |
909 |
|
TConvProofGenerator tcpg(d_pnm, |
910 |
|
nullptr, |
911 |
|
tcpolicy, |
912 |
|
TConvCachePolicy::NEVER, |
913 |
|
"SUBS_TConvProofGenerator", |
914 |
|
nullptr, |
915 |
16918 |
true); |
916 |
559405 |
for (unsigned j = 0, nvars = vvec.size(); j < nvars; j++) |
917 |
|
{ |
918 |
|
// substitutions are pre-rewrites |
919 |
550946 |
tcpg.addRewriteStep(vvec[j], svec[j], pgs[j], true); |
920 |
|
} |
921 |
|
// add the proof constructed by the term conversion utility |
922 |
16918 |
std::shared_ptr<ProofNode> pfn = tcpg.getProofForRewriting(t); |
923 |
16918 |
Node eq = pfn->getResult(); |
924 |
|
Node ts = builtin::BuiltinProofRuleChecker::applySubstitution( |
925 |
16918 |
t, children, ids, ida); |
926 |
16918 |
Node eqq = t.eqNode(ts); |
927 |
8459 |
if (eq != eqq) |
928 |
|
{ |
929 |
|
pfn = nullptr; |
930 |
|
} |
931 |
|
// should give a proof, if not, then tcpg does not agree with the |
932 |
|
// substitution. |
933 |
8459 |
if (pfn == nullptr) |
934 |
|
{ |
935 |
|
Warning() << "resort to TRUST_SUBS" << std::endl |
936 |
|
<< eq << std::endl |
937 |
|
<< eqq << std::endl |
938 |
|
<< "from " << children << " applied to " << t << std::endl; |
939 |
|
cdp->addStep(eqq, PfRule::TRUST_SUBS, {}, {eqq}); |
940 |
|
} |
941 |
|
else |
942 |
|
{ |
943 |
8459 |
cdp->addProof(pfn); |
944 |
|
} |
945 |
8459 |
return eqq; |
946 |
|
} |
947 |
70058 |
else if (id == PfRule::REWRITE) |
948 |
|
{ |
949 |
|
// get the kind of rewrite |
950 |
62648 |
MethodId idr = MethodId::RW_REWRITE; |
951 |
62648 |
TheoryId theoryId = Theory::theoryOf(args[0]); |
952 |
62648 |
if (args.size() >= 2) |
953 |
|
{ |
954 |
43 |
getMethodId(args[1], idr); |
955 |
|
} |
956 |
62648 |
Rewriter* rr = d_env.getRewriter(); |
957 |
125296 |
Node ret = rr->rewriteViaMethod(args[0], idr); |
958 |
125296 |
Node eq = args[0].eqNode(ret); |
959 |
62648 |
if (idr == MethodId::RW_REWRITE || idr == MethodId::RW_REWRITE_EQ_EXT) |
960 |
|
{ |
961 |
|
// rewrites from theory::Rewriter |
962 |
62642 |
bool isExtEq = (idr == MethodId::RW_REWRITE_EQ_EXT); |
963 |
|
// use rewrite with proof interface |
964 |
125284 |
TrustNode trn = rr->rewriteWithProof(args[0], isExtEq); |
965 |
125284 |
std::shared_ptr<ProofNode> pfn = trn.toProofNode(); |
966 |
62642 |
if (pfn == nullptr) |
967 |
|
{ |
968 |
74 |
Trace("smt-proof-pp-debug") |
969 |
37 |
<< "Use TRUST_REWRITE for " << eq << std::endl; |
970 |
|
// did not have a proof of rewriting, probably isExtEq is true |
971 |
37 |
if (isExtEq) |
972 |
|
{ |
973 |
|
// update to THEORY_REWRITE with idr |
974 |
37 |
Assert(args.size() >= 1); |
975 |
74 |
Node tid = builtin::BuiltinProofRuleChecker::mkTheoryIdNode(theoryId); |
976 |
37 |
cdp->addStep(eq, PfRule::THEORY_REWRITE, {}, {eq, tid, args[1]}); |
977 |
|
} |
978 |
|
else |
979 |
|
{ |
980 |
|
// this should never be applied |
981 |
|
cdp->addStep(eq, PfRule::TRUST_REWRITE, {}, {eq}); |
982 |
|
} |
983 |
|
} |
984 |
|
else |
985 |
|
{ |
986 |
62605 |
cdp->addProof(pfn); |
987 |
|
} |
988 |
125284 |
Assert(trn.getNode() == ret) |
989 |
62642 |
<< "Unexpected rewrite " << args[0] << std::endl |
990 |
62642 |
<< "Got: " << trn.getNode() << std::endl |
991 |
62642 |
<< "Expected: " << ret; |
992 |
|
