1 |
|
/****************************************************************************** |
2 |
|
* Top contributors (to current version): |
3 |
|
* Tim King, Aina Niemetz, Piotr Trojanek |
4 |
|
* |
5 |
|
* This file is part of the cvc5 project. |
6 |
|
* |
7 |
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS |
8 |
|
* in the top-level source directory and their institutional affiliations. |
9 |
|
* All rights reserved. See the file COPYING in the top-level source |
10 |
|
* directory for licensing information. |
11 |
|
* **************************************************************************** |
12 |
|
* |
13 |
|
* [[ Add one-line brief description here ]] |
14 |
|
* |
15 |
|
* [[ Add lengthier description here ]] |
16 |
|
* \todo document this file |
17 |
|
*/ |
18 |
|
|
19 |
|
#include "theory/arith/arith_ite_utils.h" |
20 |
|
|
21 |
|
#include <ostream> |
22 |
|
|
23 |
|
#include "base/output.h" |
24 |
|
#include "expr/skolem_manager.h" |
25 |
|
#include "options/base_options.h" |
26 |
|
#include "options/smt_options.h" |
27 |
|
#include "preprocessing/util/ite_utilities.h" |
28 |
|
#include "theory/arith/arith_utilities.h" |
29 |
|
#include "theory/arith/normal_form.h" |
30 |
|
#include "theory/rewriter.h" |
31 |
|
#include "theory/substitutions.h" |
32 |
|
#include "theory/theory_model.h" |
33 |
|
|
34 |
|
using namespace std; |
35 |
|
|
36 |
|
namespace cvc5 { |
37 |
|
namespace theory { |
38 |
|
namespace arith { |
39 |
|
|
40 |
|
Node ArithIteUtils::applyReduceVariablesInItes(Node n){ |
41 |
|
NodeBuilder nb(n.getKind()); |
42 |
|
if(n.getMetaKind() == kind::metakind::PARAMETERIZED) { |
43 |
|
nb << (n.getOperator()); |
44 |
|
} |
45 |
|
for(Node::iterator it = n.begin(), end = n.end(); it != end; ++it){ |
46 |
|
nb << reduceVariablesInItes(*it); |
47 |
|
} |
48 |
|
Node res = nb; |
49 |
|
return res; |
50 |
|
} |
51 |
|
|
52 |
|
Node ArithIteUtils::reduceVariablesInItes(Node n){ |
53 |
|
using namespace cvc5::kind; |
54 |
|
if(d_reduceVar.find(n) != d_reduceVar.end()){ |
55 |
|
Node res = d_reduceVar[n]; |
56 |
|
return res.isNull() ? n : res; |
57 |
|
} |
58 |
|
|
59 |
|
switch(n.getKind()){ |
60 |
|
case ITE:{ |
61 |
|
Node c = n[0], t = n[1], e = n[2]; |
62 |
|
if(n.getType().isReal()){ |
63 |
|
Node rc = reduceVariablesInItes(c); |
64 |
|
Node rt = reduceVariablesInItes(t); |
65 |
|
Node re = reduceVariablesInItes(e); |
66 |
|
|
67 |
|
Node vt = d_varParts[t]; |
68 |
|
Node ve = d_varParts[e]; |
69 |
|
Node vpite = (vt == ve) ? vt : Node::null(); |
70 |
|
|
71 |
|
if(vpite.isNull()){ |
72 |
|
Node rite = rc.iteNode(rt, re); |
73 |
|
// do not apply |
74 |
|
d_reduceVar[n] = rite; |
75 |
|
d_constants[n] = mkRationalNode(Rational(0)); |
76 |
|
d_varParts[n] = rite; // treat the ite as a variable |
77 |
|
return rite; |
78 |
|
}else{ |
79 |
|
NodeManager* nm = NodeManager::currentNM(); |
80 |
|
Node constantite = rc.iteNode(d_constants[t], d_constants[e]); |
81 |
|
Node sum = nm->mkNode(kind::PLUS, vpite, constantite); |
82 |
|
d_reduceVar[n] = sum; |
83 |
|
d_constants[n] = constantite; |
84 |
|
d_varParts[n] = vpite; |
85 |
|
return sum; |
86 |
|
} |
87 |
|
