1 |
|
/****************************************************************************** |
2 |
|
* Top contributors (to current version): |
3 |
|
* Andrew Reynolds, Morgan Deters, Tim King |
4 |
|
* |
5 |
|
* This file is part of the cvc5 project. |
6 |
|
* |
7 |
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS |
8 |
|
* in the top-level source directory and their institutional affiliations. |
9 |
|
* All rights reserved. See the file COPYING in the top-level source |
10 |
|
* directory for licensing information. |
11 |
|
* **************************************************************************** |
12 |
|
* |
13 |
|
* A manager for Nodes. |
14 |
|
*/ |
15 |
|
#include "expr/node_manager.h" |
16 |
|
|
17 |
|
#include <algorithm> |
18 |
|
#include <sstream> |
19 |
|
#include <stack> |
20 |
|
#include <utility> |
21 |
|
|
22 |
|
#include "base/check.h" |
23 |
|
#include "base/listener.h" |
24 |
|
#include "expr/attribute.h" |
25 |
|
#include "expr/bound_var_manager.h" |
26 |
|
#include "expr/datatype_index.h" |
27 |
|
#include "expr/dtype.h" |
28 |
|
#include "expr/dtype_cons.h" |
29 |
|
#include "expr/metakind.h" |
30 |
|
#include "expr/node_manager_attributes.h" |
31 |
|
#include "expr/skolem_manager.h" |
32 |
|
#include "expr/type_checker.h" |
33 |
|
#include "theory/bags/make_bag_op.h" |
34 |
|
#include "theory/sets/singleton_op.h" |
35 |
|
#include "util/abstract_value.h" |
36 |
|
#include "util/bitvector.h" |
37 |
|
#include "util/resource_manager.h" |
38 |
|
|
39 |
|
using namespace std; |
40 |
|
using namespace cvc5::expr; |
41 |
|
|
42 |
|
namespace cvc5 { |
43 |
|
|
44 |
|
namespace { |
45 |
|
|
46 |
|
/** |
47 |
|
* This class sets it reference argument to true and ensures that it gets set |
48 |
|
* to false on destruction. This can be used to make sure a flag gets toggled |
49 |
|
* in a function even on exceptional exit (e.g., see reclaimZombies()). |
50 |
|
*/ |
51 |
|
struct ScopedBool { |
52 |
|
bool& d_value; |
53 |
|
|
54 |
228318 |
ScopedBool(bool& value) : |
55 |
228318 |
d_value(value) { |
56 |
|
|
57 |
228318 |
Debug("gc") << ">> setting ScopedBool\n"; |
58 |
228318 |
d_value = true; |
59 |
228318 |
} |
60 |
|
|
61 |
456636 |
~ScopedBool() { |
62 |
228318 |
Debug("gc") << "<< clearing ScopedBool\n"; |
63 |
228318 |
d_value = false; |
64 |
228318 |
} |
65 |
|
}; |
66 |
|
|
67 |
|
/** |
68 |
|
* Similarly, ensure d_nodeUnderDeletion gets set to NULL even on |
69 |
|
* exceptional exit from NodeManager::reclaimZombies(). |
70 |
|
*/ |
71 |
|
struct NVReclaim { |
72 |
|
NodeValue*& d_deletionField; |
73 |
|
|
74 |
31231066 |
NVReclaim(NodeValue*& deletionField) : |
75 |
31231066 |
d_deletionField(deletionField) { |
76 |
|
|
77 |
31231066 |
Debug("gc") << ">> setting NVRECLAIM field\n"; |
78 |
31231066 |
} |
79 |
|
|
80 |
62462132 |
~NVReclaim() { |
81 |
31231066 |
Debug("gc") << "<< clearing NVRECLAIM field\n"; |
82 |
31231066 |
d_deletionField = NULL; |
83 |
31231066 |
} |
84 |
|
}; |
85 |
|
|
86 |
|
} // namespace |
87 |
|
|
88 |
|
namespace attr { |
89 |
|
struct LambdaBoundVarListTag { }; |
90 |
|
} // namespace attr |
91 |
|
|
92 |
|
// attribute that stores the canonical bound variable list for function types |
93 |
|
typedef expr::Attribute<attr::LambdaBoundVarListTag, Node> LambdaBoundVarListAttr; |
94 |
|
|
95 |
9858 |
NodeManager::NodeManager() |
96 |
9858 |
: d_skManager(new SkolemManager), |
97 |
9858 |
d_bvManager(new BoundVarManager), |
98 |
|
d_initialized(false), |
99 |
|
next_id(0), |
100 |
9858 |
d_attrManager(new expr::attr::AttributeManager()), |
101 |
|
d_nodeUnderDeletion(nullptr), |
102 |
|
d_inReclaimZombies(false), |
103 |
|
d_abstractValueCount(0), |
104 |
39432 |
d_skolemCounter(0) |
105 |
|
{ |
106 |
9858 |
} |
107 |
|
|
108 |
36445665681 |
NodeManager* NodeManager::currentNM() |
109 |
|
{ |
110 |
36445665681 |
thread_local static NodeManager nm; |
111 |
36445665681 |
return &nm; |
112 |
|
} |
113 |
|
|
114 |
215836 |
bool NodeManager::isNAryKind(Kind k) |
115 |
|
{ |
116 |
215836 |
return kind::metakind::getMaxArityForKind(k) == expr::NodeValue::MAX_CHILDREN; |
117 |
|
} |
118 |
|
|
119 |
19934872 |
TypeNode NodeManager::booleanType() |
120 |
|
{ |
121 |
19934872 |
return mkTypeConst<TypeConstant>(BOOLEAN_TYPE); |
122 |
|
} |
123 |
|
|
124 |
4715249 |
TypeNode NodeManager::integerType() |
125 |
|
{ |
126 |
4715249 |
return mkTypeConst<TypeConstant>(INTEGER_TYPE); |
127 |
|
} |
128 |
|
|
129 |
4816639 |
TypeNode NodeManager::realType() |
130 |
|
{ |
131 |
4816639 |
return mkTypeConst<TypeConstant>(REAL_TYPE); |
132 |
|
} |
133 |
|
|
134 |
157355 |
TypeNode NodeManager::stringType() |
135 |
|
{ |
136 |
157355 |
return mkTypeConst<TypeConstant>(STRING_TYPE); |
137 |
|
} |
138 |
|
|
139 |
34729 |
TypeNode NodeManager::regExpType() |
140 |
|
{ |
141 |
34729 |
return mkTypeConst<TypeConstant>(REGEXP_TYPE); |
142 |
|
} |
143 |
|
|
144 |
9524 |
TypeNode NodeManager::roundingModeType() |
145 |
|
{ |
146 |
9524 |
return mkTypeConst<TypeConstant>(ROUNDINGMODE_TYPE); |
147 |
|
} |
148 |
|
|
149 |
198196 |
TypeNode NodeManager::boundVarListType() |
150 |
|
{ |
151 |
198196 |
return mkTypeConst<TypeConstant>(BOUND_VAR_LIST_TYPE); |
152 |
|
} |
153 |
|
|
154 |
10346 |
TypeNode NodeManager::instPatternType() |
155 |
|
{ |
156 |
10346 |
return mkTypeConst<TypeConstant>(INST_PATTERN_TYPE); |
157 |
|
} |
158 |
|
|
159 |
23854 |
TypeNode NodeManager::instPatternListType() |
160 |
|
{ |
161 |
23854 |
return mkTypeConst<TypeConstant>(INST_PATTERN_LIST_TYPE); |
162 |
|
} |
163 |
|
|
164 |
7562 |
TypeNode NodeManager::builtinOperatorType() |
165 |
|
{ |
166 |
7562 |
return mkTypeConst<TypeConstant>(BUILTIN_OPERATOR_TYPE); |
167 |
|
} |
168 |
|
|
169 |
469623 |
TypeNode NodeManager::mkBitVectorType(unsigned size) |
170 |
|
{ |
171 |
469623 |
return mkTypeConst<BitVectorSize>(BitVectorSize(size)); |
172 |
|
} |
173 |
|
|
174 |
1170268 |
