1 |
|
/****************************************************************************** |
2 |
|
* Top contributors (to current version): |
3 |
|
* Andrew Reynolds, Morgan Deters, Haniel Barbosa |
4 |
|
* |
5 |
|
* This file is part of the cvc5 project. |
6 |
|
* |
7 |
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS |
8 |
|
* in the top-level source directory and their institutional affiliations. |
9 |
|
* All rights reserved. See the file COPYING in the top-level source |
10 |
|
* directory for licensing information. |
11 |
|
* **************************************************************************** |
12 |
|
* |
13 |
|
* Implementation of QuantifiersRewriter class. |
14 |
|
*/ |
15 |
|
|
16 |
|
#include "theory/quantifiers/quantifiers_rewriter.h" |
17 |
|
|
18 |
|
#include "expr/bound_var_manager.h" |
19 |
|
#include "expr/dtype.h" |
20 |
|
#include "expr/dtype_cons.h" |
21 |
|
#include "expr/node_algorithm.h" |
22 |
|
#include "expr/skolem_manager.h" |
23 |
|
#include "options/quantifiers_options.h" |
24 |
|
#include "theory/arith/arith_msum.h" |
25 |
|
#include "theory/datatypes/theory_datatypes_utils.h" |
26 |
|
#include "theory/quantifiers/bv_inverter.h" |
27 |
|
#include "theory/quantifiers/ematching/trigger.h" |
28 |
|
#include "theory/quantifiers/extended_rewrite.h" |
29 |
|
#include "theory/quantifiers/quantifiers_attributes.h" |
30 |
|
#include "theory/quantifiers/skolemize.h" |
31 |
|
#include "theory/quantifiers/term_database.h" |
32 |
|
#include "theory/quantifiers/term_util.h" |
33 |
|
#include "theory/rewriter.h" |
34 |
|
#include "theory/strings/theory_strings_utils.h" |
35 |
|
#include "util/rational.h" |
36 |
|
|
37 |
|
using namespace std; |
38 |
|
using namespace cvc5::kind; |
39 |
|
using namespace cvc5::context; |
40 |
|
|
41 |
|
namespace cvc5 { |
42 |
|
namespace theory { |
43 |
|
namespace quantifiers { |
44 |
|
|
45 |
|
/** |
46 |
|
* Attributes used for constructing bound variables in a canonical way. These |
47 |
|
* are attributes that map to bound variable, introduced for the following |
48 |
|
* purposes: |
49 |
|
* - QRewPrenexAttribute: cached on (v, body) where we are prenexing bound |
50 |
|
* variable v in a nested quantified formula within the given body. |
51 |
|
* - QRewMiniscopeAttribute: cached on (v, q, i) where q is being miniscoped |
52 |
|
* for F_i in its body (and F_1 ... F_n), and v is one of the bound variables |
53 |
|
* that q binds. |
54 |
|
* - QRewDtExpandAttribute: cached on (F, lit, a) where lit is the tested |
55 |
|
* literal used for expanding a quantified datatype variable in quantified |
56 |
|
* formula with body F, and a is the rational corresponding to the argument |
57 |
|
* position of the variable, e.g. lit is ((_ is C) x) and x is |
58 |
|
* replaced by (C y1 ... yn), where the argument position of yi is i. |
59 |
|
*/ |
60 |
|
struct QRewPrenexAttributeId |
61 |
|
{ |
62 |
|
}; |
63 |
|
typedef expr::Attribute<QRewPrenexAttributeId, Node> QRewPrenexAttribute; |
64 |
|
struct QRewMiniscopeAttributeId |
65 |
|
{ |
66 |
|
}; |
67 |
|
typedef expr::Attribute<QRewMiniscopeAttributeId, Node> QRewMiniscopeAttribute; |
68 |
|
struct QRewDtExpandAttributeId |
69 |
|
{ |
70 |
|
}; |
71 |
|
typedef expr::Attribute<QRewDtExpandAttributeId, Node> QRewDtExpandAttribute; |
72 |
|
|
73 |
|
std::ostream& operator<<(std::ostream& out, RewriteStep s) |
74 |
|
{ |
75 |
|
switch (s) |
76 |
|
{ |
77 |
|
case COMPUTE_ELIM_SYMBOLS: out << "COMPUTE_ELIM_SYMBOLS"; break; |
78 |
|
case COMPUTE_MINISCOPING: out << "COMPUTE_MINISCOPING"; break; |
79 |
|
case COMPUTE_AGGRESSIVE_MINISCOPING: |
80 |
|
out << "COMPUTE_AGGRESSIVE_MINISCOPING"; |
81 |
|
break; |
82 |
|
case COMPUTE_EXT_REWRITE: out << "COMPUTE_EXT_REWRITE"; break; |
83 |
|
case COMPUTE_PROCESS_TERMS: out << "COMPUTE_PROCESS_TERMS"; break; |
84 |
|
case COMPUTE_PRENEX: out << "COMPUTE_PRENEX"; break; |
85 |
|
case COMPUTE_VAR_ELIMINATION: out << "COMPUTE_VAR_ELIMINATION"; break; |
86 |
|
case COMPUTE_COND_SPLIT: out << "COMPUTE_COND_SPLIT"; break; |
87 |
|
default: out << "UnknownRewriteStep"; break; |
88 |
|
} |
89 |
|
return out; |
90 |
|
} |
91 |
|
|
92 |
10053 |
QuantifiersRewriter::QuantifiersRewriter(const Options& opts) : d_opts(opts) {} |
93 |
|
|
94 |
15000 |
bool QuantifiersRewriter::isLiteral( Node n ){ |
95 |
15000 |
switch( n.getKind() ){ |
96 |
|
case NOT: |
97 |
|
return n[0].getKind()!=NOT && isLiteral( n[0] ); |
98 |
|
break; |
99 |
|
case OR: |
100 |
|
case AND: |
101 |
|
case IMPLIES: |
102 |
|
case XOR: |
103 |
|
case ITE: |
104 |
|
return false; |
105 |
|
break; |
106 |
9001 |
case EQUAL: |
107 |
|
//for boolean terms |
108 |
9001 |
return !n[0].getType().isBoolean(); |
109 |
|
break; |
110 |
5999 |
default: |
111 |
5999 |
break; |
112 |
|
} |
113 |
5999 |
return true; |
114 |
|
} |
115 |
|
|
116 |
4937871 |
void QuantifiersRewriter::computeArgs(const std::vector<Node>& args, |
117 |
|
std::map<Node, bool>& activeMap, |
118 |
|
Node n, |
119 |
|
std::map<Node, bool>& visited) |
120 |
|
{ |
121 |
4937871 |
if( visited.find( n )==visited.end() ){ |
122 |
3537345 |
visited[n] = true; |
123 |
3537345 |
if( n.getKind()==BOUND_VARIABLE ){ |
124 |
593475 |
if( std::find( args.begin(), args.end(), n )!=args.end() ){ |
125 |
487067 |
activeMap[ n ] = true; |
126 |
|
} |
127 |
|
}else{ |
128 |
2943870 |
if (n.hasOperator()) |
129 |
|
{ |
130 |
1547590 |
computeArgs(args, activeMap, n.getOperator(), visited); |
131 |
|
} |
132 |
6044419 |
for( int i=0; i<(int)n.getNumChildren(); i++ ){ |
133 |
3100549 |
computeArgs( args, activeMap, n[i], visited ); |
134 |
|
} |
135 |
|
} |
136 |
|
} |
137 |
4937871 |
} |
138 |
|
|
139 |
152262 |
void QuantifiersRewriter::computeArgVec(const std::vector<Node>& args, |
140 |
|
std::vector<Node>& activeArgs, |
141 |
|
Node n) |
142 |
|
{ |
143 |
152262 |
Assert(activeArgs.empty()); |
144 |
304524 |
std::map< Node, bool > activeMap; |
145 |
304524 |
std::map< Node, bool > visited; |
146 |
152262 |
computeArgs( args, activeMap, n, visited ); |
147 |
152262 |
if( !activeMap.empty() ){ |
148 |
2429863 |
for( unsigned i=0; i<args.size(); i++ ){ |
149 |
2279246 |
if( activeMap.find( args[i] )!=activeMap.end() ){ |
150 |
348271 |
activeArgs.push_back( args[i] ); |
151 |
|
} |
152 |
|
} |
153 |
|
} |
154 |
152262 |
} |
155 |
|
|
156 |
68847 |
void QuantifiersRewriter::computeArgVec2(const std::vector<Node>& args, |
157 |
|
std::vector<Node>& activeArgs, |
158 |
|
Node n, |
159 |
|
Node ipl) |
160 |
|
{ |
161 |
68847 |
Assert(activeArgs.empty()); |
162 |
137694 |
std::map< Node, bool > activeMap; |
163 |
137694 |
std::map< Node, bool > visited; |
164 |
68847 |
computeArgs( args, activeMap, n, visited ); |
165 |
68847 |
if( !activeMap.empty() ){ |
166 |
|
//collect variables in inst pattern list only if we cannot eliminate quantifier |
167 |
68623 |
computeArgs( args, activeMap, ipl, visited ); |
168 |
208439 |
for( unsigned i=0; i<args.size(); i++ ){ |
169 |
139816 |
if( activeMap.find( args[i] )!=activeMap.end() ){ |
170 |
138796 |
activeArgs.push_back( args[i] ); |
171 |
|
} |
172 |
|
} |
173 |
|
} |
174 |
68847 |
} |
175 |
|
|
176 |
135842 |
RewriteResponse QuantifiersRewriter::preRewrite(TNode in) { |
177 |
135842 |
if( in.getKind()==kind::EXISTS || in.getKind()==kind::FORALL ){ |
178 |
79714 |
Trace("quantifiers-rewrite-debug") << "pre-rewriting " << in << std::endl; |
179 |
157639 |
std::vector< Node > args; |
180 |
157639 |
Node body = in; |
181 |
79714 |
bool doRewrite = false; |
182 |
94036 |
while( body.getNumChildren()==2 && body.getKind()==body[1].getKind() ){ |
183 |
14381 |
for( unsigned i=0; i<body[0].getNumChildren(); i++ ){ |
184 |
7220 |
args.push_back( body[0][i] ); |
185 |
|
} |
186 |
7161 |
body = body[1]; |
187 |
7161 |
doRewrite = true; |
188 |
|
} |
189 |
79714 |
if( doRewrite ){ |
190 |
3578 |
std::vector< Node > children; |
191 |
3618 |
for( unsigned i=0; i<body[0].getNumChildren(); i++ ){ |
192 |
1829 |
args.push_back( body[0][i] ); |
193 |
|
} |
194 |
1789 |
children.push_back( NodeManager::currentNM()->mkNode(kind::BOUND_VAR_LIST,args) ); |
195 |
1789 |
children.push_back( body[1] ); |
196 |
1789 |
if( body.getNumChildren()==3 ){ |
197 |
48 |
children.push_back( body[2] ); |
198 |
|
} |
199 |
3578 |
Node n = NodeManager::currentNM()->mkNode( in.getKind(), children ); |
200 |
1789 |
if( in!=n ){ |
201 |
1789 |
Trace("quantifiers-pre-rewrite") << "*** pre-rewrite " << in << std::endl; |
202 |
1789 |
Trace("quantifiers-pre-rewrite") << " to " << std::endl; |
203 |
1789 |
Trace("quantifiers-pre-rewrite") << n << std::endl; |
204 |
|
} |
205 |
1789 |
return RewriteResponse(REWRITE_DONE, n); |
206 |
|
} |
207 |
|
} |
208 |
134053 |
return RewriteResponse(REWRITE_DONE, in); |
209 |
|
} |
210 |
|
|
211 |
248326 |
RewriteResponse QuantifiersRewriter::postRewrite(TNode in) { |
212 |
248326 |
Trace("quantifiers-rewrite-debug") << "post-rewriting " << in << std::endl; |
213 |
248326 |
RewriteStatus status = REWRITE_DONE; |