}else{ // non-arith ite |
88 |
|
if(!d_contains.containsTermITE(n)){ |
89 |
|
// don't bother adding to d_reduceVar |
90 |
|
return n; |
91 |
|
}else{ |
92 |
|
Node newIte = applyReduceVariablesInItes(n); |
93 |
|
d_reduceVar[n] = (n == newIte) ? Node::null(): newIte; |
94 |
|
return newIte; |
95 |
|
} |
96 |
|
} |
97 |
|
}break; |
98 |
|
default: |
99 |
|
if(n.getType().isReal() && Polynomial::isMember(n)){ |
100 |
|
Node newn = Node::null(); |
101 |
|
if(!d_contains.containsTermITE(n)){ |
102 |
|
newn = n; |
103 |
|
}else if(n.getNumChildren() > 0){ |
104 |
|
newn = applyReduceVariablesInItes(n); |
105 |
|
newn = Rewriter::rewrite(newn); |
106 |
|
Assert(Polynomial::isMember(newn)); |
107 |
|
}else{ |
108 |
|
newn = n; |
109 |
|
} |
110 |
|
|
111 |
|
Polynomial p = Polynomial::parsePolynomial(newn); |
112 |
|
if(p.isConstant()){ |
113 |
|
d_constants[n] = newn; |
114 |
|
d_varParts[n] = mkRationalNode(Rational(0)); |
115 |
|
// don't bother adding to d_reduceVar |
116 |
|
return newn; |
117 |
|
}else if(!p.containsConstant()){ |
118 |
|
d_constants[n] = mkRationalNode(Rational(0)); |
119 |
|
d_varParts[n] = newn; |
120 |
|
d_reduceVar[n] = p.getNode(); |
121 |
|
return p.getNode(); |
122 |
|
}else{ |
123 |
|
Monomial mc = p.getHead(); |
124 |
|
d_constants[n] = mc.getConstant().getNode(); |
125 |
|
d_varParts[n] = p.getTail().getNode(); |
126 |
|
d_reduceVar[n] = newn; |
127 |
|
return newn; |
128 |
|
} |
129 |
|
}else{ |
130 |
|
if(!d_contains.containsTermITE(n)){ |
131 |
|
return n; |
132 |
|
} |
133 |
|
if(n.getNumChildren() > 0){ |
134 |
|
Node res = applyReduceVariablesInItes(n); |
135 |
|
d_reduceVar[n] = res; |
136 |
|
return res; |
137 |
|
}else{ |
138 |
|
return n; |
139 |
|
} |
140 |
|
} |
141 |
|
break; |
142 |
|
} |
143 |
|
Unreachable(); |
144 |
|
} |
145 |
|
|
146 |
|
ArithIteUtils::ArithIteUtils( |
147 |
|
preprocessing::util::ContainsTermITEVisitor& contains, |
148 |
|
context::Context* uc, |
149 |
|
SubstitutionMap& subs) |
150 |
|
: d_contains(contains), |
151 |
|
d_subs(subs), |
152 |
|
d_one(1), |
153 |
|
d_subcount(uc, 0), |
154 |
|
d_skolems(uc), |
155 |
|
d_implies(), |
156 |
|
d_orBinEqs() |
157 |
|
{ |
158 |
|
} |
159 |
|
|
160 |
|
ArithIteUtils::~ArithIteUtils(){ |
161 |
|
} |
162 |
|
|
163 |
|
void ArithIteUtils::clear(){ |
164 |
|
d_reduceVar.clear(); |
165 |
|
d_constants.clear(); |
166 |
|
d_varParts.clear(); |
167 |
|
} |
168 |
|
|
169 |
|
const Integer& ArithIteUtils::gcdIte(Node n){ |
170 |
|
if(d_gcds.find(n) != d_gcds.end()){ |
171 |
|
return d_gcds[n]; |
172 |
|
} |
173 |
|
if(n.getKind() == kind::CONST_RATIONAL){ |
174 |
|
const Rational& q = n.getConst<Rational>(); |
175 |
|
if(q.isIntegral()){ |
176 |
|
d_gcds[n] = q.getNumerator(); |
177 |
|
return d_gcds[n]; |
178 |
|
}else{ |
179 |
|
return d_one; |
180 |
|
} |
181 |
|
}else if(n.getKind() == kind::ITE && n.getType().isReal()){ |
182 |
|
const Integer& tgcd = gcdIte(n[1]); |
183 |
|
if(tgcd.isOne()){ |
184 |
|
d_gcds[n] = d_one; |
185 |
|
return d_one; |
186 |
|
}else{ |
187 |
|
const Integer& egcd = gcdIte(n[2]); |
188 |
|
Integer ite_gcd = tgcd.gcd(egcd); |
189 |
|
d_gcds[n] = ite_gcd; |
190 |
|