TypeNode NodeManager::sExprType() |
175 |
|
{ |
176 |
1170268 |
return mkTypeConst<TypeConstant>(SEXPR_TYPE); |
177 |
|
} |
178 |
|
|
179 |
6687 |
TypeNode NodeManager::mkFloatingPointType(unsigned exp, unsigned sig) |
180 |
|
{ |
181 |
6687 |
return mkTypeConst<FloatingPointSize>(FloatingPointSize(exp, sig)); |
182 |
|
} |
183 |
|
|
184 |
4224 |
TypeNode NodeManager::mkFloatingPointType(FloatingPointSize fs) |
185 |
|
{ |
186 |
4224 |
return mkTypeConst<FloatingPointSize>(fs); |
187 |
|
} |
188 |
|
|
189 |
10674 |
void NodeManager::init() { |
190 |
10674 |
if (d_initialized) |
191 |
|
{ |
192 |
963 |
return; |
193 |
|
} |
194 |
9711 |
d_initialized = true; |
195 |
|
|
196 |
|
// Note: This code cannot be part of the constructor because it indirectly |
197 |
|
// calls `NodeManager::currentNM()`, which is where the `NodeManager` is |
198 |
|
// being constructed. |
199 |
9711 |
poolInsert( &expr::NodeValue::null() ); |
200 |
|
|
201 |
3185208 |
for(unsigned i = 0; i < unsigned(kind::LAST_KIND); ++i) { |
202 |
3175497 |
Kind k = Kind(i); |
203 |
|
|
204 |
3175497 |
if(hasOperator(k)) { |
205 |
2651103 |
d_operators[i] = mkConst(Kind(k)); |
206 |
|
} |
207 |
|
} |
208 |
|
} |
209 |
|
|
210 |
19716 |
NodeManager::~NodeManager() { |
211 |
|
// Destroy skolem and bound var manager before cleaning up attributes and |
212 |
|
// zombies |
213 |
9858 |
d_skManager = nullptr; |
214 |
9858 |
d_bvManager = nullptr; |
215 |
|
|
216 |
|
{ |
217 |
19716 |
ScopedBool dontGC(d_inReclaimZombies); |
218 |
|
// hopefully by this point all SmtEngines have been deleted |
219 |
|
// already, along with all their attributes |
220 |
9858 |
d_attrManager->deleteAllAttributes(); |
221 |
|
} |
222 |
|
|
223 |
3233424 |
for(unsigned i = 0; i < unsigned(kind::LAST_KIND); ++i) { |
224 |
3223566 |
d_operators[i] = Node::null(); |
225 |
|
} |
226 |
|
|
227 |
9858 |
d_unique_vars.clear(); |
228 |
|
|
229 |
19716 |
TypeNode dummy; |
230 |
9858 |
d_tt_cache.d_children.clear(); |
231 |
9858 |
d_tt_cache.d_data = dummy; |
232 |
9858 |
d_rt_cache.d_children.clear(); |
233 |
9858 |
d_rt_cache.d_data = dummy; |
234 |
|
|
235 |
|
// clear the datatypes |
236 |
9858 |
d_dtypes.clear(); |
237 |
|
|
238 |
9858 |
Assert(!d_attrManager->inGarbageCollection()); |
239 |
|
|
240 |
19716 |
std::vector<NodeValue*> order = TopologicalSort(d_maxedOut); |
241 |
9858 |
d_maxedOut.clear(); |
242 |
|
|
243 |
441242 |
while (!d_zombies.empty() || !order.empty()) { |
244 |
215692 |
if (d_zombies.empty()) { |
245 |
|
// Delete the maxed out nodes in toplogical order once we know |
246 |
|
// there are no additional zombies, or other nodes to worry about. |
247 |
7 |
Assert(!order.empty()); |
248 |
|
// We process these in reverse to reverse the topological order. |
249 |
7 |
NodeValue* greatest_maxed_out = order.back(); |
250 |
7 |
order.pop_back(); |
251 |
7 |
Assert(greatest_maxed_out->HasMaximizedReferenceCount()); |
252 |
7 |
Debug("gc") << "Force zombify " << greatest_maxed_out << std::endl; |
253 |
7 |
greatest_maxed_out->d_rc = 0; |
254 |
7 |
markForDeletion(greatest_maxed_out); |
255 |
|
} else { |
256 |
215685 |
reclaimZombies(); |
257 |
|
} |
258 |
|
} |
259 |
|
|
260 |
9858 |
if (d_initialized) |
261 |
|
{ |
262 |
9711 |
poolRemove(&expr::NodeValue::null()); |
263 |
|
} |
264 |
|
|
265 |
9858 |
if(Debug.isOn("gc:leaks")) { |
266 |
|
Debug("gc:leaks") << "still in pool:" << endl; |
267 |
|
for(NodeValuePool::const_iterator i = d_nodeValuePool.begin(), |
268 |
|
iend = d_nodeValuePool.end(); |
269 |
|
i != iend; |
270 |
|
++i) { |
271 |
|
Debug("gc:leaks") << " " << *i |
272 |
|
<< " id=" << (*i)->d_id |
273 |
|
<< " rc=" << (*i)->d_rc |
274 |
|
<< " " << **i << endl; |
275 |
|
} |
276 |
|
Debug("gc:leaks") << ":end:" << endl; |
277 |
|
} |
278 |
|
|
279 |
|
// defensive coding, in case destruction-order issues pop up (they often do) |
280 |
9858 |
delete d_attrManager; |
281 |
9858 |
d_attrManager = NULL; |
282 |
9858 |
} |
283 |
|
|
284 |
4341375 |
const DType& NodeManager::getDTypeForIndex(size_t index) const |
285 |
|
{ |
286 |
|
// if this assertion fails, it is likely due to not managing datatypes |
287 |
|
// properly w.r.t. multiple NodeManagers. |
288 |
4341375 |
Assert(index < d_dtypes.size()); |
289 |
4341375 |
return *d_dtypes[index]; |
290 |
|
} |
291 |
|
|
292 |
218460 |
void NodeManager::reclaimZombies() { |
293 |
|
// FIXME multithreading |
294 |
218460 |
Assert(!d_attrManager->inGarbageCollection()); |
295 |
|
|
296 |
218460 |
Debug("gc") << "reclaiming " << d_zombies.size() << " zombie(s)!\n"; |
297 |
|
|
298 |
|
// during reclamation, reclaimZombies() is never supposed to be called |
299 |
218460 |
Assert(!d_inReclaimZombies) |
300 |
|
<< "NodeManager::reclaimZombies() not re-entrant!"; |
301 |
|
|
302 |
|
// whether exit is normal or exceptional, the Reclaim dtor is called |
303 |
|
// and ensures that d_inReclaimZombies is set back to false. |
304 |
436920 |
ScopedBool r(d_inReclaimZombies); |
305 |
|
|
306 |
|
// We copy the set away and clear the NodeManager's set of zombies. |
307 |
|
// This is because reclaimZombie() decrements the RC of the |
308 |
|
// NodeValue's children, which may (recursively) reclaim them. |
309 |
|
// |
310 |
|
// Let's say we're reclaiming zombie NodeValue "A" and its child "B" |
311 |
|
// then becomes a zombie (NodeManager::markForDeletion(B) is called). |
312 |
|
// |
313 |
|
// One way to handle B's zombification would be simply to put it |
314 |
|
// into d_zombies. This is what we do. However, if we were to |
315 |
|
// concurrently process d_zombies in the loop below, such addition |
316 |
|
// may be invisible to us (B is leaked) or even invalidate our |
317 |
|
// iterator, causing a crash. So we need to copy the set away. |
318 |
|
|
319 |
436920 |
vector<NodeValue*> zombies; |
320 |
218460 |
zombies.reserve(d_zombies.size()); |
321 |
218460 |