214 |
496652 |
Node ret = in; |
215 |
248326 |
RewriteStep rew_op = COMPUTE_LAST; |
216 |
|
//get the body |
217 |
248326 |
if( in.getKind()==EXISTS ){ |
218 |
5512 |
std::vector< Node > children; |
219 |
2756 |
children.push_back( in[0] ); |
220 |
2756 |
children.push_back( in[1].negate() ); |
221 |
2756 |
if( in.getNumChildren()==3 ){ |
222 |
43 |
children.push_back( in[2] ); |
223 |
|
} |
224 |
2756 |
ret = NodeManager::currentNM()->mkNode( FORALL, children ); |
225 |
2756 |
ret = ret.negate(); |
226 |
2756 |
status = REWRITE_AGAIN_FULL; |
227 |
245570 |
}else if( in.getKind()==FORALL ){ |
228 |
133630 |
if( in[1].isConst() && in.getNumChildren()==2 ){ |
229 |
865 |
return RewriteResponse( status, in[1] ); |
230 |
|
}else{ |
231 |
|
//compute attributes |
232 |
265530 |
QAttributes qa; |
233 |
132765 |
QuantAttributes::computeQuantAttributes( in, qa ); |
234 |
1067900 |
for (unsigned i = 0; i < COMPUTE_LAST; ++i) |
235 |
|
{ |
236 |
953672 |
RewriteStep op = static_cast<RewriteStep>(i); |
237 |
953672 |
if( doOperation( in, op, qa ) ){ |
238 |
704674 |
ret = computeOperation( in, op, qa ); |
239 |
704674 |
if( ret!=in ){ |
240 |
18537 |
rew_op = op; |
241 |
18537 |
status = REWRITE_AGAIN_FULL; |
242 |
18537 |
break; |
243 |
|
} |
244 |
|
} |
245 |
|
} |
246 |
|
} |
247 |
|
} |
248 |
|
//print if changed |
249 |
247461 |
if( in!=ret ){ |
250 |
21293 |
Trace("quantifiers-rewrite") << "*** rewrite (op=" << rew_op << ") " << in << std::endl; |
251 |
21293 |
Trace("quantifiers-rewrite") << " to " << std::endl; |
252 |
21293 |
Trace("quantifiers-rewrite") << ret << std::endl; |
253 |
|
} |
254 |
247461 |
return RewriteResponse( status, ret ); |
255 |
|
} |
256 |
|
|
257 |
804146 |
bool QuantifiersRewriter::addCheckElimChild(std::vector<Node>& children, |
258 |
|
Node c, |
259 |
|
Kind k, |
260 |
|
std::map<Node, bool>& lit_pol, |
261 |
|
bool& childrenChanged) const |
262 |
|
{ |
263 |
804146 |
if ((k == OR || k == AND) && d_opts.quantifiers.elimTautQuant) |
264 |
|
{ |
265 |
1286890 |
Node lit = c.getKind()==NOT ? c[0] : c; |
266 |
643556 |
bool pol = c.getKind()!=NOT; |
267 |
643556 |
std::map< Node, bool >::iterator it = lit_pol.find( lit ); |
268 |
643556 |
if( it==lit_pol.end() ){ |
269 |
642643 |
lit_pol[lit] = pol; |
270 |
642643 |
children.push_back( c ); |
271 |
|
}else{ |
272 |
913 |
childrenChanged = true; |
273 |
913 |
if( it->second!=pol ){ |
274 |
222 |
return false; |
275 |
|
} |
276 |
643334 |
} |
277 |
|
} |
278 |
|
else |
279 |
|
{ |
280 |
160590 |
children.push_back( c ); |
281 |
|
} |
282 |
803924 |
return true; |
283 |
|
} |
284 |
|
|
285 |
922610 |
Node QuantifiersRewriter::computeElimSymbols(Node body) const |
286 |
|
{ |
287 |
922610 |
Kind ok = body.getKind(); |
288 |
922610 |
Kind k = ok; |
289 |
922610 |
bool negAllCh = false; |
290 |
922610 |
bool negCh1 = false; |
291 |
922610 |
if( ok==IMPLIES ){ |
292 |
11816 |
k = OR; |
293 |
11816 |
negCh1 = true; |
294 |
910794 |
}else if( ok==XOR ){ |
295 |
767 |
k = EQUAL; |
296 |
767 |
negCh1 = true; |
297 |
910027 |
}else if( ok==NOT ){ |
298 |
370069 |
if( body[0].getKind()==NOT ){ |
299 |
|
return computeElimSymbols( body[0][0] ); |
300 |
370069 |
}else if( body[0].getKind()==OR || body[0].getKind()==IMPLIES ){ |
301 |
1675 |
k = AND; |
302 |
1675 |
negAllCh = true; |
303 |
1675 |
negCh1 = body[0].getKind()==IMPLIES; |
304 |
1675 |
body = body[0]; |
305 |
368394 |
}else if( body[0].getKind()==AND ){ |
306 |
5640 |
k = OR; |
307 |
5640 |
negAllCh = true; |
308 |
5640 |
body = body[0]; |
309 |
362754 |
}else if( body[0].getKind()==XOR || ( body[0].getKind()==EQUAL && body[0][0].getType().isBoolean() ) ){ |
310 |
2733 |
k = EQUAL; |
311 |
2733 |
negCh1 = ( body[0].getKind()==EQUAL ); |
312 |
2733 |
body = body[0]; |
313 |
360021 |
}else if( body[0].getKind()==ITE ){ |
314 |
87 |
k = body[0].getKind(); |
315 |
87 |
negAllCh = true; |
316 |
87 |
negCh1 = true; |
317 |
87 |
body = body[0]; |
318 |
|
}else{ |
319 |
359934 |
return body; |
320 |
|
} |
321 |
539958 |
}else if( ( ok!=EQUAL || !body[0].getType().isBoolean() ) && ok!=ITE && ok!=AND && ok!=OR ){ |
322 |
|
//a literal |
323 |
322240 |
return body; |
324 |
|
} |
325 |
240436 |
bool childrenChanged = false; |
326 |
480872 |
std::vector< Node > children; |
327 |
480872 |
std::map< Node, bool > lit_pol; |
328 |
1030059 |
for( unsigned i=0; i<body.getNumChildren(); i++ ){ |
329 |
1579468 |
Node c = computeElimSymbols( ( i==0 && negCh1 )!=negAllCh ? body[i].negate() : body[i] ); |
330 |
789845 |
bool success = true; |
331 |
789845 |
if( c.getKind()==k && ( k==OR || k==AND ) ){ |
332 |
|
//flatten |
333 |
5552 |
childrenChanged = true; |
334 |
25404 |
for( unsigned j=0; j<c.getNumChildren(); j++ ){ |
335 |
19853 |
if( !addCheckElimChild( children, c[j], k, lit_pol, childrenChanged ) ){ |
336 |
1 |
success = false; |
337 |
1 |
break; |
338 |
|
} |
339 |
|
} |
340 |
|
}else{ |
341 |
784293 |
success = addCheckElimChild( children, c, k, lit_pol, childrenChanged ); |
342 |
|
} |
343 |
789845 |
if( !success ){ |
344 |
|
// tautology |
345 |
222 |
Assert(k == OR || k == AND); |
346 |
222 |
return NodeManager::currentNM()->mkConst( k==OR ); |
347 |
|
} |
348 |
789623 |
childrenChanged = childrenChanged || c!=body[i]; |
349 |
|
} |
350 |
240214 |
if( childrenChanged || k!=ok ){ |
351 |
26459 |
return ( children.size()==1 && k!=NOT ) ? children[0] : NodeManager::currentNM()->mkNode( k, children ); |
352 |
|
}else{ |
353 |
213755 |
return body; |
354 |
|
} |
355 |
|
} |
356 |
|
|
357 |
|
void QuantifiersRewriter::computeDtTesterIteSplit( Node n, std::map< Node, Node >& pcons, std::map< Node, std::map< int, Node > >& ncons, |
358 |
|
std::vector< Node >& conj ){ |
359 |
|
if( n.getKind()==ITE && n[0].getKind()==APPLY_TESTER && n[1].getType().isBoolean() ){ |
360 |
|
Trace("quantifiers-rewrite-ite-debug") << "Split tester condition : " << n << std::endl; |
361 |
|
Node x = n[0][0]; |
362 |
|
std::map< Node, Node >::iterator itp = pcons.find( x ); |
363 |
|
if( itp!=pcons.end() ){ |
364 |
|
Trace("quantifiers-rewrite-ite-debug") << "...condition already set " << itp->second << std::endl; |
365 |
|
computeDtTesterIteSplit( n[ itp->second==n[0] ? 1 : 2 ], pcons, ncons, conj ); |
366 |
|
}else{ |
367 |
|
Node tester = n[0].getOperator(); |
368 |
|
int index = datatypes::utils::indexOf(tester); |
369 |
|
std::map< int, Node >::iterator itn = ncons[x].find( index ); |
370 |
|
if( itn!=ncons[x].end() ){ |
371 |
|
Trace("quantifiers-rewrite-ite-debug") << "...condition negated " << itn->second << std::endl; |
372 |
|
computeDtTesterIteSplit( n[ 2 ], pcons, ncons, conj ); |
373 |
|
}else{ |
374 |
|
for( unsigned i=0; i<2; i++ ){ |
375 |
|
if( i==0 ){ |
376 |
|
pcons[x] = n[0]; |
377 |
|
}else{ |
378 |
|
pcons.erase( x ); |
379 |
|
ncons[x][index] = n[0].negate(); |
380 |
|
} |
381 |
|
computeDtTesterIteSplit( n[i+1], pcons, ncons, conj ); |
382 |
|
} |
383 |
|
ncons[x].erase( index ); |
384 |
|
} |
385 |
|
} |
386 |
|
}else{ |
387 |
|
NodeManager* nm = NodeManager::currentNM(); |
388 |
|
Trace("quantifiers-rewrite-ite-debug") << "Return value : " << n << std::endl; |
389 |
|
std::vector< Node > children; |
390 |
|
children.push_back( n ); |
391 |
|
std::vector< Node > vars; |
392 |
|
//add all positive testers |
393 |
|
for( std::map< Node, Node >::iterator it = pcons.begin(); it != pcons.end(); ++it ){ |
394 |
|
children.push_back( it->second.negate() ); |
395 |
|
vars.push_back( it->first ); |
396 |
|
} |
397 |
|
//add all negative testers |
398 |
|
for( std::map< Node, std::map< int, Node > >::iterator it = ncons.begin(); it != ncons.end(); ++it ){ |
399 |
|
Node x = it->first; |
400 |
|
//only if we haven't settled on a positive tester |
401 |
|
if( std::find( vars.begin(), vars.end(), x )==vars.end() ){ |
402 |
|
//check if we have exhausted all options but one |
403 |
|
const DType& dt = x.getType().getDType(); |
404 |
|
std::vector< Node > nchildren; |
405 |
|
int pos_cons = -1; |
406 |
|
for( int i=0; i<(int)dt.getNumConstructors(); i++ ){ |
407 |
|
std::map< int, Node >::iterator itt = it->second.find( i ); |
408 |
|
if( itt==it->second.end() ){ |
409 |
|
pos_cons = pos_cons==-1 ? i : -2; |
410 |
|
}else{ |
411 |
|
nchildren.push_back( itt->second.negate() ); |
412 |
|
} |
413 |
|
} |
414 |
|
if( pos_cons>=0 ){ |
415 |
|
Node tester = dt[pos_cons].getTester(); |
416 |
|
children.push_back(nm->mkNode(APPLY_TESTER, tester, x).negate()); |
417 |
|
}else{ |
418 |
|
children.insert( children.end(), nchildren.begin(), nchildren.end() ); |
419 |
|
} |
420 |
|
} |
421 |
|
} |
422 |
|
//make condition/output pair |
423 |
|
Node c = children.size()==1 ? children[0] : NodeManager::currentNM()->mkNode( OR, children ); |
424 |
|
conj.push_back( c ); |
425 |
|
} |
426 |
|
} |
427 |
|
|
428 |
114556 |
Node QuantifiersRewriter::computeProcessTerms(Node body, |
429 |
|
std::vector<Node>& new_vars, |
430 |
|
std::vector<Node>& new_conds, |
431 |
|
Node q, |