return d_gcds[n]; |
191 |
|
} |
192 |
|
} |
193 |
|
return d_one; |
194 |
|
} |
195 |
|
|
196 |
|
Node ArithIteUtils::reduceIteConstantIteByGCD_rec(Node n, const Rational& q){ |
197 |
|
if(n.isConst()){ |
198 |
|
Assert(n.getKind() == kind::CONST_RATIONAL); |
199 |
|
return mkRationalNode(n.getConst<Rational>() * q); |
200 |
|
}else{ |
201 |
|
Assert(n.getKind() == kind::ITE); |
202 |
|
Assert(n.getType().isInteger()); |
203 |
|
Node rc = reduceConstantIteByGCD(n[0]); |
204 |
|
Node rt = reduceIteConstantIteByGCD_rec(n[1], q); |
205 |
|
Node re = reduceIteConstantIteByGCD_rec(n[2], q); |
206 |
|
return rc.iteNode(rt, re); |
207 |
|
} |
208 |
|
} |
209 |
|
|
210 |
|
Node ArithIteUtils::reduceIteConstantIteByGCD(Node n){ |
211 |
|
Assert(n.getKind() == kind::ITE); |
212 |
|
Assert(n.getType().isReal()); |
213 |
|
const Integer& gcd = gcdIte(n); |
214 |
|
if(gcd.isOne()){ |
215 |
|
Node newIte = reduceConstantIteByGCD(n[0]).iteNode(n[1],n[2]); |
216 |
|
d_reduceGcd[n] = newIte; |
217 |
|
return newIte; |
218 |
|
}else if(gcd.isZero()){ |
219 |
|
Node zeroNode = mkRationalNode(Rational(0)); |
220 |
|
d_reduceGcd[n] = zeroNode; |
221 |
|
return zeroNode; |
222 |
|
}else{ |
223 |
|
Rational divBy(Integer(1), gcd); |
224 |
|
Node redite = reduceIteConstantIteByGCD_rec(n, divBy); |
225 |
|
Node gcdNode = mkRationalNode(Rational(gcd)); |
226 |
|
Node multIte = NodeManager::currentNM()->mkNode(kind::MULT, gcdNode, redite); |
227 |
|
d_reduceGcd[n] = multIte; |
228 |
|
return multIte; |
229 |
|
} |
230 |
|
} |
231 |
|
|
232 |
|
Node ArithIteUtils::reduceConstantIteByGCD(Node n){ |
233 |
|
if(d_reduceGcd.find(n) != d_reduceGcd.end()){ |
234 |
|
return d_reduceGcd[n]; |
235 |
|
} |
236 |
|
if(n.getKind() == kind::ITE && n.getType().isReal()){ |
237 |
|
return reduceIteConstantIteByGCD(n); |
238 |
|
} |
239 |
|
|
240 |
|
if(n.getNumChildren() > 0){ |
241 |
|
NodeBuilder nb(n.getKind()); |
242 |
|
if(n.getMetaKind() == kind::metakind::PARAMETERIZED) { |
243 |
|
nb << (n.getOperator()); |
244 |
|
} |
245 |
|
bool anychange = false; |
246 |
|
for(Node::iterator it = n.begin(), end = n.end(); it != end; ++it){ |
247 |
|
Node child = *it; |
248 |
|
Node redchild = reduceConstantIteByGCD(child); |
249 |
|
anychange = anychange || (child != redchild); |
250 |
|
nb << redchild; |
251 |
|
} |
252 |
|
if(anychange){ |
253 |
|
Node res = nb; |
254 |
|
d_reduceGcd[n] = res; |
255 |
|
return res; |
256 |
|
}else{ |
257 |
|
d_reduceGcd[n] = n; |
258 |
|
return n; |
259 |
|
} |
260 |
|
}else{ |
261 |
|
return n; |
262 |
|
} |
263 |
|
} |
264 |
|
|
265 |
|
unsigned ArithIteUtils::getSubCount() const{ |
266 |
|
return d_subcount; |
267 |
|
} |
268 |
|
|
269 |
|
void ArithIteUtils::addSubstitution(TNode f, TNode t){ |
270 |
|
Debug("arith::ite") << "adding " << f << " -> " << t << endl; |
271 |
|
d_subcount = d_subcount + 1; |
272 |
|
d_subs.addSubstitution(f, t); |
273 |
|
} |
274 |
|
|
275 |
|
Node ArithIteUtils::applySubstitutions(TNode f){ |
276 |
|
AlwaysAssert(!options::incrementalSolving()); |
277 |
|
return d_subs.apply(f); |
278 |
|
} |
279 |
|
|
280 |
|
Node ArithIteUtils::selectForCmp(Node n) const{ |