remove_copy_if(d_zombies.begin(), |
322 |
|
d_zombies.end(), |
323 |
|
back_inserter(zombies), |
324 |
218460 |
NodeValueReferenceCountNonZero()); |
325 |
218460 |
d_zombies.clear(); |
326 |
|
|
327 |
|
#ifdef _LIBCPP_VERSION |
328 |
|
NodeValue* last = NULL; |
329 |
|
#endif |
330 |
31449526 |
for(vector<NodeValue*>::iterator i = zombies.begin(); |
331 |
31449526 |
i != zombies.end(); |
332 |
|
++i) { |
333 |
31231066 |
NodeValue* nv = *i; |
334 |
|
#ifdef _LIBCPP_VERSION |
335 |
|
// Work around an apparent bug in libc++'s hash_set<> which can |
336 |
|
// (very occasionally) have an element repeated. |
337 |
|
if(nv == last) { |
338 |
|
continue; |
339 |
|
} |
340 |
|
last = nv; |
341 |
|
#endif |
342 |
|
|
343 |
|
// collect ONLY IF still zero |
344 |
31231066 |
if(nv->d_rc == 0) { |
345 |
31231066 |
if(Debug.isOn("gc")) { |
346 |
|
Debug("gc") << "deleting node value " << nv |
347 |
|
<< " [" << nv->d_id << "]: "; |
348 |
|
nv->printAst(Debug("gc")); |
349 |
|
Debug("gc") << endl; |
350 |
|
} |
351 |
|
|
352 |
|
// remove from the pool |
353 |
31231066 |
kind::MetaKind mk = nv->getMetaKind(); |
354 |
31231066 |
if(mk != kind::metakind::VARIABLE && mk != kind::metakind::NULLARY_OPERATOR) { |
355 |
30100030 |
poolRemove(nv); |
356 |
|
} |
357 |
|
|
358 |
|
// whether exit is normal or exceptional, the NVReclaim dtor is |
359 |
|
// called and ensures that d_nodeUnderDeletion is set back to |
360 |
|
// NULL. |
361 |
62462132 |
NVReclaim rc(d_nodeUnderDeletion); |
362 |
31231066 |
d_nodeUnderDeletion = nv; |
363 |
|
|
364 |
|
// remove attributes |
365 |
|
{ // notify listeners of deleted node |
366 |
62462132 |
TNode n; |
367 |
31231066 |
n.d_nv = nv; |
368 |
31231066 |
nv->d_rc = 1; // so that TNode doesn't assert-fail |
369 |
55762649 |
for (NodeManagerListener* listener : d_listeners) |
370 |
|
{ |
371 |
24531583 |
listener->nmNotifyDeleteNode(n); |
372 |
|
} |
373 |
|
// this would mean that one of the listeners stowed away |
374 |
|
// a reference to this node! |
375 |
31231066 |
Assert(nv->d_rc == 1); |
376 |
|
} |
377 |
31231066 |
nv->d_rc = 0; |
378 |
31231066 |
d_attrManager->deleteAllAttributes(nv); |
379 |
|
|
380 |
|
// decr ref counts of children |
381 |
31231066 |
nv->decrRefCounts(); |
382 |
31231066 |
if(mk == kind::metakind::CONSTANT) { |
383 |
|
// Destroy (call the destructor for) the C++ type representing |
384 |
|
// the constant in this NodeValue. This is needed for |
385 |
|
// e.g. cvc5::Rational, since it has a gmp internal |
386 |
|
// representation that mallocs memory and should be cleaned |
387 |
|
// up. (This won't delete a pointer value if used as a |
388 |
|
// constant, but then, you should probably use a smart-pointer |
389 |
|
// type for a constant payload.) |
390 |
3206384 |
kind::metakind::deleteNodeValueConstant(nv); |
391 |
|
} |
392 |
31231066 |
free(nv); |
393 |
|
} |
394 |
|
} |
395 |
218460 |
}/* NodeManager::reclaimZombies() */ |
396 |
|
|
397 |
9862 |
std::vector<NodeValue*> NodeManager::TopologicalSort( |
398 |
|
const std::vector<NodeValue*>& roots) { |
399 |
9862 |
std::vector<NodeValue*> order; |
400 |
|
// The stack of nodes to visit. The Boolean value is false when visiting the |
401 |
|
// node in preorder and true when visiting it in postorder. |
402 |
19724 |
std::vector<std::pair<bool, NodeValue*> > stack; |
403 |
|
// Nodes that have been visited in both pre- and postorder |
404 |
19724 |
NodeValueIDSet visited; |
405 |
19724 |
const NodeValueIDSet root_set(roots.begin(), roots.end()); |
406 |
|
|
407 |
9875 |
for (size_t index = 0; index < roots.size(); index++) { |
408 |
13 |
NodeValue* root = roots[index]; |
409 |
13 |
if (visited.find(root) == visited.end()) { |
410 |
42 |
stack.push_back(std::make_pair(false, root)); |
411 |
|
} |
412 |
117 |
while (!stack.empty()) { |
413 |
52 |
NodeValue* current = stack.back().second; |
414 |
52 |
const bool visited_children = stack.back().first; |
415 |
104 |
Debug("gc") << "Topological sort " << current << " " << visited_children |
416 |
52 |
<< std::endl; |
417 |
52 |
if (visited_children) { |
418 |
21 |
if (root_set.find(current) != root_set.end()) { |
419 |
13 |
order.push_back(current); |
420 |
|
} |
421 |
21 |
stack.pop_back(); |
422 |
|
} |
423 |
31 |
else if (visited.find(current) == visited.end()) |
424 |
|
{ |
425 |
21 |
stack.back().first = true; |
426 |
21 |
visited.insert(current); |
427 |
41 |
for (unsigned i = 0; i < current->getNumChildren(); ++i) { |
428 |
20 |
expr::NodeValue* child = current->getChild(i); |
429 |
20 |
stack.push_back(std::make_pair(false, child)); |
430 |
|
} |
431 |
|
} |
432 |
|
else |
433 |
|
{ |
434 |
10 |
stack.pop_back(); |
435 |
|
} |
436 |
|
} |
437 |
|
} |
438 |
9862 |
Assert(order.size() == roots.size()); |
439 |
19724 |
return order; |
440 |
|
} /* NodeManager::TopologicalSort() */ |
441 |
|
|
442 |
743889979 |
TypeNode NodeManager::getType(TNode n, bool check) |
443 |
|
{ |
444 |
743889979 |
TypeNode typeNode; |
445 |
743889979 |
bool hasType = getAttribute(n, TypeAttr(), typeNode); |
446 |
743889979 |
bool needsCheck = check && !getAttribute(n, TypeCheckedAttr()); |
447 |
|
|
448 |
|
|
449 |
743889979 |
Debug("getType") << this << " getting type for " << &n << " " << n << ", check=" << check << ", needsCheck = " << needsCheck << ", hasType = " << hasType << endl; |
450 |
|
|
451 |
|
#ifdef CVC5_DEBUG |
452 |
|
// already did type check eagerly upon creation in node builder |
453 |
743889979 |
bool doTypeCheck = false; |
454 |
|
#else |
455 |
|
bool doTypeCheck = true; |
456 |
|
#endif |
457 |
743889979 |
if (needsCheck && doTypeCheck) |
458 |
|
{ |
459 |
|
/* Iterate and compute the children bottom up. This avoids stack |
460 |
|
overflows in computeType() when the Node graph is really deep, |
461 |
|
which should only affect us when we're type checking lazily. */ |
462 |
|
stack<TNode> worklist; |
463 |
|