432 |
|
QAttributes& qa) const |
433 |
|
{ |
434 |
229112 |
std::map< Node, Node > cache; |
435 |
114556 |
if( qa.isFunDef() ){ |
436 |
|
Node h = QuantAttributes::getFunDefHead( q ); |
437 |
|
Assert(!h.isNull()); |
438 |
|
// if it is a function definition, rewrite the body independently |
439 |
|
Node fbody = QuantAttributes::getFunDefBody( q ); |
440 |
|
Trace("quantifiers-rewrite-debug") << "Decompose " << h << " / " << fbody << " as function definition for " << q << "." << std::endl; |
441 |
|
if (!fbody.isNull()) |
442 |
|
{ |
443 |
|
Node r = computeProcessTerms2(fbody, cache, new_vars, new_conds); |
444 |
|
Assert(new_vars.size() == h.getNumChildren()); |
445 |
|
return Rewriter::rewrite(NodeManager::currentNM()->mkNode(EQUAL, h, r)); |
446 |
|
} |
447 |
|
// It can happen that we can't infer the shape of the function definition, |
448 |
|
// for example: forall xy. f( x, y ) = 1 + f( x, y ), this is rewritten to |
449 |
|
// forall xy. false. |
450 |
|
} |
451 |
114556 |
return computeProcessTerms2(body, cache, new_vars, new_conds); |
452 |
|
} |
453 |
|
|
454 |
2946928 |
Node QuantifiersRewriter::computeProcessTerms2( |
455 |
|
Node body, |
456 |
|
std::map<Node, Node>& cache, |
457 |
|
std::vector<Node>& new_vars, |
458 |
|
std::vector<Node>& new_conds) const |
459 |
|
{ |
460 |
2946928 |
NodeManager* nm = NodeManager::currentNM(); |
461 |
5893856 |
Trace("quantifiers-rewrite-term-debug2") |
462 |
2946928 |
<< "computeProcessTerms " << body << std::endl; |
463 |
2946928 |
std::map< Node, Node >::iterator iti = cache.find( body ); |
464 |
2946928 |
if( iti!=cache.end() ){ |
465 |
959772 |
return iti->second; |
466 |
|
} |
467 |
1987156 |
bool changed = false; |
468 |
3974312 |
std::vector<Node> children; |
469 |
4819528 |
for (size_t i = 0; i < body.getNumChildren(); i++) |
470 |
|
{ |
471 |
|
// do the recursive call on children |
472 |
5664744 |
Node nn = computeProcessTerms2(body[i], cache, new_vars, new_conds); |
473 |
2832372 |
children.push_back(nn); |
474 |
2832372 |
changed = changed || nn != body[i]; |
475 |
|
} |
476 |
|
|
477 |
|
// make return value |
478 |
3974312 |
Node ret; |
479 |
1987156 |
if (changed) |
480 |
|
{ |
481 |
4898 |
if (body.getMetaKind() == kind::metakind::PARAMETERIZED) |
482 |
|
{ |
483 |
194 |
children.insert(children.begin(), body.getOperator()); |
484 |
|
} |
485 |
4898 |
ret = nm->mkNode(body.getKind(), children); |
486 |
|
} |
487 |
|
else |
488 |
|
{ |
489 |
1982258 |
ret = body; |
490 |
|
} |
491 |
|
|
492 |
3974312 |
Trace("quantifiers-rewrite-term-debug2") |
493 |
1987156 |
<< "Returning " << ret << " for " << body << std::endl; |
494 |
|
// do context-independent rewriting |
495 |
3974312 |
if (ret.getKind() == EQUAL |
496 |
1987156 |
&& d_opts.quantifiers.iteLiftQuant != options::IteLiftQuantMode::NONE) |
497 |
|
{ |
498 |
696247 |
for (size_t i = 0; i < 2; i++) |
499 |
|
{ |
500 |
464547 |
if (ret[i].getKind() == ITE) |
501 |
|
{ |
502 |
20755 |
Node no = i == 0 ? ret[1] : ret[0]; |
503 |
10790 |
if (no.getKind() != ITE) |
504 |
|
{ |
505 |
9458 |
bool doRewrite = |
506 |
9458 |
d_opts.quantifiers.iteLiftQuant == options::IteLiftQuantMode::ALL; |
507 |
18091 |
std::vector<Node> childrenIte; |
508 |
9458 |
childrenIte.push_back(ret[i][0]); |
509 |
28374 |
for (size_t j = 1; j <= 2; j++) |
510 |
|
{ |
511 |
|
// check if it rewrites to a constant |
512 |
37832 |
Node nn = nm->mkNode(EQUAL, no, ret[i][j]); |
513 |
18916 |
nn = Rewriter::rewrite(nn); |
514 |
18916 |
childrenIte.push_back(nn); |
515 |
18916 |
if (nn.isConst()) |
516 |
|
{ |
517 |
1147 |
doRewrite = true; |
518 |
|
} |
519 |
|
} |
520 |
9458 |
if (doRewrite) |
521 |
|
{ |
522 |
825 |
ret = nm->mkNode(ITE, childrenIte); |
523 |
825 |
break; |
524 |
|
} |
525 |
|
} |
526 |
|
} |
527 |
|
} |
528 |
|
} |
529 |
1754631 |
else if (ret.getKind() == SELECT && ret[0].getKind() == STORE) |
530 |
|
{ |
531 |
184 |
Node st = ret[0]; |
532 |
184 |
Node index = ret[1]; |
533 |
184 |
std::vector<Node> iconds; |
534 |
184 |
std::vector<Node> elements; |
535 |
550 |
while (st.getKind() == STORE) |
536 |
|
{ |
537 |
229 |
iconds.push_back(index.eqNode(st[1])); |
538 |
229 |
elements.push_back(st[2]); |
539 |
229 |
st = st[0]; |
540 |
|
} |
541 |
92 |
ret = nm->mkNode(SELECT, st, index); |
542 |
|
// conditions |
543 |
321 |
for (int i = (iconds.size() - 1); i >= 0; i--) |
544 |
|
{ |
545 |
229 |
ret = nm->mkNode(ITE, iconds[i], elements[i], ret); |
546 |
|
} |
547 |
|
} |
548 |
1987156 |
cache[body] = ret; |
549 |
1987156 |
return ret; |
550 |
|
} |
551 |
|
|
552 |
25 |
Node QuantifiersRewriter::computeExtendedRewrite(Node q) |
553 |
|
{ |
554 |
50 |
Node body = q[1]; |
555 |
|
// apply extended rewriter |
556 |
50 |
Node bodyr = Rewriter::callExtendedRewrite(body); |
557 |
25 |
if (body != bodyr) |
558 |
|
{ |
559 |
24 |
std::vector<Node> children; |
560 |
12 |
children.push_back(q[0]); |
561 |
12 |
children.push_back(bodyr); |
562 |
12 |
if (q.getNumChildren() == 3) |
563 |
|
{ |
564 |
|
children.push_back(q[2]); |
565 |
|
} |
566 |
12 |
return NodeManager::currentNM()->mkNode(FORALL, children); |
567 |
|
} |
568 |
13 |
return q; |
569 |
|
} |
570 |
|
|
571 |
114399 |
Node QuantifiersRewriter::computeCondSplit(Node body, |
572 |
|
const std::vector<Node>& args, |
573 |
|
QAttributes& qa) const |
574 |
|
{ |
575 |
114399 |
NodeManager* nm = NodeManager::currentNM(); |
576 |
114399 |
Kind bk = body.getKind(); |
577 |
229156 |
if (d_opts.quantifiers.iteDtTesterSplitQuant && bk == ITE |
578 |
228806 |
&& body[0].getKind() == APPLY_TESTER) |
579 |
|
{ |
580 |
|
Trace("quantifiers-rewrite-ite-debug") << "DTT split : " << body << std::endl; |
581 |
|
std::map< Node, Node > pcons; |
582 |
|
std::map< Node, std::map< int, Node > > ncons; |
583 |
|
std::vector< Node > conj; |
584 |
|
computeDtTesterIteSplit( body, pcons, ncons, conj ); |
585 |
|
Assert(!conj.empty()); |
586 |
|
if( conj.size()>1 ){ |
587 |
|
Trace("quantifiers-rewrite-ite") << "*** Split ITE (datatype tester) " << body << " into : " << std::endl; |
588 |
|
for( unsigned i=0; i<conj.size(); i++ ){ |
589 |
|
Trace("quantifiers-rewrite-ite") << " " << conj[i] << std::endl; |
590 |
|
} |
591 |
|
return nm->mkNode(AND, conj); |
592 |
|
} |
593 |
|
} |
594 |
114399 |
if (!d_opts.quantifiers.condVarSplitQuant) |
595 |
|
{ |
596 |
|
return body; |
597 |
|
} |
598 |
228798 |
Trace("cond-var-split-debug") |
599 |
114399 |
<< "Conditional var elim split " << body << "?" << std::endl; |
600 |
|
|
601 |
114399 |
if (bk == ITE |
602 |
114591 |
|| (bk == EQUAL && body[0].getType().isBoolean() |
603 |
24432 |
&& d_opts.quantifiers.condVarSplitQuantAgg)) |
604 |
|
{ |
605 |
192 |
Assert(!qa.isFunDef()); |
606 |
192 |
bool do_split = false; |
607 |
192 |
unsigned index_max = bk == ITE ? 0 : 1; |
608 |
354 |
std::vector<Node> tmpArgs = args; |
609 |
354 |
for (unsigned index = 0; index <= index_max; index++) |
610 |
|
{ |
611 |
576 |
if (hasVarElim(body[index], true, tmpArgs) |
612 |
576 |
|| hasVarElim(body[index], false, tmpArgs)) |
613 |
|
{ |
614 |
30 |
do_split = true; |
615 |
30 |
break; |
616 |
|
} |
617 |
|
} |
618 |
192 |
if (do_split) |
619 |
|
{ |
620 |
60 |
Node pos; |
621 |
60 |
Node neg; |
622 |
30 |
if (bk == ITE) |
623 |
|
{ |
624 |
30 |
pos = nm->mkNode(OR, body[0].negate(), body[1]); |
625 |
30 |
neg = nm->mkNode(OR, body[0], body[2]); |
626 |
|
} |
627 |
|
else |
628 |
|
{ |
629 |
|
pos = nm->mkNode(OR, body[0].negate(), body[1]); |
630 |
|
neg = nm->mkNode(OR, body[0], body[1].negate()); |
631 |
|
} |
632 |
60 |
Trace("cond-var-split-debug") << "*** Split (conditional variable eq) " |
633 |
30 |
<< body << " into : " << std::endl; |
634 |
30 |
Trace("cond-var-split-debug") << " " << pos << std::endl; |
635 |
30 |
Trace("cond-var-split-debug") << " " << neg << std::endl; |
636 |
30 |
return nm->mkNode(AND, pos, neg); |
637 |
|
} |
638 |
|
} |
639 |
|
|
640 |
114369 |
if (bk == OR) |
641 |
|
{ |
642 |
46015 |
unsigned size = body.getNumChildren(); |
643 |
46015 |
bool do_split = false; |
644 |
46015 |
unsigned split_index = 0; |
645 |
186067 |
for (unsigned i = 0; i < size; i++) |
646 |
|
{ |
647 |
|
// check if this child is a (conditional) variable elimination |
648 |
280245 |
Node b = body[i]; |
649 |
140193 |
if (b.getKind() == AND) |
650 |
|
{ |
651 |
17190 |
std::vector<Node> vars; |
652 |
17190 |
std::vector<Node> subs; |
653 |
17190 |
std::vector<Node> tmpArgs = args; |
654 |
33678 |
for (unsigned j = 0, bsize = b.getNumChildren(); j < bsize; j++) |
655 |
|
{ |
656 |
25224 |
if (getVarElimLit(body, b[j], false, tmpArgs, vars, subs)) |
657 |
|
{ |
658 |
4822 |
Trace("cond-var-split-debug") << "Variable elimination in child #" |
659 |
2411 |
<< j << " under " << i << std::endl; |
660 |
|
// Figure out if we should split |
661 |
|
// Currently we split if the aggressive option is set, or |
662 |
|
// if the top-level OR is binary. |
663 |
2411 |
if (d_opts.quantifiers.condVarSplitQuantAgg || size == 2) |