} |
993 |
6 |
else if (idr == MethodId::RW_EVALUATE) |
994 |
|
{ |
995 |
|
// change to evaluate, which is never eliminated |
996 |
|
cdp->addStep(eq, PfRule::EVALUATE, {}, {args[0]}); |
997 |
|
} |
998 |
|
else |
999 |
|
{ |
1000 |
|
// try to reconstruct as a standalone rewrite |
1001 |
6 |
std::vector<Node> targs; |
1002 |
6 |
targs.push_back(eq); |
1003 |
6 |
targs.push_back( |
1004 |
12 |
builtin::BuiltinProofRuleChecker::mkTheoryIdNode(theoryId)); |
1005 |
|
// in this case, must be a non-standard rewrite kind |
1006 |
6 |
Assert(args.size() >= 2); |
1007 |
6 |
targs.push_back(args[1]); |
1008 |
6 |
Node eqp = expandMacros(PfRule::THEORY_REWRITE, {}, targs, cdp); |
1009 |
6 |
if (eqp.isNull()) |
1010 |
|
{ |
1011 |
|
// don't know how to eliminate |
1012 |
6 |
return Node::null(); |
1013 |
|
} |
1014 |
|
} |
1015 |
62642 |
if (args[0] == ret) |
1016 |
|
{ |
1017 |
|
// should not be necessary typically |
1018 |
|
cdp->addStep(eq, PfRule::REFL, {}, {args[0]}); |
1019 |
|
} |
1020 |
62642 |
return eq; |
1021 |
|
} |
1022 |
7410 |
else if (id == PfRule::THEORY_REWRITE) |
1023 |
|
{ |
1024 |
|
Assert(!args.empty()); |
1025 |
|
Node eq = args[0]; |
1026 |
|
Assert(eq.getKind() == EQUAL); |
1027 |
|
// try to replay theory rewrite |
1028 |
|
// first, check that maybe its just an evaluation step |
1029 |
|
ProofChecker* pc = d_pnm->getChecker(); |
1030 |
|
Node ceval = |
1031 |
|
pc->checkDebug(PfRule::EVALUATE, {}, {eq[0]}, eq, "smt-proof-pp-debug"); |
1032 |
|
if (!ceval.isNull() && ceval == eq) |
1033 |
|
{ |
1034 |
|
cdp->addStep(eq, PfRule::EVALUATE, {}, {eq[0]}); |
1035 |
|
return eq; |
1036 |
|
} |
1037 |
|
// otherwise no update |
1038 |
|
Trace("final-pf-hole") << "hole: " << id << " : " << eq << std::endl; |
1039 |
|
} |
1040 |
7410 |
else if (id == PfRule::MACRO_ARITH_SCALE_SUM_UB) |
1041 |
|
{ |
1042 |
4861 |
Debug("macro::arith") << "Expand MACRO_ARITH_SCALE_SUM_UB" << std::endl; |
1043 |
4861 |
if (Debug.isOn("macro::arith")) |
1044 |
|
{ |
1045 |
|
for (const auto& child : children) |
1046 |
|
{ |
1047 |
|
Debug("macro::arith") << " child: " << child << std::endl; |
1048 |
|
} |
1049 |
|
Debug("macro::arith") << " args: " << args << std::endl; |
1050 |
|
} |
1051 |
4861 |
Assert(args.size() == children.size()); |
1052 |
4861 |
NodeManager* nm = NodeManager::currentNM(); |
1053 |
9722 |
ProofStepBuffer steps{d_pnm->getChecker()}; |
1054 |
|
|
1055 |
|
// Scale all children, accumulating |
1056 |
9722 |
std::vector<Node> scaledRels; |
1057 |
31071 |
for (size_t i = 0; i < children.size(); ++i) |
1058 |
|
{ |
1059 |
52420 |
TNode child = children[i]; |
1060 |
52420 |
TNode scalar = args[i]; |
1061 |
26210 |
bool isPos = scalar.getConst<Rational>() > 0; |
1062 |
|
Node scalarCmp = |
1063 |
52420 |
nm->mkNode(isPos ? GT : LT, scalar, nm->mkConst(Rational(0))); |
1064 |
|
// (= scalarCmp true) |
1065 |
52420 |
Node scalarCmpOrTrue = steps.tryStep(PfRule::EVALUATE, {}, {scalarCmp}); |
1066 |
26210 |
Assert(!scalarCmpOrTrue.isNull()); |
1067 |
|
// scalarCmp |
1068 |
26210 |
steps.addStep(PfRule::TRUE_ELIM, {scalarCmpOrTrue}, {}, scalarCmp); |
1069 |
|
// (and scalarCmp relation) |
1070 |
|
Node scalarCmpAndRel = |
1071 |
52420 |