worklist.push(n); |
464 |
|
|
465 |
|
while( !worklist.empty() ) { |
466 |
|
TNode m = worklist.top(); |
467 |
|
|
468 |
|
bool readyToCompute = true; |
469 |
|
|
470 |
|
for( TNode::iterator it = m.begin(), end = m.end(); |
471 |
|
it != end; |
472 |
|
++it ) { |
473 |
|
if( !hasAttribute(*it, TypeAttr()) |
474 |
|
|| (check && !getAttribute(*it, TypeCheckedAttr())) ) { |
475 |
|
readyToCompute = false; |
476 |
|
worklist.push(*it); |
477 |
|
} |
478 |
|
} |
479 |
|
|
480 |
|
if( readyToCompute ) { |
481 |
|
Assert(check || m.getMetaKind() != kind::metakind::NULLARY_OPERATOR); |
482 |
|
/* All the children have types, time to compute */ |
483 |
|
typeNode = TypeChecker::computeType(this, m, check); |
484 |
|
worklist.pop(); |
485 |
|
} |
486 |
|
} // end while |
487 |
|
|
488 |
|
/* Last type computed in loop should be the type of n */ |
489 |
|
Assert(typeNode == getAttribute(n, TypeAttr())); |
490 |
743889979 |
} else if( !hasType || needsCheck ) { |
491 |
|
/* We can compute the type top-down, without worrying about |
492 |
|
deep recursion. */ |
493 |
27250151 |
Assert(check || n.getMetaKind() != kind::metakind::NULLARY_OPERATOR); |
494 |
27250151 |
typeNode = TypeChecker::computeType(this, n, check); |
495 |
|
} |
496 |
|
|
497 |
|
/* The type should be have been computed and stored. */ |
498 |
743889518 |
Assert(hasAttribute(n, TypeAttr())); |
499 |
|
/* The check should have happened, if we asked for it. */ |
500 |
743889518 |
Assert(!check || getAttribute(n, TypeCheckedAttr())); |
501 |
|
|
502 |
743889518 |
Debug("getType") << "type of " << &n << " " << n << " is " << typeNode << endl; |
503 |
743889518 |
return typeNode; |
504 |
|
} |
505 |
|
|
506 |
169178 |
Node NodeManager::mkSkolem(const std::string& prefix, const TypeNode& type, const std::string& comment, int flags) { |
507 |
169178 |
Node n = NodeBuilder(this, kind::SKOLEM); |
508 |
169178 |
setAttribute(n, TypeAttr(), type); |
509 |
169178 |
setAttribute(n, TypeCheckedAttr(), true); |
510 |
169178 |
if((flags & SKOLEM_EXACT_NAME) == 0) { |
511 |
161418 |
stringstream name; |
512 |
80709 |
name << prefix << '_' << ++d_skolemCounter; |
513 |
80709 |
setAttribute(n, expr::VarNameAttr(), name.str()); |
514 |
|
} else { |
515 |
88469 |
setAttribute(n, expr::VarNameAttr(), prefix); |
516 |
|
} |
517 |
169178 |
if((flags & SKOLEM_NO_NOTIFY) == 0) { |
518 |
261088 |
for(vector<NodeManagerListener*>::iterator i = d_listeners.begin(); i != d_listeners.end(); ++i) { |
519 |
175814 |
(*i)->nmNotifyNewSkolem(n, comment, (flags & SKOLEM_IS_GLOBAL) == SKOLEM_IS_GLOBAL); |
520 |
|
} |
521 |
|
} |
522 |
169178 |
return n; |
523 |
|
} |
524 |
|
|
525 |
398 |
TypeNode NodeManager::mkBagType(TypeNode elementType) |
526 |
|
{ |
527 |
398 |
CheckArgument( |
528 |
398 |
!elementType.isNull(), elementType, "unexpected NULL element type"); |
529 |
398 |
Debug("bags") << "making bags type " << elementType << std::endl; |
530 |
398 |
return mkTypeNode(kind::BAG_TYPE, elementType); |
531 |
|
} |
532 |
|
|
533 |
935 |
TypeNode NodeManager::mkSequenceType(TypeNode elementType) |
534 |
|
{ |
535 |
935 |
CheckArgument( |
536 |
935 |
!elementType.isNull(), elementType, "unexpected NULL element type"); |
537 |
935 |
return mkTypeNode(kind::SEQUENCE_TYPE, elementType); |
538 |
|
} |
539 |
|
|
540 |
2225 |
TypeNode NodeManager::mkDatatypeType(DType& datatype, uint32_t flags) |
541 |
|
{ |
542 |
|
// Not worth a special implementation; this doesn't need to be fast |
543 |
|
// code anyway. |
544 |
4450 |
std::vector<DType> datatypes; |
545 |
2225 |
datatypes.push_back(datatype); |
546 |
4450 |
std::vector<TypeNode> result = mkMutualDatatypeTypes(datatypes, flags); |
547 |
2225 |
Assert(result.size() == 1); |
548 |
4450 |
return result.front(); |
549 |
|
} |
550 |
|
|
551 |
2225 |
std::vector<TypeNode> NodeManager::mkMutualDatatypeTypes( |
552 |
|
const std::vector<DType>& datatypes, uint32_t flags) |
553 |
|
{ |
554 |
4450 |
std::set<TypeNode> unresolvedTypes; |
555 |
4450 |
return mkMutualDatatypeTypes(datatypes, unresolvedTypes, flags); |
556 |
|
} |
557 |
|
|
558 |
4208 |
std::vector<TypeNode> NodeManager::mkMutualDatatypeTypes( |
559 |
|
const std::vector<DType>& datatypes, |
560 |
|
const std::set<TypeNode>& unresolvedTypes, |
561 |
|
uint32_t flags) |
562 |
|
{ |
563 |
8416 |
std::map<std::string, TypeNode> nameResolutions; |
564 |
4208 |
std::vector<TypeNode> dtts; |
565 |
|
|
566 |
|
// First do some sanity checks, set up the final Type to be used for |
567 |
|
// each datatype, and set up the "named resolutions" used to handle |
568 |
|
// simple self- and mutual-recursion, for example in the definition |
569 |
|
// "nat = succ(pred:nat) | zero", a named resolution can handle the |
570 |
|
// pred selector. |
571 |
9800 |
for (const DType& dt : datatypes) |
572 |
|
{ |
573 |
5592 |
uint32_t index = d_dtypes.size(); |
574 |
5592 |
d_dtypes.push_back(std::unique_ptr<DType>(new DType(dt))); |
575 |
5592 |
DType* dtp = d_dtypes.back().get(); |
576 |
11184 |
TypeNode typeNode; |
577 |
5592 |
if (dtp->getNumParameters() == 0) |
578 |
|
{ |
579 |
5518 |
typeNode = mkTypeConst(DatatypeIndexConstant(index)); |
580 |
|
} |
581 |
|
else |
582 |
|
{ |
583 |
148 |
TypeNode cons = mkTypeConst(DatatypeIndexConstant(index)); |
584 |
148 |
std::vector<TypeNode> params; |
585 |
74 |
params.push_back(cons); |
586 |
170 |
for (uint32_t ip = 0; ip < dtp->getNumParameters(); ++ip) |
587 |
|
{ |
588 |
96 |
params.push_back(dtp->getParameter(ip)); |
589 |
|
} |
590 |
|
|
591 |
74 |
typeNode = mkTypeNode(kind::PARAMETRIC_DATATYPE, params); |
592 |
|
} |
593 |
5592 |
if (nameResolutions.find(dtp->getName()) != nameResolutions.end()) |
594 |
|
{ |
595 |
|
throw Exception( |
596 |
|
"cannot construct two datatypes at the same time with the same name"); |
597 |
|
} |
598 |
5592 |
nameResolutions.insert(std::make_pair(dtp->getName(), typeNode)); |