664 |
|
{ |
665 |
141 |
do_split = true; |
666 |
|
} |
667 |
|
// other splitting criteria go here |
668 |
|
|
669 |
2411 |
if (do_split) |
670 |
|
{ |
671 |
141 |
split_index = i; |
672 |
141 |
break; |
673 |
|
} |
674 |
2270 |
vars.clear(); |
675 |
2270 |
subs.clear(); |
676 |
2270 |
tmpArgs = args; |
677 |
|
} |
678 |
|
} |
679 |
|
} |
680 |
140193 |
if (do_split) |
681 |
|
{ |
682 |
141 |
break; |
683 |
|
} |
684 |
|
} |
685 |
46015 |
if (do_split) |
686 |
|
{ |
687 |
282 |
std::vector<Node> children; |
688 |
423 |
for (TNode bc : body) |
689 |
|
{ |
690 |
282 |
children.push_back(bc); |
691 |
|
} |
692 |
282 |
std::vector<Node> split_children; |
693 |
570 |
for (TNode bci : body[split_index]) |
694 |
|
{ |
695 |
429 |
children[split_index] = bci; |
696 |
429 |
split_children.push_back(nm->mkNode(OR, children)); |
697 |
|
} |
698 |
|
// split the AND child, for example: |
699 |
|
// ( x!=a ^ P(x) ) V Q(x) ---> ( x!=a V Q(x) ) ^ ( P(x) V Q(x) ) |
700 |
141 |
return nm->mkNode(AND, split_children); |
701 |
|
} |
702 |
|
} |
703 |
|
|
704 |
114228 |
return body; |
705 |
|
} |
706 |
|
|
707 |
6231 |
bool QuantifiersRewriter::isVarElim(Node v, Node s) |
708 |
|
{ |
709 |
6231 |
Assert(v.getKind() == BOUND_VARIABLE); |
710 |
6231 |
return !expr::hasSubterm(s, v) && s.getType().isSubtypeOf(v.getType()); |
711 |
|
} |
712 |
|
|
713 |
38111 |
Node QuantifiersRewriter::getVarElimEq(Node lit, |
714 |
|
const std::vector<Node>& args, |
715 |
|
Node& var) |
716 |
|
{ |
717 |
38111 |
Assert(lit.getKind() == EQUAL); |
718 |
38111 |
Node slv; |
719 |
76222 |
TypeNode tt = lit[0].getType(); |
720 |
38111 |
if (tt.isReal()) |
721 |
|
{ |
722 |
15845 |
slv = getVarElimEqReal(lit, args, var); |
723 |
|
} |
724 |
22266 |
else if (tt.isBitVector()) |
725 |
|
{ |
726 |
731 |
slv = getVarElimEqBv(lit, args, var); |
727 |
|
} |
728 |
21535 |
else if (tt.isStringLike()) |
729 |
|
{ |
730 |
242 |
slv = getVarElimEqString(lit, args, var); |
731 |
|
} |
732 |
76222 |
return slv; |
733 |
|
} |
734 |
|
|
735 |
15845 |
Node QuantifiersRewriter::getVarElimEqReal(Node lit, |
736 |
|
const std::vector<Node>& args, |
737 |
|
Node& var) |
738 |
|
{ |
739 |
|
// for arithmetic, solve the equality |
740 |
31690 |
std::map<Node, Node> msum; |
741 |
15845 |
if (!ArithMSum::getMonomialSumLit(lit, msum)) |
742 |
|
{ |
743 |
|
return Node::null(); |
744 |
|
} |
745 |
15845 |
std::vector<Node>::const_iterator ita; |
746 |
48133 |
for (std::map<Node, Node>::iterator itm = msum.begin(); itm != msum.end(); |
747 |
|
++itm) |
748 |
|
{ |
749 |
32494 |
if (itm->first.isNull()) |
750 |
|
{ |
751 |
3269 |
continue; |
752 |
|
} |
753 |
29225 |
ita = std::find(args.begin(), args.end(), itm->first); |
754 |
29225 |
if (ita != args.end()) |
755 |
|
{ |
756 |
946 |
Node veq_c; |
757 |
946 |
Node val; |
758 |
576 |
int ires = ArithMSum::isolate(itm->first, msum, veq_c, val, EQUAL); |
759 |
576 |
if (ires != 0 && veq_c.isNull() && isVarElim(itm->first, val)) |
760 |
|
{ |
761 |
206 |
var = itm->first; |
762 |
206 |
return val; |
763 |
|
} |
764 |
|
} |
765 |
|
} |
766 |
15639 |
return Node::null(); |
767 |
|
} |
768 |
|
|
769 |
731 |
Node QuantifiersRewriter::getVarElimEqBv(Node lit, |
770 |
|
const std::vector<Node>& args, |
771 |
|
Node& var) |
772 |
|
{ |
773 |
731 |
if (Trace.isOn("quant-velim-bv")) |
774 |
|
{ |
775 |
|
Trace("quant-velim-bv") << "Bv-Elim : " << lit << " varList = { "; |
776 |
|
for (const Node& v : args) |
777 |
|
{ |
778 |
|
Trace("quant-velim-bv") << v << " "; |
779 |
|
} |
780 |
|
Trace("quant-velim-bv") << "} ?" << std::endl; |
781 |
|
} |
782 |
731 |
Assert(lit.getKind() == EQUAL); |
783 |
|
// TODO (#1494) : linearize the literal using utility |
784 |
|
|
785 |
|
// compute a subset active_args of the bound variables args that occur in lit |
786 |
1462 |
std::vector<Node> active_args; |
787 |
731 |
computeArgVec(args, active_args, lit); |
788 |
|
|
789 |
1462 |
BvInverter binv; |
790 |
1546 |
for (const Node& cvar : active_args) |
791 |
|
{ |
792 |
|
// solve for the variable on this path using the inverter |
793 |
1668 |
std::vector<unsigned> path; |
794 |
1668 |
Node slit = binv.getPathToPv(lit, cvar, path); |
795 |
853 |
if (!slit.isNull()) |
796 |
|
{ |
797 |
814 |
Node slv = binv.solveBvLit(cvar, lit, path, nullptr); |
798 |
426 |
Trace("quant-velim-bv") << "...solution : " << slv << std::endl; |
799 |
426 |
if (!slv.isNull()) |
800 |
|
{ |
801 |
66 |
var = cvar; |
802 |
|
// if this is a proper variable elimination, that is, var = slv where |
803 |
|
// var is not in the free variables of slv, then we can return this |
804 |
|
// as the variable elimination for lit. |
805 |
66 |
if (isVarElim(var, slv)) |
806 |
|
{ |
807 |
38 |
return slv; |
808 |
|
} |
809 |
|
} |
810 |
|
} |
811 |
|
else |
812 |
|
{ |
813 |
427 |
Trace("quant-velim-bv") << "...non-invertible path." << std::endl; |
814 |
|
} |
815 |
|
} |
816 |
|
|
817 |
693 |
return Node::null(); |
818 |
|
} |
819 |
|
|
820 |
242 |
Node QuantifiersRewriter::getVarElimEqString(Node lit, |
821 |
|
const std::vector<Node>& args, |
822 |
|
Node& var) |
823 |
|
{ |
824 |
242 |
Assert(lit.getKind() == EQUAL); |
825 |
242 |
NodeManager* nm = NodeManager::currentNM(); |
826 |
722 |
for (unsigned i = 0; i < 2; i++) |
827 |
|
{ |
828 |
484 |
if (lit[i].getKind() == STRING_CONCAT) |
829 |
|
{ |
830 |
12 |
TypeNode stype = lit[i].getType(); |
831 |
20 |
for (unsigned j = 0, nchildren = lit[i].getNumChildren(); j < nchildren; |
832 |
|
j++) |
833 |
|
{ |
834 |
16 |
if (std::find(args.begin(), args.end(), lit[i][j]) != args.end()) |
835 |
|
{ |
836 |
12 |
var = lit[i][j]; |
837 |
20 |
Node slv = lit[1 - i]; |
838 |
20 |
std::vector<Node> preL(lit[i].begin(), lit[i].begin() + j); |
839 |
20 |
std::vector<Node> postL(lit[i].begin() + j + 1, lit[i].end()); |
840 |
20 |
Node tpre = strings::utils::mkConcat(preL, stype); |
841 |
20 |
Node tpost = strings::utils::mkConcat(postL, stype); |
842 |
20 |
Node slvL = nm->mkNode(STRING_LENGTH, slv); |
843 |
20 |
Node tpreL = nm->mkNode(STRING_LENGTH, tpre); |
844 |
20 |
Node tpostL = nm->mkNode(STRING_LENGTH, tpost); |
845 |
12 |
slv = nm->mkNode( |
846 |
|
STRING_SUBSTR, |
847 |
|
slv, |
848 |
|
tpreL, |
849 |
24 |
nm->mkNode(MINUS, slvL, nm->mkNode(PLUS, tpreL, tpostL))); |
850 |
|
// forall x. r ++ x ++ t = s => P( x ) |
851 |
|
// is equivalent to |
852 |
|
// r ++ s' ++ t = s => P( s' ) where |
853 |
|
// s' = substr( s, |r|, |s|-(|t|+|r|) ). |
854 |
|
// We apply this only if r,t,s do not contain free variables. |
855 |
12 |
if (!expr::hasFreeVar(slv)) |
856 |
|
{ |
857 |
4 |
return slv; |
858 |
|
} |
859 |
|
} |
860 |
|
} |
861 |
|
} |
862 |
|
} |
863 |
|
|
864 |
238 |
return Node::null(); |
865 |
|
} |
866 |
|
|
867 |
239857 |
bool QuantifiersRewriter::getVarElimLit(Node body, |
868 |
|
Node lit, |
869 |
|
bool pol, |
870 |
|
std::vector<Node>& args, |
871 |
|
std::vector<Node>& vars, |
872 |
|
std::vector<Node>& subs) const |
873 |
|
{ |
874 |
239857 |
if (lit.getKind() == NOT) |
875 |
|
{ |
876 |
6713 |
lit = lit[0]; |
877 |
6713 |
pol = !pol; |
878 |
6713 |
Assert(lit.getKind() != NOT); |
879 |
|
} |
880 |
239857 |
NodeManager* nm = NodeManager::currentNM(); |
881 |
479714 |
Trace("var-elim-quant-debug") |
882 |
239857 |
<< "Eliminate : " << lit << ", pol = " << pol << "?" << std::endl; |
883 |
480514 |
if (lit.getKind() == APPLY_TESTER && pol && lit[0].getKind() == BOUND_VARIABLE |
884 |
479758 |
&& d_opts.quantifiers.dtVarExpandQuant) |
885 |
|
{ |
886 |
88 |
Trace("var-elim-dt") << "Expand datatype variable based on : " << lit |
887 |
44 |
<< std::endl; |
888 |
|
std::vector<Node>::iterator ita = |
889 |
44 |
std::find(args.begin(), args.end(), lit[0]); |
890 |
44 |
if (ita != args.end()) |
891 |
|
{ |
892 |
44 |
vars.push_back(lit[0]); |
893 |
88 |
Node tester = lit.getOperator(); |
894 |
44 |
int index = datatypes::utils::indexOf(tester); |
895 |
44 |
const DType& dt = datatypes::utils::datatypeOf(tester); |
896 |
44 |
const DTypeConstructor& c = dt[index]; |
897 |
88 |
std::vector<Node> newChildren; |
898 |
44 |
newChildren.push_back(c.getConstructor()); |
899 |
88 |
std::vector<Node> newVars; |
900 |
44 |
BoundVarManager* bvm = nm->getBoundVarManager(); |
901 |
107 |
for (unsigned j = 0, nargs = c.getNumArgs(); j < nargs; j++) |
902 |
|
{ |
903 |
126 |
TypeNode tn = c[j].getRangeType(); |
904 |
126 |
Node rn = nm->mkConst(Rational(j)); |
905 |
126 |
Node cacheVal = BoundVarManager::getCacheValue(body, lit, rn); |
906 |
126 |
Node v = bvm->mkBoundVar<QRewDtExpandAttribute>(cacheVal, tn); |
907 |
63 |
newChildren.push_back(v); |
908 |
63 |
newVars.push_back(v); |
909 |
|
} |
910 |
44 |
subs.push_back(nm->mkNode(APPLY_CONSTRUCTOR, newChildren)); |
911 |
88 |
Trace("var-elim-dt") << "...apply substitution " << subs[0] << "/" |
912 |
44 |
<< vars[0] << std::endl; |
913 |
44 |
args.erase(ita); |
914 |
44 |
args.insert(args.end(), newVars.begin(), newVars.end()); |
915 |
44 |
return true; |
916 |