281 |
|
if(n.getKind() == kind::ITE){ |
282 |
|
if(d_skolems.find(n[0]) != d_skolems.end()){ |
283 |
|
return selectForCmp(n[1]); |
284 |
|
} |
285 |
|
} |
286 |
|
return n; |
287 |
|
} |
288 |
|
|
289 |
|
void ArithIteUtils::learnSubstitutions(const std::vector<Node>& assertions){ |
290 |
|
AlwaysAssert(!options::incrementalSolving()); |
291 |
|
for(size_t i=0, N=assertions.size(); i < N; ++i){ |
292 |
|
collectAssertions(assertions[i]); |
293 |
|
} |
294 |
|
bool solvedSomething; |
295 |
|
do{ |
296 |
|
solvedSomething = false; |
297 |
|
size_t readPos = 0, writePos = 0, N = d_orBinEqs.size(); |
298 |
|
for(; readPos < N; readPos++){ |
299 |
|
Node curr = d_orBinEqs[readPos]; |
300 |
|
bool solved = solveBinOr(curr); |
301 |
|
if(solved){ |
302 |
|
solvedSomething = true; |
303 |
|
}else{ |
304 |
|
// didn't solve, push back |
305 |
|
d_orBinEqs[writePos] = curr; |
306 |
|
writePos++; |
307 |
|
} |
308 |
|
} |
309 |
|
Assert(writePos <= N); |
310 |
|
d_orBinEqs.resize(writePos); |
311 |
|
}while(solvedSomething); |
312 |
|
|
313 |
|
d_implies.clear(); |
314 |
|
d_orBinEqs.clear(); |
315 |
|
} |
316 |
|
|
317 |
|
void ArithIteUtils::addImplications(Node x, Node y){ |
318 |
|
// (or x y) |
319 |
|
// (=> (not x) y) |
320 |
|
// (=> (not y) x) |
321 |
|
|
322 |
|
Node xneg = x.negate(); |
323 |
|
Node yneg = y.negate(); |
324 |
|
d_implies[xneg].insert(y); |
325 |
|
d_implies[yneg].insert(x); |
326 |
|
} |
327 |
|
|
328 |
|
void ArithIteUtils::collectAssertions(TNode assertion){ |
329 |
|
if(assertion.getKind() == kind::OR){ |
330 |
|
if(assertion.getNumChildren() == 2){ |
331 |
|
TNode left = assertion[0], right = assertion[1]; |
332 |
|
addImplications(left, right); |
333 |
|
if(left.getKind() == kind::EQUAL && right.getKind() == kind::EQUAL){ |
334 |
|
if(left[0].getType().isInteger() && right[0].getType().isInteger()){ |
335 |
|
d_orBinEqs.push_back(assertion); |
336 |
|
} |
337 |
|
} |
338 |
|
} |
339 |
|
}else if(assertion.getKind() == kind::AND){ |
340 |
|
for(unsigned i=0, N=assertion.getNumChildren(); i < N; ++i){ |
341 |
|
collectAssertions(assertion[i]); |
342 |
|
} |
343 |
|
} |
344 |
|
} |
345 |
|
|
346 |
|
Node ArithIteUtils::findIteCnd(TNode tb, TNode fb) const{ |
347 |
|
Node negtb = tb.negate(); |
348 |
|
Node negfb = fb.negate(); |
349 |
|
ImpMap::const_iterator ti = d_implies.find(negtb); |
350 |
|
ImpMap::const_iterator fi = d_implies.find(negfb); |
351 |
|
|
352 |
|
if(ti != d_implies.end() && fi != d_implies.end()){ |
353 |
|
const std::set<Node>& negtimp = ti->second; |
354 |
|
const std::set<Node>& negfimp = fi->second; |
355 |
|
|
356 |
|
// (or (not x) y) |
357 |
|
// (or x z) |
358 |
|
// (or y z) |
359 |
|
// --- |
360 |
|
// (ite x y z) return x |
361 |
|
// --- |
362 |
|
// (not y) => (not x) |
363 |
|
// (not z) => x |
364 |
|
std::set<Node>::const_iterator ci = negtimp.begin(), cend = negtimp.end(); |
365 |
|
for (; ci != cend; ++ci) |
366 |
|
{ |
367 |
|
Node impliedByNotTB = *ci; |
368 |
|
Node impliedByNotTBNeg = impliedByNotTB.negate(); |
369 |
|
if(negfimp.find(impliedByNotTBNeg) != negfimp.end()){ |
370 |
|
return impliedByNotTBNeg; // implies tb |