599 |
5592 |
dtts.push_back(typeNode); |
600 |
|
} |
601 |
|
|
602 |
|
// Second, set up the type substitution map for complex type |
603 |
|
// resolution (e.g. if "list" is the type we're defining, and it has |
604 |
|
// a selector of type "ARRAY INT OF list", this can't be taken care |
605 |
|
// of using the named resolutions that we set up above. A |
606 |
|
// preliminary array type was set up, and now needs to have "list" |
607 |
|
// substituted in it for the correct type. |
608 |
|
// |
609 |
|
// @TODO get rid of named resolutions altogether and handle |
610 |
|
// everything with these resolutions? |
611 |
8416 |
std::vector<TypeNode> paramTypes; |
612 |
8416 |
std::vector<TypeNode> paramReplacements; |
613 |
8416 |
std::vector<TypeNode> placeholders; // to hold the "unresolved placeholders" |
614 |
8416 |
std::vector<TypeNode> replacements; // to hold our final, resolved types |
615 |
7567 |
for (const TypeNode& ut : unresolvedTypes) |
616 |
|
{ |
617 |
6718 |
std::string name = ut.getAttribute(expr::VarNameAttr()); |
618 |
|
std::map<std::string, TypeNode>::const_iterator resolver = |
619 |
3359 |
nameResolutions.find(name); |
620 |
3359 |
if (resolver == nameResolutions.end()) |
621 |
|
{ |
622 |
|
throw Exception("cannot resolve type " + name |
623 |
|
+ "; it's not among the datatypes being defined"); |
624 |
|
} |
625 |
|
// We will instruct the Datatype to substitute "ut" (the |
626 |
|
// unresolved SortType used as a placeholder in complex types) |
627 |
|
// with "(*resolver).second" (the TypeNode we created in the |
628 |
|
// first step, above). |
629 |
3359 |
if (ut.isSort()) |
630 |
|
{ |
631 |
3303 |
placeholders.push_back(ut); |
632 |
3303 |
replacements.push_back((*resolver).second); |
633 |
|
} |
634 |
|
else |
635 |
|
{ |
636 |
56 |
Assert(ut.isSortConstructor()); |
637 |
56 |
paramTypes.push_back(ut); |
638 |
56 |
paramReplacements.push_back((*resolver).second); |
639 |
|
} |
640 |
|
} |
641 |
|
|
642 |
|
// Lastly, perform the final resolutions and checks. |
643 |
9800 |
for (const TypeNode& ut : dtts) |
644 |
|
{ |
645 |
5592 |
const DType& dt = ut.getDType(); |
646 |
5592 |
if (!dt.isResolved()) |
647 |
|
{ |
648 |
5592 |
const_cast<DType&>(dt).resolve(nameResolutions, |
649 |
|
placeholders, |
650 |
|
replacements, |
651 |
|
paramTypes, |
652 |
|
paramReplacements); |
653 |
|
} |
654 |
|
// Check the datatype has been resolved properly. |
655 |
22107 |
for (size_t i = 0, ncons = dt.getNumConstructors(); i < ncons; i++) |
656 |
|
{ |
657 |
16515 |
const DTypeConstructor& c = dt[i]; |
658 |
33030 |
TypeNode testerType CVC5_UNUSED = c.getTester().getType(); |
659 |
16515 |
Assert(c.isResolved() && testerType.isTester() && testerType[0] == ut) |
660 |
|
<< "malformed tester in datatype post-resolution"; |
661 |
33030 |
TypeNode ctorType CVC5_UNUSED = c.getConstructor().getType(); |
662 |
16515 |
Assert(ctorType.isConstructor() |
663 |
|
&& ctorType.getNumChildren() == c.getNumArgs() + 1 |
664 |
|
&& ctorType.getRangeType() == ut) |
665 |
|
<< "malformed constructor in datatype post-resolution"; |
666 |
|
// for all selectors... |
667 |
33244 |
for (size_t j = 0, nargs = c.getNumArgs(); j < nargs; j++) |
668 |
|
{ |
669 |
16729 |
const DTypeSelector& a = c[j]; |
670 |
33458 |
TypeNode selectorType = a.getType(); |
671 |
16729 |
Assert(a.isResolved() && selectorType.isSelector() |
672 |
|
&& selectorType[0] == ut) |
673 |
|
<< "malformed selector in datatype post-resolution"; |
674 |
|
// This next one's a "hard" check, performed in non-debug builds |
675 |
|
// as well; the other ones should all be guaranteed by the |
676 |
|
// cvc5::DType class, but this actually needs to be checked. |
677 |
16729 |
if (selectorType.getRangeType().isFunctionLike()) |
678 |
|
{ |
679 |
|
throw Exception("cannot put function-like things in datatypes"); |
680 |
|
} |
681 |
|
} |
682 |
|
} |
683 |
|
} |
684 |
|
|
685 |
9932 |
for (NodeManagerListener* nml : d_listeners) |
686 |
|
{ |
687 |
5724 |
nml->nmNotifyNewDatatypes(dtts, flags); |
688 |
|
} |
689 |
|
|
690 |
8416 |
return dtts; |
691 |
|
} |
692 |
|
|
693 |
16515 |
TypeNode NodeManager::mkConstructorType(const std::vector<TypeNode>& args, |
694 |
|
TypeNode range) |
695 |
|
{ |
696 |
33030 |
std::vector<TypeNode> sorts = args; |
697 |
16515 |
sorts.push_back(range); |
698 |
33030 |
return mkTypeNode(kind::CONSTRUCTOR_TYPE, sorts); |
699 |
|
} |
700 |
|
|
701 |
17484 |
TypeNode NodeManager::mkSelectorType(TypeNode domain, TypeNode range) |
702 |
|
{ |
703 |
17484 |
CheckArgument( |
704 |
17484 |
domain.isDatatype(), domain, "cannot create non-datatype selector type"); |
705 |
17484 |
return mkTypeNode(kind::SELECTOR_TYPE, domain, range); |
706 |
|
} |
707 |
|
|
708 |
16515 |
TypeNode NodeManager::mkTesterType(TypeNode domain) |
709 |
|
{ |
710 |
16515 |
CheckArgument( |
711 |
16515 |
domain.isDatatype(), domain, "cannot create non-datatype tester"); |
712 |
16515 |
return mkTypeNode(kind::TESTER_TYPE, domain); |
713 |
|
} |
714 |
|
|
715 |
16729 |
TypeNode NodeManager::mkDatatypeUpdateType(TypeNode domain, TypeNode range) |
716 |
|
{ |
717 |
16729 |
CheckArgument( |
718 |
16729 |
domain.isDatatype(), domain, "cannot create non-datatype upater type"); |
719 |
|
// It is a function type domain x range -> domain, we store only the |
720 |
|
// arguments |
721 |
16729 |
return mkTypeNode(kind::UPDATER_TYPE, domain, range); |
722 |
|
} |
723 |
|
|
724 |
30252 |
TypeNode NodeManager::TupleTypeCache::getTupleType( NodeManager * nm, std::vector< TypeNode >& types, unsigned index ) { |
725 |
30252 |
if( index==types.size() ){ |
726 |
11158 |
if( d_data.isNull() ){ |
727 |
4138 |
std::stringstream sst; |
728 |
2069 |
sst << "__cvc5_tuple"; |
729 |
3104 |
for (unsigned i = 0; i < types.size(); ++ i) { |
730 |
1035 |
sst << "_" << types[i]; |
731 |
|
} |
732 |
4138 |
DType dt(sst.str()); |
733 |
2069 |