|
} |
917 |
|
} |
918 |
|
// all eliminations below guarded by varElimQuant() |
919 |
239813 |
if (!d_opts.quantifiers.varElimQuant) |
920 |
|
{ |
921 |
|
return false; |
922 |
|
} |
923 |
|
|
924 |
239813 |
if (lit.getKind() == EQUAL) |
925 |
|
{ |
926 |
133884 |
if (pol || lit[0].getType().isBoolean()) |
927 |
|
{ |
928 |
197799 |
for (unsigned i = 0; i < 2; i++) |
929 |
|
{ |
930 |
134036 |
bool tpol = pol; |
931 |
262732 |
Node v_slv = lit[i]; |
932 |
134036 |
if (v_slv.getKind() == NOT) |
933 |
|
{ |
934 |
5548 |
v_slv = v_slv[0]; |
935 |
5548 |
tpol = !tpol; |
936 |
|
} |
937 |
|
std::vector<Node>::iterator ita = |
938 |
134036 |
std::find(args.begin(), args.end(), v_slv); |
939 |
134036 |
if (ita != args.end()) |
940 |
|
{ |
941 |
5791 |
if (isVarElim(v_slv, lit[1 - i])) |
942 |
|
{ |
943 |
10680 |
Node slv = lit[1 - i]; |
944 |
5340 |
if (!tpol) |
945 |
|
{ |
946 |
653 |
Assert(slv.getType().isBoolean()); |
947 |
653 |
slv = slv.negate(); |
948 |
|
} |
949 |
10680 |
Trace("var-elim-quant") |
950 |
5340 |
<< "Variable eliminate based on equality : " << v_slv << " -> " |
951 |
5340 |
<< slv << std::endl; |
952 |
5340 |
vars.push_back(v_slv); |
953 |
5340 |
subs.push_back(slv); |
954 |
5340 |
args.erase(ita); |
955 |
5340 |
return true; |
956 |
|
} |
957 |
|
} |
958 |
|
} |
959 |
|
} |
960 |
|
} |
961 |
234473 |
if (lit.getKind() == BOUND_VARIABLE) |
962 |
|
{ |
963 |
1451 |
std::vector< Node >::iterator ita = std::find( args.begin(), args.end(), lit ); |
964 |
1451 |
if( ita!=args.end() ){ |
965 |
1449 |
Trace("var-elim-bool") << "Variable eliminate : " << lit << std::endl; |
966 |
1449 |
vars.push_back( lit ); |
967 |
1449 |
subs.push_back( NodeManager::currentNM()->mkConst( pol ) ); |
968 |
1449 |
args.erase( ita ); |
969 |
1449 |
return true; |
970 |
|
} |
971 |
|
} |
972 |
233024 |
if (lit.getKind() == EQUAL && pol) |
973 |
|
{ |
974 |
75974 |
Node var; |
975 |
75974 |
Node slv = getVarElimEq(lit, args, var); |
976 |
38111 |
if (!slv.isNull()) |
977 |
|
{ |
978 |
248 |
Assert(!var.isNull()); |
979 |
|
std::vector<Node>::iterator ita = |
980 |
248 |
std::find(args.begin(), args.end(), var); |
981 |
248 |
Assert(ita != args.end()); |
982 |
496 |
Trace("var-elim-quant") |
983 |
248 |
<< "Variable eliminate based on theory-specific solving : " << var |
984 |
248 |
<< " -> " << slv << std::endl; |
985 |
248 |
Assert(!expr::hasSubterm(slv, var)); |
986 |
248 |
Assert(slv.getType().isSubtypeOf(var.getType())); |
987 |
248 |
vars.push_back(var); |
988 |
248 |
subs.push_back(slv); |
989 |
248 |
args.erase(ita); |
990 |
248 |
return true; |
991 |
|
} |
992 |
|
} |
993 |
232776 |
return false; |
994 |
|
} |
995 |
|
|
996 |
117497 |
bool QuantifiersRewriter::getVarElim(Node body, |
997 |
|
std::vector<Node>& args, |
998 |
|
std::vector<Node>& vars, |
999 |
|
std::vector<Node>& subs) const |
1000 |
|
{ |
1001 |
117497 |
return getVarElimInternal(body, body, false, args, vars, subs); |
1002 |
|
} |
1003 |
|
|
1004 |
264407 |
bool QuantifiersRewriter::getVarElimInternal(Node body, |
1005 |
|
Node n, |
1006 |
|
bool pol, |
1007 |
|
std::vector<Node>& args, |
1008 |
|
std::vector<Node>& vars, |
1009 |
|
std::vector<Node>& subs) const |
1010 |
|
{ |
1011 |
264407 |
Kind nk = n.getKind(); |
1012 |
264407 |
if (nk == NOT) |
1013 |
|
{ |
1014 |
92469 |
n = n[0]; |
1015 |
92469 |
pol = !pol; |
1016 |
92469 |
nk = n.getKind(); |
1017 |
92469 |
Assert(nk != NOT); |
1018 |
|
} |
1019 |
264407 |
if ((nk == AND && pol) || (nk == OR && !pol)) |
1020 |
|
{ |
1021 |
192028 |
for (const Node& cn : n) |
1022 |
|
{ |
1023 |
146556 |
if (getVarElimInternal(body, cn, pol, args, vars, subs)) |
1024 |
|
{ |
1025 |
4302 |
return true; |
1026 |
|
} |
1027 |
|
} |
1028 |
45472 |
return false; |
1029 |
|
} |
1030 |
214633 |
return getVarElimLit(body, n, pol, args, vars, subs); |
1031 |
|
} |
1032 |
|
|
1033 |
354 |
bool QuantifiersRewriter::hasVarElim(Node n, |
1034 |
|
bool pol, |
1035 |
|
std::vector<Node>& args) const |
1036 |
|
{ |
1037 |
708 |
std::vector< Node > vars; |
1038 |
708 |
std::vector< Node > subs; |
1039 |
708 |
return getVarElimInternal(n, n, pol, args, vars, subs); |
1040 |
|
} |
1041 |
|
|
1042 |
112752 |
bool QuantifiersRewriter::getVarElimIneq(Node body, |
1043 |
|
std::vector<Node>& args, |
1044 |
|
std::vector<Node>& bounds, |
1045 |
|
std::vector<Node>& subs, |
1046 |
|
QAttributes& qa) |
1047 |
|
{ |
1048 |
112752 |
Trace("var-elim-quant-debug") << "getVarElimIneq " << body << std::endl; |
1049 |
|
// For each variable v, we compute a set of implied bounds in the body |
1050 |
|
// of the quantified formula. |
1051 |
|
// num_bounds[x][-1] stores the entailed lower bounds for x |
1052 |
|
// num_bounds[x][1] stores the entailed upper bounds for x |
1053 |
|
// num_bounds[x][0] stores the entailed disequalities for x |
1054 |
|
// These bounds are stored in a map that maps the literal for the bound to |
1055 |
|
// its required polarity. For example, for quantified formula |
1056 |
|
// (forall ((x Int)) (or (= x 0) (>= x a))) |
1057 |
|
// we have: |
1058 |
|
// num_bounds[x][0] contains { x -> { (= x 0) -> false } } |
1059 |
|
// num_bounds[x][-1] contains { x -> { (>= x a) -> false } } |
1060 |
|
// This method succeeds in eliminating x if its only occurrences are in |
1061 |
|
// entailed disequalities, and one kind of bound. This is the case for the |
1062 |
|
// above quantified formula, which can be rewritten to false. The reason |
1063 |
|
// is that we can always chose a value for x that is arbitrarily large (resp. |
1064 |
|
// small) to satisfy all disequalities and inequalities for x. |
1065 |
225504 |
std::map<Node, std::map<int, std::map<Node, bool>>> num_bounds; |
1066 |
|
// The set of variables that we know we can not eliminate |
1067 |
225504 |
std::unordered_set<Node> ineligVars; |
1068 |
|
// compute the entailed literals |
1069 |
225504 |
QuantPhaseReq qpr(body); |
1070 |
|
// map to track which literals we have already processed, and hence can be |
1071 |
|
// excluded from the free variables check in the latter half of this method. |
1072 |
225504 |
std::map<Node, int> processed; |
1073 |
308867 |
for (const std::pair<const Node, bool>& pr : qpr.d_phase_reqs) |
1074 |
|
{ |
1075 |
|
// an inequality that is entailed with a given polarity |
1076 |
236636 |
Node lit = pr.first; |
1077 |
196115 |
bool pol = pr.second; |
1078 |
392230 |
Trace("var-elim-quant-debug") << "Process inequality bounds : " << lit |
1079 |
196115 |
<< ", pol = " << pol << "..." << std::endl; |
1080 |
|
bool canSolve = |
1081 |
196115 |
lit.getKind() == GEQ |
1082 |
392230 |
|| (lit.getKind() == EQUAL && lit[0].getType().isReal() && !pol); |
1083 |
196115 |
if (!canSolve) |
1084 |
|
{ |
1085 |
155594 |
continue; |
1086 |
|
} |
1087 |
|
// solve the inequality |
1088 |
81042 |
std::map<Node, Node> msum; |
1089 |
40521 |
if (!ArithMSum::getMonomialSumLit(lit, msum)) |
1090 |
|
{ |
1091 |
|
// not an inequality, cannot use |
1092 |
|
continue; |
1093 |
|
} |
1094 |
40521 |
processed[lit] = pol ? -1 : 1; |
1095 |
125626 |
for (const std::pair<const Node, Node>& m : msum) |
1096 |
|
{ |
1097 |
85105 |
if (!m.first.isNull() && ineligVars.find(m.first) == ineligVars.end()) |
1098 |
|
{ |
1099 |
|
std::vector<Node>::iterator ita = |
1100 |
69073 |
std::find(args.begin(), args.end(), m.first); |
1101 |
69073 |
if (ita != args.end()) |
1102 |
|
{ |
1103 |
|
// store that this literal is upper/lower bound for itm->first |
1104 |
62442 |
Node veq_c; |
1105 |
62442 |
Node val; |
1106 |
|
int ires = |
1107 |
31221 |
ArithMSum::isolate(m.first, msum, veq_c, val, lit.getKind()); |
1108 |
31221 |
if (ires != 0 && veq_c.isNull()) |
1109 |
|
{ |
1110 |
30932 |
if (lit.getKind() == GEQ) |
1111 |
|
{ |
1112 |
19538 |
bool is_upper = pol != (ires == 1); |
1113 |
39076 |
Trace("var-elim-ineq-debug") |
1114 |
19538 |
<< lit << " is a " << (is_upper ? "upper" : "lower") |
1115 |
19538 |
<< " bound for " << m.first << std::endl; |
1116 |
39076 |
Trace("var-elim-ineq-debug") |
1117 |
19538 |
<< " pol/ires = " << pol << " " << ires << std::endl; |
1118 |
19538 |
num_bounds[m.first][is_upper ? 1 : -1][lit] = pol; |
1119 |
|
} |
1120 |
|
else |
1121 |
|
{ |
1122 |
22788 |
Trace("var-elim-ineq-debug") |
1123 |
11394 |
<< lit << " is a disequality for " << m.first << std::endl; |
1124 |
11394 |
num_bounds[m.first][0][lit] = pol; |
1125 |
|
} |
1126 |
|
} |
1127 |
|
else |
1128 |
|
{ |
1129 |
578 |
Trace("var-elim-ineq-debug") |
1130 |
289 |
<< "...ineligible " << m.first |
1131 |
289 |
<< " since it cannot be solved for (" << ires << ", " << veq_c |
1132 |
289 |
<< ")." << std::endl; |
1133 |
289 |
num_bounds.erase(m.first); |
1134 |
289 |
ineligVars.insert(m.first); |
1135 |
|
} |
1136 |
|
} |
1137 |
|
else |
1138 |
|
{ |
1139 |
|
// compute variables in itm->first, these are not eligible for |
1140 |
|
// elimination |
1141 |
75704 |
std::unordered_set<Node> fvs; |
1142 |
37852 |
expr::getFreeVariables(m.first, fvs); |