371 |
|
} |
372 |
|
} |
373 |
|
} |
374 |
|
|
375 |
|
return Node::null(); |
376 |
|
} |
377 |
|
|
378 |
|
bool ArithIteUtils::solveBinOr(TNode binor){ |
379 |
|
Assert(binor.getKind() == kind::OR); |
380 |
|
Assert(binor.getNumChildren() == 2); |
381 |
|
Assert(binor[0].getKind() == kind::EQUAL); |
382 |
|
Assert(binor[1].getKind() == kind::EQUAL); |
383 |
|
|
384 |
|
//Node n = |
385 |
|
Node n = applySubstitutions(binor); |
386 |
|
if(n != binor){ |
387 |
|
n = Rewriter::rewrite(n); |
388 |
|
|
389 |
|
if(!(n.getKind() == kind::OR && |
390 |
|
n.getNumChildren() == 2 && |
391 |
|
n[0].getKind() == kind::EQUAL && |
392 |
|
n[1].getKind() == kind::EQUAL)){ |
393 |
|
return false; |
394 |
|
} |
395 |
|
} |
396 |
|
|
397 |
|
Assert(n.getKind() == kind::OR); |
398 |
|
Assert(n.getNumChildren() == 2); |
399 |
|
TNode l = n[0]; |
400 |
|
TNode r = n[1]; |
401 |
|
|
402 |
|
Assert(l.getKind() == kind::EQUAL); |
403 |
|
Assert(r.getKind() == kind::EQUAL); |
404 |
|
|
405 |
|
Debug("arith::ite") << "bin or " << n << endl; |
406 |
|
|
407 |
|
bool lArithEq = l.getKind() == kind::EQUAL && l[0].getType().isInteger(); |
408 |
|
bool rArithEq = r.getKind() == kind::EQUAL && r[0].getType().isInteger(); |
409 |
|
|
410 |
|
if(lArithEq && rArithEq){ |
411 |
|
TNode sel = Node::null(); |
412 |
|
TNode otherL = Node::null(); |
413 |
|
TNode otherR = Node::null(); |
414 |
|
if(l[0] == r[0]) { |
415 |
|
sel = l[0]; otherL = l[1]; otherR = r[1]; |
416 |
|
}else if(l[0] == r[1]){ |
417 |
|
sel = l[0]; otherL = l[1]; otherR = r[0]; |
418 |
|
}else if(l[1] == r[0]){ |
419 |
|
sel = l[1]; otherL = l[0]; otherR = r[1]; |
420 |
|
}else if(l[1] == r[1]){ |
421 |
|
sel = l[1]; otherL = l[0]; otherR = r[0]; |
422 |
|
} |
423 |
|
Debug("arith::ite") << "selected " << sel << endl; |
424 |
|
if(sel.isVar() && sel.getKind() != kind::SKOLEM){ |
425 |
|
|
426 |
|
Debug("arith::ite") << "others l:" << otherL << " r " << otherR << endl; |
427 |
|
Node useForCmpL = selectForCmp(otherL); |
428 |
|
Node useForCmpR = selectForCmp(otherR); |
429 |
|
|
430 |
|
Assert(Polynomial::isMember(sel)); |
431 |
|
Assert(Polynomial::isMember(useForCmpL)); |
432 |
|
Assert(Polynomial::isMember(useForCmpR)); |
433 |
|
Polynomial lside = Polynomial::parsePolynomial( useForCmpL ); |
434 |
|
Polynomial rside = Polynomial::parsePolynomial( useForCmpR ); |
435 |
|
Polynomial diff = lside-rside; |
436 |
|
|
437 |
|
Debug("arith::ite") << "diff: " << diff.getNode() << endl; |
438 |
|
if(diff.isConstant()){ |
439 |
|
// a: (sel = otherL) or (sel = otherR), otherL-otherR = c |
440 |
|
|
441 |
|
NodeManager* nm = NodeManager::currentNM(); |
442 |
|
SkolemManager* sm = nm->getSkolemManager(); |
443 |
|
|
444 |
|
Node cnd = findIteCnd(binor[0], binor[1]); |
445 |
|
|
446 |
|
Node sk = sm->mkDummySkolem("deor", nm->booleanType()); |
447 |
|
Node ite = sk.iteNode(otherL, otherR); |
448 |
|
d_skolems.insert(sk, cnd); |
449 |
|
addSubstitution(sel, ite); |
450 |
|
return true; |
451 |
|
} |
452 |
|
} |
453 |
|
} |
454 |
|
return false; |
455 |
|
} |
456 |
|
|
457 |
|
} // namespace arith |
458 |
|
} // namespace theory |
459 |
29574 |
} // namespace cvc5 |