dt.setTuple(); |
734 |
4138 |
std::stringstream ssc; |
735 |
2069 |
ssc << sst.str() << "_ctor"; |
736 |
|
std::shared_ptr<DTypeConstructor> c = |
737 |
4138 |
std::make_shared<DTypeConstructor>(ssc.str()); |
738 |
3104 |
for (unsigned i = 0; i < types.size(); ++ i) { |
739 |
2070 |
std::stringstream ss; |
740 |
1035 |
ss << sst.str() << "_stor_" << i; |
741 |
1035 |
c->addArg(ss.str().c_str(), types[i]); |
742 |
|
} |
743 |
2069 |
dt.addConstructor(c); |
744 |
2069 |
d_data = nm->mkDatatypeType(dt); |
745 |
2069 |
Debug("tuprec-debug") << "Return type : " << d_data << std::endl; |
746 |
|
} |
747 |
11158 |
return d_data; |
748 |
|
}else{ |
749 |
19094 |
return d_children[types[index]].getTupleType( nm, types, index+1 ); |
750 |
|
} |
751 |
|
} |
752 |
|
|
753 |
367 |
TypeNode NodeManager::RecTypeCache::getRecordType( NodeManager * nm, const Record& rec, unsigned index ) { |
754 |
367 |
if (index == rec.size()) |
755 |
|
{ |
756 |
141 |
if( d_data.isNull() ){ |
757 |
132 |
std::stringstream sst; |
758 |
66 |
sst << "__cvc5_record"; |
759 |
176 |
for (const std::pair<std::string, TypeNode>& i : rec) |
760 |
|
{ |
761 |
110 |
sst << "_" << i.first << "_" << i.second; |
762 |
|
} |
763 |
132 |
DType dt(sst.str()); |
764 |
66 |
dt.setRecord(); |
765 |
132 |
std::stringstream ssc; |
766 |
66 |
ssc << sst.str() << "_ctor"; |
767 |
|
std::shared_ptr<DTypeConstructor> c = |
768 |
132 |
std::make_shared<DTypeConstructor>(ssc.str()); |
769 |
176 |
for (const std::pair<std::string, TypeNode>& i : rec) |
770 |
|
{ |
771 |
110 |
c->addArg(i.first, i.second); |
772 |
|
} |
773 |
66 |
dt.addConstructor(c); |
774 |
66 |
d_data = nm->mkDatatypeType(dt); |
775 |
66 |
Debug("tuprec-debug") << "Return type : " << d_data << std::endl; |
776 |
|
} |
777 |
141 |
return d_data; |
778 |
|
} |
779 |
226 |
return d_children[rec[index].second][rec[index].first].getRecordType( |
780 |
226 |
nm, rec, index + 1); |
781 |
|
} |
782 |
|
|
783 |
55534 |
TypeNode NodeManager::mkFunctionType(const std::vector<TypeNode>& sorts) |
784 |
|
{ |
785 |
55534 |
Assert(sorts.size() >= 2); |
786 |
55534 |
return mkTypeNode(kind::FUNCTION_TYPE, sorts); |
787 |
|
} |
788 |
|
|
789 |
39 |
TypeNode NodeManager::mkPredicateType(const std::vector<TypeNode>& sorts) |
790 |
|
{ |
791 |
39 |
Assert(sorts.size() >= 1); |
792 |
78 |
std::vector<TypeNode> sortNodes; |
793 |
39 |
sortNodes.insert(sortNodes.end(), sorts.begin(), sorts.end()); |
794 |
39 |
sortNodes.push_back(booleanType()); |
795 |
78 |
return mkFunctionType(sortNodes); |
796 |
|
} |
797 |
|
|
798 |
5429 |
TypeNode NodeManager::mkFunctionType(const TypeNode& domain, |
799 |
|
const TypeNode& range) |
800 |
|
{ |
801 |
10858 |
std::vector<TypeNode> sorts; |
802 |
5429 |
sorts.push_back(domain); |
803 |
5429 |
sorts.push_back(range); |
804 |
10858 |
return mkFunctionType(sorts); |
805 |
|
} |
806 |
|
|
807 |
42978 |
TypeNode NodeManager::mkFunctionType(const std::vector<TypeNode>& argTypes, |
808 |
|
const TypeNode& range) |
809 |
|
{ |
810 |
42978 |
Assert(argTypes.size() >= 1); |
811 |
85956 |
std::vector<TypeNode> sorts(argTypes); |
812 |
42978 |
sorts.push_back(range); |
813 |
85956 |
return mkFunctionType(sorts); |
814 |
|
} |
815 |
|
|
816 |
11158 |
TypeNode NodeManager::mkTupleType(const std::vector<TypeNode>& types) { |
817 |
22316 |
std::vector< TypeNode > ts; |
818 |
11158 |
Debug("tuprec-debug") << "Make tuple type : "; |
819 |
30252 |
for (unsigned i = 0; i < types.size(); ++ i) { |
820 |
19094 |
CheckArgument(!types[i].isFunctionLike(), types, "cannot put function-like types in tuples"); |
821 |
19094 |
ts.push_back( types[i] ); |
822 |
19094 |
Debug("tuprec-debug") << types[i] << " "; |
823 |
|
} |
824 |
11158 |
Debug("tuprec-debug") << std::endl; |
825 |
22316 |
return d_tt_cache.getTupleType( this, ts ); |
826 |
|
} |
827 |
|
|
828 |
141 |
TypeNode NodeManager::mkRecordType(const Record& rec) { |
829 |
141 |
return d_rt_cache.getRecordType( this, rec ); |
830 |
|
} |
831 |
|
|
832 |
|
void NodeManager::reclaimAllZombies(){ |
833 |
|
reclaimZombiesUntil(0u); |
834 |
|
} |
835 |
|
|
836 |
|
/** Reclaim zombies while there are more than k nodes in the pool (if possible).*/ |
837 |
|
void NodeManager::reclaimZombiesUntil(uint32_t k){ |
838 |
|
if(safeToReclaimZombies()){ |
839 |
|
while(poolSize() >= k && !d_zombies.empty()){ |
840 |
|
reclaimZombies(); |
841 |
|
} |
842 |
|
} |
843 |
|
} |
844 |
|
|
845 |
1 |
size_t NodeManager::poolSize() const{ |
846 |
1 |
return d_nodeValuePool.size(); |
847 |
|
} |
848 |
|
|
849 |
14 |
TypeNode NodeManager::mkSort(uint32_t flags) { |
850 |
28 |
NodeBuilder nb(this, kind::SORT_TYPE); |
851 |
28 |
Node sortTag = NodeBuilder(this, kind::SORT_TAG); |
852 |
14 |
nb << sortTag; |
853 |
14 |
TypeNode tn = nb.constructTypeNode(); |
854 |
16 |
for(std::vector<NodeManagerListener*>::iterator i = d_listeners.begin(); i != d_listeners.end(); ++i) { |
855 |
2 |
(*i)->nmNotifyNewSort(tn, flags); |
856 |
|
} |
857 |
28 |
return tn; |
858 |
|
} |
859 |
|
|
860 |
7986 |
TypeNode NodeManager::mkSort(const std::string& name, uint32_t flags) { |
861 |
15972 |
NodeBuilder nb(this, kind::SORT_TYPE); |
862 |
15972 |
Node sortTag = NodeBuilder(this, kind::SORT_TAG); |
863 |
7986 |
nb << sortTag; |
864 |
7986 |
TypeNode tn = nb.constructTypeNode(); |
865 |
7986 |
setAttribute(tn, expr::VarNameAttr(), name); |
866 |
19456 |
for(std::vector<NodeManagerListener*>::iterator i = d_listeners.begin(); i != d_listeners.end(); ++i) { |
867 |
11470 |
(*i)->nmNotifyNewSort(tn, flags); |
868 |
|
} |
869 |
15972 |
return tn; |
870 |
|
} |
871 |
|
|
872 |
485 |
TypeNode NodeManager::mkSort(TypeNode constructor, |
873 |
|
const std::vector<TypeNode>& children, |
874 |
|
uint32_t flags) { |
875 |
485 |
Assert(constructor.getKind() == kind::SORT_TYPE |
876 |
|
&& constructor.getNumChildren() == 0) |
877 |
|
<< "expected a sort constructor"; |