1143 |
79276 |
for (const Node& v : fvs) |
1144 |
|
{ |
1145 |
82848 |
Trace("var-elim-ineq-debug") |
1146 |
41424 |
<< "...ineligible " << v |
1147 |
41424 |
<< " since it is contained in monomial." << std::endl; |
1148 |
41424 |
num_bounds.erase(v); |
1149 |
41424 |
ineligVars.insert(v); |
1150 |
|
} |
1151 |
|
} |
1152 |
|
} |
1153 |
|
} |
1154 |
|
} |
1155 |
|
|
1156 |
|
// collect all variables that have only upper/lower bounds |
1157 |
225504 |
std::map<Node, bool> elig_vars; |
1158 |
15019 |
for (const std::pair<const Node, std::map<int, std::map<Node, bool>>>& nb : |
1159 |
112752 |
num_bounds) |
1160 |
|
{ |
1161 |
15019 |
if (nb.second.find(1) == nb.second.end()) |
1162 |
|
{ |
1163 |
16950 |
Trace("var-elim-ineq-debug") |
1164 |
8475 |
<< "Variable " << nb.first << " has only lower bounds." << std::endl; |
1165 |
8475 |
elig_vars[nb.first] = false; |
1166 |
|
} |
1167 |
6544 |
else if (nb.second.find(-1) == nb.second.end()) |
1168 |
|
{ |
1169 |
4316 |
Trace("var-elim-ineq-debug") |
1170 |
2158 |
<< "Variable " << nb.first << " has only upper bounds." << std::endl; |
1171 |
2158 |
elig_vars[nb.first] = true; |
1172 |
|
} |
1173 |
|
} |
1174 |
112752 |
if (elig_vars.empty()) |
1175 |
|
{ |
1176 |
103590 |
return false; |
1177 |
|
} |
1178 |
18324 |
std::vector<Node> inactive_vars; |
1179 |
18324 |
std::map<Node, std::map<int, bool> > visited; |
1180 |
|
// traverse the body, invalidate variables if they occur in places other than |
1181 |
|
// the bounds they occur in |
1182 |
18324 |
std::unordered_map<TNode, std::unordered_set<int>> evisited; |
1183 |
18324 |
std::vector<TNode> evisit; |
1184 |
18324 |
std::vector<int> evisit_pol; |
1185 |
18324 |
TNode ecur; |
1186 |
|
int ecur_pol; |
1187 |
9162 |
evisit.push_back(body); |
1188 |
9162 |
evisit_pol.push_back(1); |
1189 |
9162 |
if (!qa.d_ipl.isNull()) |
1190 |
|
{ |
1191 |
|
// do not eliminate variables that occur in the annotation |
1192 |
1424 |
evisit.push_back(qa.d_ipl); |
1193 |
1424 |
evisit_pol.push_back(0); |
1194 |
|
} |
1195 |
63498 |
do |
1196 |
|
{ |
1197 |
72660 |
ecur = evisit.back(); |
1198 |
72660 |
evisit.pop_back(); |
1199 |
72660 |
ecur_pol = evisit_pol.back(); |
1200 |
72660 |
evisit_pol.pop_back(); |
1201 |
72660 |
std::unordered_set<int>& epp = evisited[ecur]; |
1202 |
72660 |
if (epp.find(ecur_pol) == epp.end()) |
1203 |
|
{ |
1204 |
71089 |
epp.insert(ecur_pol); |
1205 |
71089 |
if (elig_vars.find(ecur) != elig_vars.end()) |
1206 |
|
{ |
1207 |
|
// variable contained in a place apart from bounds, no longer eligible |
1208 |
|
// for elimination |
1209 |
10196 |
elig_vars.erase(ecur); |
1210 |
20392 |
Trace("var-elim-ineq-debug") << "...found occurrence of " << ecur |
1211 |
10196 |
<< ", mark ineligible" << std::endl; |
1212 |
|
} |
1213 |
|
else |
1214 |
|
{ |
1215 |
60893 |
bool rec = true; |
1216 |
60893 |
bool pol = ecur_pol >= 0; |
1217 |
60893 |
bool hasPol = ecur_pol != 0; |
1218 |
60893 |
if (hasPol) |
1219 |
|
{ |
1220 |
31961 |
std::map<Node, int>::iterator itx = processed.find(ecur); |
1221 |
31961 |
if (itx != processed.end() && itx->second == ecur_pol) |
1222 |
|
{ |
1223 |
|
// already processed this literal as a bound |
1224 |
4999 |
rec = false; |
1225 |
|
} |
1226 |
|
} |
1227 |
60893 |
if (rec) |
1228 |
|
{ |
1229 |
145049 |
for (unsigned j = 0, size = ecur.getNumChildren(); j < size; j++) |
1230 |
|
{ |
1231 |
|
bool newHasPol; |
1232 |
|
bool newPol; |
1233 |
89155 |
QuantPhaseReq::getPolarity(ecur, j, hasPol, pol, newHasPol, newPol); |
1234 |
89155 |
evisit.push_back(ecur[j]); |
1235 |
89155 |
evisit_pol.push_back(newHasPol ? (newPol ? 1 : -1) : 0); |
1236 |
|
} |
1237 |
|
} |
1238 |
|
} |
1239 |
|
} |
1240 |
72660 |
} while (!evisit.empty() && !elig_vars.empty()); |
1241 |
|
|
1242 |
9162 |
bool ret = false; |
1243 |
9162 |
NodeManager* nm = NodeManager::currentNM(); |
1244 |
9599 |
for (const std::pair<const Node, bool>& ev : elig_vars) |
1245 |
|
{ |
1246 |
874 |
Node v = ev.first; |
1247 |
874 |
Trace("var-elim-ineq-debug") |
1248 |
437 |
<< v << " is eligible for elimination." << std::endl; |
1249 |
|
// do substitution corresponding to infinite projection, all literals |
1250 |
|
// involving unbounded variable go to true/false |
1251 |
|
// disequalities of eligible variables are also eliminated |
1252 |
437 |
std::map<int, std::map<Node, bool>>& nbv = num_bounds[v]; |
1253 |
1311 |
for (size_t i = 0; i < 2; i++) |
1254 |
|
{ |
1255 |
874 |
size_t nindex = i == 0 ? (elig_vars[v] ? 1 : -1) : 0; |
1256 |
1451 |
for (const std::pair<const Node, bool>& nb : nbv[nindex]) |
1257 |
|
{ |
1258 |
1154 |
Trace("var-elim-ineq-debug") |
1259 |
577 |
<< " subs : " << nb.first << " -> " << nb.second << std::endl; |
1260 |
577 |
bounds.push_back(nb.first); |
1261 |
577 |
subs.push_back(nm->mkConst(nb.second)); |
1262 |
|
} |
1263 |
|
} |
1264 |
|
// eliminate from args |
1265 |
437 |
std::vector<Node>::iterator ita = std::find(args.begin(), args.end(), v); |
1266 |
437 |
Assert(ita != args.end()); |
1267 |
437 |
args.erase(ita); |
1268 |
437 |
ret = true; |
1269 |
|
} |
1270 |
9162 |
return ret; |
1271 |
|
} |
1272 |
|
|
1273 |
113160 |
Node QuantifiersRewriter::computeVarElimination(Node body, |
1274 |
|
std::vector<Node>& args, |
1275 |
|
QAttributes& qa) const |
1276 |
|
{ |
1277 |
113160 |
if (!d_opts.quantifiers.varElimQuant && !d_opts.quantifiers.dtVarExpandQuant |
1278 |
|
&& !d_opts.quantifiers.varIneqElimQuant) |
1279 |
|
{ |
1280 |
|
return body; |
1281 |
|
} |
1282 |
226320 |
Trace("var-elim-quant-debug") |
1283 |
113160 |
<< "computeVarElimination " << body << std::endl; |
1284 |
226320 |
Node prev; |
1285 |
347934 |
while (prev != body && !args.empty()) |
1286 |
|
{ |
1287 |
117387 |
prev = body; |
1288 |
|
|
1289 |
234774 |
std::vector<Node> vars; |
1290 |
234774 |
std::vector<Node> subs; |
1291 |
|
// standard variable elimination |
1292 |
117387 |
if (d_opts.quantifiers.varElimQuant) |
1293 |
|
{ |
1294 |
117387 |
getVarElim(body, args, vars, subs); |
1295 |
|
} |
1296 |
|
// variable elimination based on one-direction inequalities |
1297 |
117387 |
if (vars.empty() && d_opts.quantifiers.varIneqElimQuant) |
1298 |
|
{ |
1299 |
112752 |
getVarElimIneq(body, args, vars, subs, qa); |
1300 |
|
} |
1301 |
|
// if we eliminated a variable, update body and reprocess |
1302 |
117387 |
if (!vars.empty()) |
1303 |
|
{ |
1304 |
9974 |
Trace("var-elim-quant-debug") |
1305 |
4987 |
<< "VE " << vars.size() << "/" << args.size() << std::endl; |
1306 |
4987 |
Assert(vars.size() == subs.size()); |
1307 |
|
// remake with eliminated nodes |
1308 |
4987 |
body = |
1309 |
9974 |
body.substitute(vars.begin(), vars.end(), subs.begin(), subs.end()); |
1310 |
4987 |
body = Rewriter::rewrite(body); |
1311 |
4987 |
if (!qa.d_ipl.isNull()) |
1312 |
|
{ |
1313 |
52 |
qa.d_ipl = qa.d_ipl.substitute( |
1314 |
26 |
vars.begin(), vars.end(), subs.begin(), subs.end()); |
1315 |
|
} |
1316 |
4987 |
Trace("var-elim-quant") << "Return " << body << std::endl; |
1317 |
|
} |
1318 |
|
} |
1319 |
113160 |
return body; |
1320 |
|
} |
1321 |
|
|
1322 |
456934 |
Node QuantifiersRewriter::computePrenex(Node q, |
1323 |
|
Node body, |
1324 |
|
std::unordered_set<Node>& args, |
1325 |
|
std::unordered_set<Node>& nargs, |
1326 |
|
bool pol, |
1327 |
|
bool prenexAgg) const |
1328 |
|
{ |
1329 |
456934 |
NodeManager* nm = NodeManager::currentNM(); |
1330 |
456934 |
Kind k = body.getKind(); |
1331 |
456934 |
if (k == FORALL) |
1332 |
|
{ |
1333 |
26852 |
if ((pol || prenexAgg) |
1334 |
16518 |
&& (d_opts.quantifiers.prenexQuantUser |
1335 |
15376 |
|| !QuantAttributes::hasPattern(body))) |
1336 |
|
{ |
1337 |
2284 |
std::vector< Node > terms; |
1338 |
2284 |
std::vector< Node > subs; |
1339 |
1142 |
BoundVarManager* bvm = nm->getBoundVarManager(); |
1340 |
|
//for doing prenexing of same-signed quantifiers |
1341 |
|
//must rename each variable that already exists |
1342 |
2917 |
for (const Node& v : body[0]) |
1343 |
|
{ |
1344 |
1775 |
terms.push_back(v); |
1345 |
3550 |
TypeNode vt = v.getType(); |
1346 |
3550 |
Node vv; |
1347 |
1775 |
if (!q.isNull()) |
1348 |
|
{ |
1349 |
|
// We cache based on the original quantified formula, the subformula |
1350 |
|
// that we are pulling variables from (body), and the variable v. |
1351 |
|
// The argument body is required since in rare cases, two subformulas |
1352 |
|
// may share the same variables. This is the case for define-fun |
1353 |
|
// or inferred substitutions that contain quantified formulas. |
1354 |
3550 |
Node cacheVal = BoundVarManager::getCacheValue(q, body, v); |
1355 |
1775 |
vv = bvm->mkBoundVar<QRewPrenexAttribute>(cacheVal, vt); |
1356 |
|
} |
1357 |
|
else |
1358 |
|
{ |
1359 |
|
// not specific to a quantified formula, use normal |
1360 |
|
vv = nm->mkBoundVar(vt); |
1361 |
|
} |
1362 |
1775 |
subs.push_back(vv); |
1363 |
|
} |
1364 |
1142 |
if (pol) |
1365 |
|
{ |
1366 |
1142 |
args.insert(subs.begin(), subs.end()); |