steps.tryStep(PfRule::AND_INTRO, {scalarCmp, child}, {}); |
1072 |
26210 |
Assert(!scalarCmpAndRel.isNull()); |
1073 |
|
// (=> (and scalarCmp relation) scaled) |
1074 |
|
Node impl = |
1075 |
|
steps.tryStep(isPos ? PfRule::ARITH_MULT_POS : PfRule::ARITH_MULT_NEG, |
1076 |
|
{}, |
1077 |
52420 |
{scalar, child}); |
1078 |
26210 |
Assert(!impl.isNull()); |
1079 |
|
// scaled |
1080 |
|
Node scaled = |
1081 |
52420 |
steps.tryStep(PfRule::MODUS_PONENS, {scalarCmpAndRel, impl}, {}); |
1082 |
26210 |
Assert(!scaled.isNull()); |
1083 |
26210 |
scaledRels.emplace_back(scaled); |
1084 |
|
} |
1085 |
|
|
1086 |
9722 |
Node sumBounds = steps.tryStep(PfRule::ARITH_SUM_UB, scaledRels, {}); |
1087 |
4861 |
cdp->addSteps(steps); |
1088 |
9722 |
Debug("macro::arith") << "Expansion done. Proved: " << sumBounds |
1089 |
4861 |
<< std::endl; |
1090 |
4861 |
return sumBounds; |
1091 |
|
} |
1092 |
2549 |
else if (id == PfRule::STRING_INFERENCE) |
1093 |
|
{ |
1094 |
|
// get the arguments |
1095 |
987 |
Node conc; |
1096 |
|
InferenceId iid; |
1097 |
|
bool isRev; |
1098 |
987 |
std::vector<Node> exp; |
1099 |
987 |
if (strings::InferProofCons::unpackArgs(args, conc, iid, isRev, exp)) |
1100 |
|
{ |
1101 |
987 |
if (strings::InferProofCons::addProofTo(cdp, conc, iid, isRev, exp)) |
1102 |
|
{ |
1103 |
987 |
return conc; |
1104 |
|
} |
1105 |
|
} |
1106 |
|
} |
1107 |
1562 |
else if (id == PfRule::BV_BITBLAST) |
1108 |
|
{ |
1109 |
3124 |
bv::BBProof bb(d_env, nullptr, d_pnm, true); |
1110 |
3124 |
Node eq = args[0]; |
1111 |
1562 |
Assert(eq.getKind() == EQUAL); |
1112 |
1562 |
bb.bbAtom(eq[0]); |
1113 |
3124 |
Node bbAtom = bb.getStoredBBAtom(eq[0]); |
1114 |
1562 |
bb.getProofGenerator()->addProofTo(eq[0].eqNode(bbAtom), cdp); |
1115 |
1562 |
return eq; |
1116 |
|
} |
1117 |
|
|
1118 |
|
// TRUST, PREPROCESS, THEORY_LEMMA, THEORY_PREPROCESS? |
1119 |
|
|
1120 |
|
return Node::null(); |
1121 |
|
} |
1122 |
|
|
1123 |
14546 |
Node ProofPostprocessCallback::addProofForWitnessForm(Node t, CDProof* cdp) |
1124 |
|
{ |
1125 |
29092 |
Node tw = SkolemManager::getOriginalForm(t); |
1126 |
14546 |
Node eq = t.eqNode(tw); |
1127 |
14546 |
if (t == tw) |
1128 |
|
{ |
1129 |
|
// not necessary, add REFL step |
1130 |
5867 |
cdp->addStep(eq, PfRule::REFL, {}, {t}); |
1131 |
5867 |
return eq; |
1132 |
|
} |
1133 |
17358 |
std::shared_ptr<ProofNode> pn = d_wfpm.getProofFor(eq); |
1134 |
8679 |
if (pn != nullptr) |
1135 |
|
{ |
1136 |
|
// add the proof |
1137 |
8679 |
cdp->addProof(pn); |
1138 |
|
} |
1139 |
|
else |
1140 |
|
{ |
1141 |
|
Assert(false) << "ProofPostprocessCallback::addProofForWitnessForm: failed " |
1142 |
|
"to add proof for witness form of " |
1143 |
|
<< t; |
1144 |
|
} |
1145 |
8679 |
return eq; |
1146 |
|
} |
1147 |
|
|
1148 |
134429 |
Node ProofPostprocessCallback::addProofForTrans( |
1149 |
|
const std::vector<Node>& tchildren, CDProof* cdp) |
1150 |
|
{ |
1151 |
134429 |
size_t tsize = tchildren.size(); |
1152 |
134429 |
if (tsize > 1) |
1153 |
|
{ |
1154 |
34726 |
Node lhs = tchildren[0][0]; |
1155 |
34726 |
Node rhs = tchildren[tsize - 1][1]; |
1156 |
34726 |
Node eq = lhs.eqNode(rhs); |
1157 |
17363 |
cdp->addStep(eq, PfRule::TRANS, tchildren, {}); |
1158 |