878 |
485 |
Assert(children.size() > 0) << "expected non-zero # of children"; |
879 |
485 |
Assert(hasAttribute(constructor.d_nv, expr::SortArityAttr()) |
880 |
|
&& hasAttribute(constructor.d_nv, expr::VarNameAttr())) |
881 |
|
<< "expected a sort constructor"; |
882 |
970 |
std::string name = getAttribute(constructor.d_nv, expr::VarNameAttr()); |
883 |
485 |
Assert(getAttribute(constructor.d_nv, expr::SortArityAttr()) |
884 |
|
== children.size()) |
885 |
|
<< "arity mismatch in application of sort constructor"; |
886 |
970 |
NodeBuilder nb(this, kind::SORT_TYPE); |
887 |
970 |
Node sortTag = Node(constructor.d_nv->d_children[0]); |
888 |
485 |
nb << sortTag; |
889 |
485 |
nb.append(children); |
890 |
485 |
TypeNode type = nb.constructTypeNode(); |
891 |
485 |
setAttribute(type, expr::VarNameAttr(), name); |
892 |
1114 |
for(std::vector<NodeManagerListener*>::iterator i = d_listeners.begin(); i != d_listeners.end(); ++i) { |
893 |
629 |
(*i)->nmNotifyInstantiateSortConstructor(constructor, type, flags); |
894 |
|
} |
895 |
970 |
return type; |
896 |
|
} |
897 |
|
|
898 |
97 |
TypeNode NodeManager::mkSortConstructor(const std::string& name, |
899 |
|
size_t arity, |
900 |
|
uint32_t flags) |
901 |
|
{ |
902 |
97 |
Assert(arity > 0); |
903 |
194 |
NodeBuilder nb(this, kind::SORT_TYPE); |
904 |
194 |
Node sortTag = NodeBuilder(this, kind::SORT_TAG); |
905 |
97 |
nb << sortTag; |
906 |
97 |
TypeNode type = nb.constructTypeNode(); |
907 |
97 |
setAttribute(type, expr::VarNameAttr(), name); |
908 |
97 |
setAttribute(type, expr::SortArityAttr(), arity); |
909 |
200 |
for(std::vector<NodeManagerListener*>::iterator i = d_listeners.begin(); i != d_listeners.end(); ++i) { |
910 |
103 |
(*i)->nmNotifyNewSortConstructor(type, flags); |
911 |
|
} |
912 |
194 |
return type; |
913 |
|
} |
914 |
|
|
915 |
177711 |
Node NodeManager::mkVar(const std::string& name, const TypeNode& type) |
916 |
|
{ |
917 |
177711 |
Node n = NodeBuilder(this, kind::VARIABLE); |
918 |
177711 |
setAttribute(n, TypeAttr(), type); |
919 |
177711 |
setAttribute(n, TypeCheckedAttr(), true); |
920 |
177711 |
setAttribute(n, expr::VarNameAttr(), name); |
921 |
380041 |
for(std::vector<NodeManagerListener*>::iterator i = d_listeners.begin(); i != d_listeners.end(); ++i) { |
922 |
202330 |
(*i)->nmNotifyNewVar(n); |
923 |
|
} |
924 |
177711 |
return n; |
925 |
|
} |
926 |
|
|
927 |
687526 |
Node NodeManager::mkBoundVar(const std::string& name, const TypeNode& type) { |
928 |
687526 |
Node n = mkBoundVar(type); |
929 |
687526 |
setAttribute(n, expr::VarNameAttr(), name); |
930 |
687526 |
return n; |
931 |
|
} |
932 |
|
|
933 |
3239 |
Node NodeManager::getBoundVarListForFunctionType( TypeNode tn ) { |
934 |
3239 |
Assert(tn.isFunction()); |
935 |
3239 |
Node bvl = tn.getAttribute(LambdaBoundVarListAttr()); |
936 |
3239 |
if( bvl.isNull() ){ |
937 |
366 |
std::vector< Node > vars; |
938 |
444 |
for( unsigned i=0; i<tn.getNumChildren()-1; i++ ){ |
939 |
261 |
vars.push_back(mkBoundVar(tn[i])); |
940 |
|
} |
941 |
183 |
bvl = mkNode(kind::BOUND_VAR_LIST, vars); |
942 |
183 |
Trace("functions") << "Make standard bound var list " << bvl << " for " << tn << std::endl; |
943 |
183 |
tn.setAttribute(LambdaBoundVarListAttr(),bvl); |
944 |
|
} |
945 |
3239 |
return bvl; |
946 |
|
} |
947 |
|
|
948 |
1049114 |
Node NodeManager::mkAssociative(Kind kind, const std::vector<Node>& children) |
949 |
|
{ |
950 |
1049114 |
AlwaysAssert(kind::isAssociative(kind)) << "Illegal kind in mkAssociative"; |
951 |
|
|
952 |
1049114 |
const unsigned int max = kind::metakind::getMaxArityForKind(kind); |
953 |
1049114 |
size_t numChildren = children.size(); |
954 |
|
|
955 |
|
/* If the number of children is within bounds, then there's nothing to do. */ |
956 |
1049114 |
if (numChildren <= max) |
957 |
|
{ |
958 |
1049114 |
return mkNode(kind, children); |
959 |
|
} |
960 |
|
const unsigned int min = kind::metakind::getMinArityForKind(kind); |
961 |
|
|
962 |
|
std::vector<Node>::const_iterator it = children.begin(); |
963 |
|
std::vector<Node>::const_iterator end = children.end(); |
964 |
|
|
965 |
|
/* The new top-level children and the children of each sub node */ |
966 |
|
std::vector<Node> newChildren; |
967 |
|
std::vector<Node> subChildren; |
968 |
|
|
969 |
|
while (it != end && numChildren > max) |
970 |
|
{ |
971 |
|
/* Grab the next max children and make a node for them. */ |
972 |
|
for (std::vector<Node>::const_iterator next = it + max; it != next; |
973 |
|
++it, --numChildren) |
974 |
|
{ |
975 |
|
subChildren.push_back(*it); |
976 |
|
} |
977 |
|
Node subNode = mkNode(kind, subChildren); |
978 |
|
newChildren.push_back(subNode); |
979 |
|
|
980 |
|
subChildren.clear(); |
981 |
|
} |
982 |
|
|
983 |
|
// add the leftover children |
984 |
|
if (numChildren > 0) |
985 |
|
{ |
986 |
|
for (; it != end; ++it) |
987 |
|
{ |
988 |
|
newChildren.push_back(*it); |
989 |
|
} |
990 |
|
} |
991 |
|
|
992 |
|
/* It would be really weird if this happened (it would require |
993 |
|
* min > 2, for one thing), but let's make sure. */ |
994 |
|
AlwaysAssert(newChildren.size() >= min) |
995 |
|
<< "Too few new children in mkAssociative"; |
996 |
|
|
997 |
|
// recurse |
998 |
|
return mkAssociative(kind, newChildren); |
999 |
|
} |
1000 |
|
|
1001 |
712 |
Node NodeManager::mkLeftAssociative(Kind kind, |
1002 |
|
const std::vector<Node>& children) |
1003 |
|
{ |
1004 |
712 |
Node n = children[0]; |
1005 |
5156 |
for (size_t i = 1, size = children.size(); i < size; i++) |
1006 |
|
{ |
1007 |
4444 |
n = mkNode(kind, n, children[i]); |
1008 |
|
} |
1009 |
712 |
return n; |
1010 |
|
} |
1011 |
|
|
1012 |
6 |
Node NodeManager::mkRightAssociative(Kind kind, |
1013 |
|
const std::vector<Node>& children) |
1014 |
|
{ |
1015 |
6 |
Node n = children[children.size() - 1]; |
1016 |
18 |
for (size_t i = children.size() - 1; i > 0;) |
1017 |
|
{ |
1018 |