1367 |
|
} |
1368 |
|
else |
1369 |
|
{ |
1370 |
|
nargs.insert(subs.begin(), subs.end()); |
1371 |
|
} |
1372 |
2284 |
Node newBody = body[1]; |
1373 |
1142 |
newBody = newBody.substitute( terms.begin(), terms.end(), subs.begin(), subs.end() ); |
1374 |
1142 |
return newBody; |
1375 |
|
} |
1376 |
|
//must remove structure |
1377 |
|
} |
1378 |
442858 |
else if (prenexAgg && k == ITE && body.getType().isBoolean()) |
1379 |
|
{ |
1380 |
|
Node nn = nm->mkNode(AND, |
1381 |
|
nm->mkNode(OR, body[0].notNode(), body[1]), |
1382 |
|
nm->mkNode(OR, body[0], body[2])); |
1383 |
|
return computePrenex(q, nn, args, nargs, pol, prenexAgg); |
1384 |
|
} |
1385 |
442858 |
else if (prenexAgg && k == EQUAL && body[0].getType().isBoolean()) |
1386 |
|
{ |
1387 |
|
Node nn = nm->mkNode(AND, |
1388 |
|
nm->mkNode(OR, body[0].notNode(), body[1]), |
1389 |
|
nm->mkNode(OR, body[0], body[1].notNode())); |
1390 |
|
return computePrenex(q, nn, args, nargs, pol, prenexAgg); |
1391 |
442858 |
}else if( body.getType().isBoolean() ){ |
1392 |
442858 |
Assert(k != EXISTS); |
1393 |
442858 |
bool childrenChanged = false; |
1394 |
884525 |
std::vector< Node > newChildren; |
1395 |
1352245 |
for (size_t i = 0, nchild = body.getNumChildren(); i < nchild; i++) |
1396 |
|
{ |
1397 |
|
bool newHasPol; |
1398 |
|
bool newPol; |
1399 |
909387 |
QuantPhaseReq::getPolarity( body, i, true, pol, newHasPol, newPol ); |
1400 |
1475212 |
if (!newHasPol) |
1401 |
|
{ |
1402 |
565825 |
newChildren.push_back( body[i] ); |
1403 |
565825 |
continue; |
1404 |
|
} |
1405 |
687124 |
Node n = computePrenex(q, body[i], args, nargs, newPol, prenexAgg); |
1406 |
343562 |
newChildren.push_back(n); |
1407 |
343562 |
childrenChanged = n != body[i] || childrenChanged; |
1408 |
|
} |
1409 |
442858 |
if( childrenChanged ){ |
1410 |
1191 |
if (k == NOT && newChildren[0].getKind() == NOT) |
1411 |
|
{ |
1412 |
|
return newChildren[0][0]; |
1413 |
|
} |
1414 |
1191 |
return nm->mkNode(k, newChildren); |
1415 |
|
} |
1416 |
|
} |
1417 |
454601 |
return body; |
1418 |
|
} |
1419 |
|
|
1420 |
46751 |
Node QuantifiersRewriter::computeSplit(std::vector<Node>& args, |
1421 |
|
Node body, |
1422 |
|
QAttributes& qa) const |
1423 |
|
{ |
1424 |
46751 |
Assert(body.getKind() == OR); |
1425 |
46751 |
size_t var_found_count = 0; |
1426 |
46751 |
size_t eqc_count = 0; |
1427 |
46751 |
size_t eqc_active = 0; |
1428 |
93502 |
std::map< Node, int > var_to_eqc; |
1429 |
93502 |
std::map< int, std::vector< Node > > eqc_to_var; |
1430 |
93502 |
std::map< int, std::vector< Node > > eqc_to_lit; |
1431 |
|
|
1432 |
93502 |
std::vector<Node> lits; |
1433 |
|
|
1434 |
198282 |
for( unsigned i=0; i<body.getNumChildren(); i++ ){ |
1435 |
|
//get variables contained in the literal |
1436 |
303062 |
Node n = body[i]; |
1437 |
303062 |
std::vector< Node > lit_args; |
1438 |
151531 |
computeArgVec( args, lit_args, n ); |
1439 |
151531 |
if( lit_args.empty() ){ |
1440 |
1641 |
lits.push_back( n ); |
1441 |
|
}else { |
1442 |
|
//collect the equivalence classes this literal belongs to, and the new variables it contributes |
1443 |
299780 |
std::vector< int > eqcs; |
1444 |
299780 |
std::vector< Node > lit_new_args; |
1445 |
|
//for each variable in literal |
1446 |
497290 |
for( unsigned j=0; j<lit_args.size(); j++) { |
1447 |
|
//see if the variable has already been found |
1448 |
347400 |
if (var_to_eqc.find(lit_args[j])!=var_to_eqc.end()) { |
1449 |
230642 |
int eqc = var_to_eqc[lit_args[j]]; |
1450 |
230642 |
if (std::find(eqcs.begin(), eqcs.end(), eqc)==eqcs.end()) { |
1451 |
102864 |
eqcs.push_back(eqc); |
1452 |
|
} |
1453 |
|
}else{ |
1454 |
116758 |
var_found_count++; |
1455 |
116758 |
lit_new_args.push_back(lit_args[j]); |
1456 |
|
} |
1457 |
|
} |
1458 |
149890 |
if (eqcs.empty()) { |
1459 |
53703 |
eqcs.push_back(eqc_count); |
1460 |
53703 |
eqc_count++; |
1461 |
53703 |
eqc_active++; |
1462 |
|
} |
1463 |
|
|
1464 |
149890 |
int eqcz = eqcs[0]; |
1465 |
|
//merge equivalence classes with eqcz |
1466 |
156567 |
for (unsigned j=1; j<eqcs.size(); j++) { |
1467 |
6677 |
int eqc = eqcs[j]; |
1468 |
|
//move all variables from equivalence class |
1469 |
31786 |
for (unsigned k=0; k<eqc_to_var[eqc].size(); k++) { |
1470 |
50218 |
Node v = eqc_to_var[eqc][k]; |
1471 |
25109 |
var_to_eqc[v] = eqcz; |
1472 |
25109 |
eqc_to_var[eqcz].push_back(v); |
1473 |
|
} |
1474 |
6677 |
eqc_to_var.erase(eqc); |
1475 |
|
//move all literals from equivalence class |
1476 |
30478 |
for (unsigned k=0; k<eqc_to_lit[eqc].size(); k++) { |
1477 |
47602 |
Node l = eqc_to_lit[eqc][k]; |
1478 |
23801 |
eqc_to_lit[eqcz].push_back(l); |
1479 |
|
} |
1480 |
6677 |
eqc_to_lit.erase(eqc); |
1481 |
6677 |
eqc_active--; |
1482 |
|
} |
1483 |
|
//add variables to equivalence class |
1484 |
266648 |
for (unsigned j=0; j<lit_new_args.size(); j++) { |
1485 |
116758 |
var_to_eqc[lit_new_args[j]] = eqcz; |
1486 |
116758 |
eqc_to_var[eqcz].push_back(lit_new_args[j]); |
1487 |
|
} |
1488 |
|
//add literal to equivalence class |
1489 |
149890 |
eqc_to_lit[eqcz].push_back(n); |
1490 |
|
} |
1491 |
|
} |
1492 |
46751 |
if ( eqc_active>1 || !lits.empty() || var_to_eqc.size()!=args.size() ){ |
1493 |
625 |
NodeManager* nm = NodeManager::currentNM(); |
1494 |
625 |
Trace("clause-split-debug") << "Split quantified formula with body " << body << std::endl; |
1495 |
625 |
Trace("clause-split-debug") << " Ground literals: " << std::endl; |
1496 |
2266 |
for( size_t i=0; i<lits.size(); i++) { |
1497 |
1641 |
Trace("clause-split-debug") << " " << lits[i] << std::endl; |
1498 |
|
} |
1499 |
625 |
Trace("clause-split-debug") << std::endl; |
1500 |
625 |
Trace("clause-split-debug") << "Equivalence classes: " << std::endl; |
1501 |
1525 |
for (std::map< int, std::vector< Node > >::iterator it = eqc_to_lit.begin(); it != eqc_to_lit.end(); ++it ){ |
1502 |
900 |
Trace("clause-split-debug") << " Literals: " << std::endl; |
1503 |
4252 |
for (size_t i=0; i<it->second.size(); i++) { |
1504 |
3352 |
Trace("clause-split-debug") << " " << it->second[i] << std::endl; |
1505 |
|
} |
1506 |
900 |
int eqc = it->first; |
1507 |
900 |
Trace("clause-split-debug") << " Variables: " << std::endl; |
1508 |
3833 |
for (size_t i=0; i<eqc_to_var[eqc].size(); i++) { |
1509 |
2933 |
Trace("clause-split-debug") << " " << eqc_to_var[eqc][i] << std::endl; |
1510 |
|
} |
1511 |
900 |
Trace("clause-split-debug") << std::endl; |
1512 |
1800 |
Node bvl = NodeManager::currentNM()->mkNode( BOUND_VAR_LIST, eqc_to_var[eqc]); |
1513 |
|
Node bd = |
1514 |
1800 |
it->second.size() == 1 ? it->second[0] : nm->mkNode(OR, it->second); |
1515 |
1800 |
Node fa = nm->mkNode(FORALL, bvl, bd); |
1516 |
900 |
lits.push_back(fa); |
1517 |
|
} |
1518 |
625 |
Assert(!lits.empty()); |
1519 |
1250 |
Node nf = lits.size()==1 ? lits[0] : NodeManager::currentNM()->mkNode(OR,lits); |
1520 |
625 |
Trace("clause-split-debug") << "Made node : " << nf << std::endl; |
1521 |
625 |
return nf; |
1522 |
|
}else{ |
1523 |
46126 |
return mkForAll( args, body, qa ); |
1524 |
|
} |
1525 |
|
} |
1526 |
|
|
1527 |
115003 |
Node QuantifiersRewriter::mkForAll(const std::vector<Node>& args, |
1528 |
|
Node body, |
1529 |
|
QAttributes& qa) |
1530 |
|
{ |
1531 |
115003 |
if (args.empty()) |
1532 |
|
{ |
1533 |
224 |
return body; |
1534 |
|
} |
1535 |
114779 |
NodeManager* nm = NodeManager::currentNM(); |
1536 |
229558 |
std::vector<Node> children; |
1537 |
114779 |
children.push_back(nm->mkNode(kind::BOUND_VAR_LIST, args)); |
1538 |
114779 |
children.push_back(body); |
1539 |
114779 |
if (!qa.d_ipl.isNull()) |
1540 |
|
{ |
1541 |
14670 |
children.push_back(qa.d_ipl); |
1542 |
|
} |
1543 |
114779 |
return nm->mkNode(kind::FORALL, children); |
1544 |
|
} |
1545 |
|
|
1546 |
|
Node QuantifiersRewriter::mkForall(const std::vector<Node>& args, |
1547 |
|
Node body, |
1548 |
|
bool marked) |
1549 |
|
{ |
1550 |
|
std::vector< Node > iplc; |
1551 |
|
return mkForall( args, body, iplc, marked ); |
1552 |
|
} |
1553 |
|
|
1554 |
|
Node QuantifiersRewriter::mkForall(const std::vector<Node>& args, |
1555 |
|
Node body, |
1556 |
|
std::vector<Node>& iplc, |
1557 |
|
bool marked) |
1558 |
|
{ |
1559 |
|
if (args.empty()) |
1560 |
|
{ |
1561 |
|
return body; |
1562 |
|
} |
1563 |
|
NodeManager* nm = NodeManager::currentNM(); |
1564 |
|
std::vector<Node> children; |
1565 |
|
children.push_back(nm->mkNode(kind::BOUND_VAR_LIST, args)); |
1566 |
|
children.push_back(body); |
1567 |
|
if (marked) |
1568 |
|
{ |
1569 |
|
SkolemManager* sm = nm->getSkolemManager(); |
1570 |
|
Node avar = sm->mkDummySkolem("id", nm->booleanType()); |
1571 |
|
QuantIdNumAttribute ida; |
1572 |
|
avar.setAttribute(ida, 0); |
1573 |
|
iplc.push_back(nm->mkNode(kind::INST_ATTRIBUTE, avar)); |
1574 |
|
} |
1575 |
|
if (!iplc.empty()) |
1576 |
|
{ |
1577 |
|
children.push_back(nm->mkNode(kind::INST_PATTERN_LIST, iplc)); |
1578 |
|
} |
1579 |
|
return nm->mkNode(kind::FORALL, children); |
1580 |
|
} |
1581 |
|