17363 |
return eq; |
1159 |
|
} |
1160 |
117066 |
else if (tsize == 1) |
1161 |
|
{ |
1162 |
104292 |
return tchildren[0]; |
1163 |
|
} |
1164 |
12774 |
return Node::null(); |
1165 |
|
} |
1166 |
|
|
1167 |
550946 |
Node ProofPostprocessCallback::addProofForSubsStep(Node var, |
1168 |
|
Node subs, |
1169 |
|
Node assump, |
1170 |
|
CDProof* cdp) |
1171 |
|
{ |
1172 |
|
// ensure we have a proof of var = subs |
1173 |
550946 |
Node veqs = var.eqNode(subs); |
1174 |
550946 |
if (veqs != assump) |
1175 |
|
{ |
1176 |
|
// should be true intro or false intro |
1177 |
3963 |
Assert(subs.isConst()); |
1178 |
11889 |
cdp->addStep( |
1179 |
|
veqs, |
1180 |
3963 |
subs.getConst<bool>() ? PfRule::TRUE_INTRO : PfRule::FALSE_INTRO, |
1181 |
|
{assump}, |
1182 |
3963 |
{}); |
1183 |
|
} |
1184 |
550946 |
return veqs; |
1185 |
|
} |
1186 |
|
|
1187 |
113633 |
bool ProofPostprocessCallback::addToTransChildren(Node eq, |
1188 |
|
std::vector<Node>& tchildren, |
1189 |
|
bool isSymm) |
1190 |
|
{ |
1191 |
113633 |
Assert(!eq.isNull()); |
1192 |
113633 |
Assert(eq.getKind() == kind::EQUAL); |
1193 |
113633 |
if (eq[0] == eq[1]) |
1194 |
|
{ |
1195 |
39683 |
return false; |
1196 |
|
} |
1197 |
147900 |
Node equ = isSymm ? eq[1].eqNode(eq[0]) : eq; |
1198 |
73950 |
Assert(tchildren.empty() |
1199 |
|
|| (tchildren[tchildren.size() - 1].getKind() == kind::EQUAL |
1200 |
|
&& tchildren[tchildren.size() - 1][1] == equ[0])); |
1201 |
73950 |
tchildren.push_back(equ); |
1202 |
73950 |
return true; |
1203 |
|
} |
1204 |
|
|
1205 |
3796 |
ProofPostproccess::ProofPostproccess(Env& env, |
1206 |
|
ProofGenerator* pppg, |
1207 |
|
rewriter::RewriteDb* rdb, |
1208 |
3796 |
bool updateScopedAssumptions) |
1209 |
|
: d_cb(env, pppg, rdb, updateScopedAssumptions), |
1210 |
|
// the update merges subproofs |
1211 |
3796 |
d_updater(env.getProofNodeManager(), d_cb, options::proofPpMerge()), |
1212 |
|
d_finalCb(env.getProofNodeManager()), |
1213 |
7592 |
d_finalizer(env.getProofNodeManager(), d_finalCb) |
1214 |
|
{ |
1215 |
3796 |
} |
1216 |
|
|
1217 |
3796 |
ProofPostproccess::~ProofPostproccess() {} |
1218 |
|
|
1219 |
2820 |
void ProofPostproccess::process(std::shared_ptr<ProofNode> pf) |
1220 |
|
{ |
1221 |
|
// Initialize the callback, which computes necessary static information about |
1222 |
|
// how to process, including how to process assumptions in pf. |
1223 |
2820 |
d_cb.initializeUpdate(); |
1224 |
|
// now, process |
1225 |
2820 |
d_updater.process(pf); |
1226 |
|
// take stats and check pedantic |
1227 |
2820 |
d_finalCb.initializeUpdate(); |
1228 |
2820 |
d_finalizer.process(pf); |
1229 |
|
|
1230 |
5640 |
std::stringstream serr; |
1231 |
2820 |
bool wasPedanticFailure = d_finalCb.wasPedanticFailure(serr); |
1232 |
2820 |
if (wasPedanticFailure) |
1233 |
|
{ |
1234 |
|
AlwaysAssert(!wasPedanticFailure) |
1235 |
|
<< "ProofPostproccess::process: pedantic failure:" << std::endl |
1236 |
|
<< serr.str(); |
1237 |
|
} |
1238 |
2820 |
} |
1239 |
|
|
1240 |
13068 |
void ProofPostproccess::setEliminateRule(PfRule rule) |
1241 |
|
{ |
1242 |
13068 |
d_cb.setEliminateRule(rule); |
1243 |
13068 |
} |
1244 |
|
|
1245 |
|
} // namespace smt |
1246 |
29577 |
} // namespace cvc5 |