12 |
n = mkNode(kind, children[--i], n); |
1019 |
|
} |
1020 |
6 |
return n; |
1021 |
|
} |
1022 |
|
|
1023 |
769 |
Node NodeManager::mkChain(Kind kind, const std::vector<Node>& children) |
1024 |
|
{ |
1025 |
769 |
if (children.size() == 2) |
1026 |
|
{ |
1027 |
|
// if this is the case exactly 1 pair will be generated so the |
1028 |
|
// AND is not required |
1029 |
|
return mkNode(kind, children[0], children[1]); |
1030 |
|
} |
1031 |
1538 |
std::vector<Node> cchildren; |
1032 |
3952 |
for (size_t i = 0, nargsmo = children.size() - 1; i < nargsmo; i++) |
1033 |
|
{ |
1034 |
3183 |
cchildren.push_back(mkNode(kind, children[i], children[i + 1])); |
1035 |
|
} |
1036 |
769 |
return mkNode(kind::AND, cchildren); |
1037 |
|
} |
1038 |
|
|
1039 |
127 |
Node NodeManager::mkVar(const TypeNode& type) |
1040 |
|
{ |
1041 |
127 |
Node n = NodeBuilder(this, kind::VARIABLE); |
1042 |
127 |
setAttribute(n, TypeAttr(), type); |
1043 |
127 |
setAttribute(n, TypeCheckedAttr(), true); |
1044 |
252 |
for(std::vector<NodeManagerListener*>::iterator i = d_listeners.begin(); i != d_listeners.end(); ++i) { |
1045 |
125 |
(*i)->nmNotifyNewVar(n); |
1046 |
|
} |
1047 |
127 |
return n; |
1048 |
|
} |
1049 |
|
|
1050 |
710648 |
Node NodeManager::mkBoundVar(const TypeNode& type) { |
1051 |
710648 |
Node n = NodeBuilder(this, kind::BOUND_VARIABLE); |
1052 |
710648 |
setAttribute(n, TypeAttr(), type); |
1053 |
710648 |
setAttribute(n, TypeCheckedAttr(), true); |
1054 |
710648 |
return n; |
1055 |
|
} |
1056 |
|
|
1057 |
59458 |
Node NodeManager::mkInstConstant(const TypeNode& type) { |
1058 |
59458 |
Node n = NodeBuilder(this, kind::INST_CONSTANT); |
1059 |
59458 |
n.setAttribute(TypeAttr(), type); |
1060 |
59458 |
n.setAttribute(TypeCheckedAttr(), true); |
1061 |
59458 |
return n; |
1062 |
|
} |
1063 |
|
|
1064 |
838 |
Node NodeManager::mkBooleanTermVariable() { |
1065 |
838 |
Node n = NodeBuilder(this, kind::BOOLEAN_TERM_VARIABLE); |
1066 |
838 |
n.setAttribute(TypeAttr(), booleanType()); |
1067 |
838 |
n.setAttribute(TypeCheckedAttr(), true); |
1068 |
838 |
return n; |
1069 |
|
} |
1070 |
|
|
1071 |
7271 |
Node NodeManager::mkNullaryOperator(const TypeNode& type, Kind k) { |
1072 |
7271 |
std::map< TypeNode, Node >::iterator it = d_unique_vars[k].find( type ); |
1073 |
7271 |
if( it==d_unique_vars[k].end() ){ |
1074 |
10020 |
Node n = NodeBuilder(this, k).constructNode(); |
1075 |
5010 |
setAttribute(n, TypeAttr(), type); |
1076 |
|
//setAttribute(n, TypeCheckedAttr(), true); |
1077 |
5010 |
d_unique_vars[k][type] = n; |
1078 |
5010 |
Assert(n.getMetaKind() == kind::metakind::NULLARY_OPERATOR); |
1079 |
5010 |
return n; |
1080 |
|
}else{ |
1081 |
2261 |
return it->second; |
1082 |
|
} |
1083 |
|
} |
1084 |
|
|
1085 |
8922 |
Node NodeManager::mkSingleton(const TypeNode& t, const TNode n) |
1086 |
|
{ |
1087 |
17844 |
Assert(n.getType().isSubtypeOf(t)) |
1088 |
8922 |
<< "Invalid operands for mkSingleton. The type '" << n.getType() |
1089 |
8922 |
<< "' of node '" << n << "' is not a subtype of '" << t << "'." |
1090 |
|
<< std::endl; |
1091 |
17844 |
Node op = mkConst(SingletonOp(t)); |
1092 |
8922 |
Node singleton = mkNode(kind::SINGLETON, op, n); |
1093 |
17844 |
return singleton; |
1094 |
|
} |
1095 |
|
|
1096 |
336 |
Node NodeManager::mkBag(const TypeNode& t, const TNode n, const TNode m) |
1097 |
|
{ |
1098 |
672 |
Assert(n.getType().isSubtypeOf(t)) |
1099 |
336 |
<< "Invalid operands for mkBag. The type '" << n.getType() |
1100 |
336 |
<< "' of node '" << n << "' is not a subtype of '" << t << "'." |
1101 |
|
<< std::endl; |
1102 |
672 |
Node op = mkConst(MakeBagOp(t)); |
1103 |
336 |
Node bag = mkNode(kind::MK_BAG, op, n, m); |
1104 |
672 |
return bag; |
1105 |
|
} |
1106 |
|
|
1107 |
8 |
Node NodeManager::mkAbstractValue(const TypeNode& type) { |
1108 |
8 |
Node n = mkConst(AbstractValue(++d_abstractValueCount)); |
1109 |
8 |
n.setAttribute(TypeAttr(), type); |
1110 |
8 |
n.setAttribute(TypeCheckedAttr(), true); |
1111 |
8 |
return n; |
1112 |
|
} |
1113 |
|
|
1114 |
49518834 |
bool NodeManager::safeToReclaimZombies() const{ |
1115 |
|
// FIXME multithreading |
1116 |
49518834 |
return !d_inReclaimZombies && !d_attrManager->inGarbageCollection(); |
1117 |
|
} |
1118 |
|
|
1119 |
|
void NodeManager::deleteAttributes(const std::vector<const expr::attr::AttributeUniqueId*>& ids){ |
1120 |
|
d_attrManager->deleteAttributes(ids); |
1121 |
|
} |
1122 |
|
|
1123 |
|
void NodeManager::debugHook(int debugFlag){ |
1124 |
|
// For debugging purposes only, DO NOT CHECK IN ANY CODE! |
1125 |
|
} |
1126 |
|
|
1127 |
131 |
Kind NodeManager::getKindForFunction(TNode fun) |
1128 |
|
{ |
1129 |
262 |
TypeNode tn = fun.getType(); |
1130 |
131 |
if (tn.isFunction()) |
1131 |
|
{ |
1132 |
9 |
return kind::APPLY_UF; |
1133 |
|
} |
1134 |
122 |
else if (tn.isConstructor()) |
1135 |
|
{ |
1136 |
31 |
return kind::APPLY_CONSTRUCTOR; |
1137 |
|
} |
1138 |
91 |
else if (tn.isSelector()) |
1139 |
|
{ |
1140 |
57 |
return kind::APPLY_SELECTOR; |
1141 |
|
} |
1142 |
34 |
else if (tn.isTester()) |
1143 |
|
{ |
1144 |
34 |
return kind::APPLY_TESTER; |
1145 |
|
} |
1146 |
|
return kind::UNDEFINED_KIND; |
1147 |
|
} |
1148 |
|
|
1149 |
2556 |
Node NodeManager::mkNode(Kind kind, std::initializer_list<TNode> children) |
1150 |
|
{ |
1151 |
5112 |
NodeBuilder nb(this, kind); |
1152 |
2556 |
nb.append(children.begin(), children.end()); |
1153 |
5112 |
return nb.constructNode(); |
1154 |
|
} |
1155 |
|
|
1156 |
|
Node NodeManager::mkNode(TNode opNode, std::initializer_list<TNode> children) |
1157 |
|
{ |
1158 |
|
NodeBuilder nb(this, operatorToKind(opNode)); |
1159 |
|
if (opNode.getKind() != kind::BUILTIN) |
1160 |
|
{ |
1161 |
|
nb << opNode; |
1162 |
|
} |
1163 |
|
nb.append(children.begin(), children.end()); |
1164 |
|
return nb.constructNode(); |
1165 |
|
} |
1166 |
|
|
1167 |
29574 |
} // namespace cvc5 |