|
1582 |
|
//computes miniscoping, also eliminates variables that do not occur free in body |
1583 |
116383 |
Node QuantifiersRewriter::computeMiniscoping(Node q, QAttributes& qa) const |
1584 |
|
{ |
1585 |
116383 |
NodeManager* nm = NodeManager::currentNM(); |
1586 |
232766 |
std::vector<Node> args(q[0].begin(), q[0].end()); |
1587 |
232766 |
Node body = q[1]; |
1588 |
116383 |
if( body.getKind()==FORALL ){ |
1589 |
|
//combine prenex |
1590 |
32 |
std::vector< Node > newArgs; |
1591 |
16 |
newArgs.insert(newArgs.end(), q[0].begin(), q[0].end()); |
1592 |
33 |
for( unsigned i=0; i<body[0].getNumChildren(); i++ ){ |
1593 |
17 |
newArgs.push_back( body[0][i] ); |
1594 |
|
} |
1595 |
16 |
return mkForAll( newArgs, body[1], qa ); |
1596 |
116367 |
}else if( body.getKind()==AND ){ |
1597 |
|
// aggressive miniscoping implies that structural miniscoping should |
1598 |
|
// be applied first |
1599 |
1595 |
if (d_opts.quantifiers.miniscopeQuant |
1600 |
828 |
|| d_opts.quantifiers.aggressiveMiniscopeQuant) |
1601 |
|
{ |
1602 |
769 |
BoundVarManager* bvm = nm->getBoundVarManager(); |
1603 |
|
// Break apart the quantifed formula |
1604 |
|
// forall x. P1 ^ ... ^ Pn ---> forall x. P1 ^ ... ^ forall x. Pn |
1605 |
1538 |
NodeBuilder t(kind::AND); |
1606 |
1538 |
std::vector<Node> argsc; |
1607 |
4074 |
for (size_t i = 0, nchild = body.getNumChildren(); i < nchild; i++) |
1608 |
|
{ |
1609 |
3305 |
if (argsc.empty()) |
1610 |
|
{ |
1611 |
|
// If not done so, we must create fresh copy of args. This is to |
1612 |
|
// ensure that quantified formulas do not reuse variables. |
1613 |
7332 |
for (const Node& v : q[0]) |
1614 |
|
{ |
1615 |
10922 |
TypeNode vt = v.getType(); |
1616 |
10922 |
Node cacheVal = BoundVarManager::getCacheValue(q, v, i); |
1617 |
10922 |
Node vv = bvm->mkBoundVar<QRewMiniscopeAttribute>(cacheVal, vt); |
1618 |
5461 |
argsc.push_back(vv); |
1619 |
|
} |
1620 |
|
} |
1621 |
6610 |
Node b = body[i]; |
1622 |
|
Node bodyc = |
1623 |
6610 |
b.substitute(args.begin(), args.end(), argsc.begin(), argsc.end()); |
1624 |
3305 |
if (b == bodyc) |
1625 |
|
{ |
1626 |
|
// Did not contain variables in args, thus it is ground. Since we did |
1627 |
|
// not use them, we keep the variables argsc for the next child. |
1628 |
1468 |
t << b; |
1629 |
|
} |
1630 |
|
else |
1631 |
|
{ |
1632 |
|
// make the miniscoped quantified formula |
1633 |
3674 |
Node cbvl = nm->mkNode(BOUND_VAR_LIST, argsc); |
1634 |
3674 |
Node qq = nm->mkNode(FORALL, cbvl, bodyc); |
1635 |
1837 |
t << qq; |
1636 |
|
// We used argsc, clear so we will construct a fresh copy above. |
1637 |
1837 |
argsc.clear(); |
1638 |
|
} |
1639 |
|
} |
1640 |
1538 |
Node retVal = t; |
1641 |
769 |
return retVal; |
1642 |
|
} |
1643 |
114772 |
}else if( body.getKind()==OR ){ |
1644 |
47979 |
if (d_opts.quantifiers.quantSplit) |
1645 |
|
{ |
1646 |
|
//splitting subsumes free variable miniscoping, apply it with higher priority |
1647 |
46751 |
return computeSplit( args, body, qa ); |
1648 |
|
} |
1649 |
1228 |
else if (d_opts.quantifiers.miniscopeQuantFreeVar |
1650 |
1228 |
|| d_opts.quantifiers.aggressiveMiniscopeQuant) |
1651 |
|
{ |
1652 |
|
// aggressive miniscoping implies that free variable miniscoping should |
1653 |
|
// be applied first |
1654 |
4 |
Node newBody = body; |
1655 |
4 |
NodeBuilder body_split(kind::OR); |
1656 |
4 |
NodeBuilder tb(kind::OR); |
1657 |
12 |
for (const Node& trm : body) |
1658 |
|
{ |
1659 |
8 |
if (expr::hasSubterm(trm, args)) |
1660 |
|
{ |
1661 |
4 |
tb << trm; |
1662 |
|
}else{ |
1663 |
4 |
body_split << trm; |
1664 |
|
} |
1665 |
|
} |
1666 |
4 |
if( tb.getNumChildren()==0 ){ |
1667 |
|
return body_split; |
1668 |
4 |
}else if( body_split.getNumChildren()>0 ){ |
1669 |
4 |
newBody = tb.getNumChildren()==1 ? tb.getChild( 0 ) : tb; |
1670 |
8 |
std::vector< Node > activeArgs; |
1671 |
4 |
computeArgVec2( args, activeArgs, newBody, qa.d_ipl ); |
1672 |
4 |
body_split << mkForAll( activeArgs, newBody, qa ); |
1673 |
4 |
return body_split.getNumChildren()==1 ? body_split.getChild( 0 ) : body_split; |
1674 |
|
} |
1675 |
|
} |
1676 |
66793 |
}else if( body.getKind()==NOT ){ |
1677 |
15000 |
Assert(isLiteral(body[0])); |
1678 |
|
} |
1679 |
|
//remove variables that don't occur |
1680 |
137686 |
std::vector< Node > activeArgs; |
1681 |
68843 |
computeArgVec2( args, activeArgs, body, qa.d_ipl ); |
1682 |
68843 |
return mkForAll( activeArgs, body, qa ); |
1683 |
|
} |
1684 |
|
|
1685 |
14 |
Node QuantifiersRewriter::computeAggressiveMiniscoping(std::vector<Node>& args, |
1686 |
|
Node body) const |
1687 |
|
{ |
1688 |
28 |
std::map<Node, std::vector<Node> > varLits; |
1689 |
28 |
std::map<Node, std::vector<Node> > litVars; |
1690 |
14 |
if (body.getKind() == OR) { |
1691 |
|
Trace("ag-miniscope") << "compute aggressive miniscoping on " << body << std::endl; |
1692 |
|
for (size_t i = 0; i < body.getNumChildren(); i++) { |
1693 |
|
std::vector<Node> activeArgs; |
1694 |
|
computeArgVec(args, activeArgs, body[i]); |
1695 |
|
for (unsigned j = 0; j < activeArgs.size(); j++) { |
1696 |
|
varLits[activeArgs[j]].push_back(body[i]); |
1697 |
|
} |
1698 |
|
std::vector<Node>& lit_body_i = litVars[body[i]]; |
1699 |
|
std::vector<Node>::iterator lit_body_i_begin = lit_body_i.begin(); |
1700 |
|
std::vector<Node>::const_iterator active_begin = activeArgs.begin(); |
1701 |
|
std::vector<Node>::const_iterator active_end = activeArgs.end(); |
1702 |
|
lit_body_i.insert(lit_body_i_begin, active_begin, active_end); |
1703 |
|
} |
1704 |
|
//find the variable in the least number of literals |
1705 |
|
Node bestVar; |
1706 |
|
for( std::map< Node, std::vector<Node> >::iterator it = varLits.begin(); it != varLits.end(); ++it ){ |
1707 |
|
if( bestVar.isNull() || varLits[bestVar].size()>it->second.size() ){ |
1708 |
|
bestVar = it->first; |
1709 |
|
} |
1710 |
|
} |
1711 |
|
Trace("ag-miniscope-debug") << "Best variable " << bestVar << " occurs in " << varLits[bestVar].size() << "/ " << body.getNumChildren() << " literals." << std::endl; |
1712 |
|
if( !bestVar.isNull() && varLits[bestVar].size()<body.getNumChildren() ){ |
1713 |
|
//we can miniscope |
1714 |
|
Trace("ag-miniscope") << "Miniscope on " << bestVar << std::endl; |
1715 |
|
//make the bodies |
1716 |
|
std::vector<Node> qlit1; |
1717 |
|
qlit1.insert( qlit1.begin(), varLits[bestVar].begin(), varLits[bestVar].end() ); |
1718 |
|
std::vector<Node> qlitt; |
1719 |
|
//for all literals not containing bestVar |
1720 |
|
for( size_t i=0; i<body.getNumChildren(); i++ ){ |
1721 |
|
if( std::find( qlit1.begin(), qlit1.end(), body[i] )==qlit1.end() ){ |
1722 |
|
qlitt.push_back( body[i] ); |
1723 |
|
} |
1724 |
|
} |
1725 |
|
//make the variable lists |
1726 |
|
std::vector<Node> qvl1; |
1727 |
|
std::vector<Node> qvl2; |
1728 |
|
std::vector<Node> qvsh; |
1729 |
|
for( unsigned i=0; i<args.size(); i++ ){ |
1730 |
|
bool found1 = false; |
1731 |
|
bool found2 = false; |
1732 |
|
for( size_t j=0; j<varLits[args[i]].size(); j++ ){ |
1733 |
|
if( !found1 && std::find( qlit1.begin(), qlit1.end(), varLits[args[i]][j] )!=qlit1.end() ){ |
1734 |
|
found1 = true; |
1735 |
|
}else if( !found2 && std::find( qlitt.begin(), qlitt.end(), varLits[args[i]][j] )!=qlitt.end() ){ |
1736 |
|
found2 = true; |
1737 |
|
} |
1738 |
|
if( found1 && found2 ){ |
1739 |
|
break; |
1740 |
|
} |
1741 |
|
} |
1742 |
|
if( found1 ){ |
1743 |
|
if( found2 ){ |
1744 |
|
qvsh.push_back( args[i] ); |
1745 |
|
}else{ |
1746 |
|
qvl1.push_back( args[i] ); |
1747 |
|
} |
1748 |
|
}else{ |
1749 |
|
Assert(found2); |
1750 |
|
qvl2.push_back( args[i] ); |
1751 |
|
} |
1752 |
|
} |
1753 |
|
Assert(!qvl1.empty()); |
1754 |
|
//check for literals that only contain shared variables |
1755 |
|
std::vector<Node> qlitsh; |
1756 |
|
std::vector<Node> qlit2; |
1757 |
|
for( size_t i=0; i<qlitt.size(); i++ ){ |
1758 |
|
bool hasVar2 = false; |
1759 |
|
for( size_t j=0; j<litVars[qlitt[i]].size(); j++ ){ |
1760 |
|
if( std::find( qvl2.begin(), qvl2.end(), litVars[qlitt[i]][j] )!=qvl2.end() ){ |
1761 |
|
hasVar2 = true; |
1762 |
|
break; |
1763 |
|
} |
1764 |
|
} |
1765 |
|
if( hasVar2 ){ |
1766 |
|
qlit2.push_back( qlitt[i] ); |
1767 |
|
}else{ |
1768 |
|
qlitsh.push_back( qlitt[i] ); |
1769 |
|
} |
1770 |
|
} |
1771 |
|
varLits.clear(); |
1772 |
|
litVars.clear(); |
1773 |
|
Trace("ag-miniscope-debug") << "Split into literals : " << qlit1.size() << " / " << qlit2.size() << " / " << qlitsh.size(); |
1774 |
|
Trace("ag-miniscope-debug") << ", variables : " << qvl1.size() << " / " << qvl2.size() << " / " << qvsh.size() << std::endl; |
1775 |
|
Node n1 = qlit1.size()==1 ? qlit1[0] : NodeManager::currentNM()->mkNode( OR, qlit1 ); |
1776 |
|
n1 = computeAggressiveMiniscoping( qvl1, n1 ); |
1777 |
|
qlitsh.push_back( n1 ); |
1778 |
|
if( !qlit2.empty() ){ |
1779 |
|
Node n2 = qlit2.size()==1 ? qlit2[0] : NodeManager::currentNM()->mkNode( OR, qlit2 ); |
1780 |
|
n2 = computeAggressiveMiniscoping( qvl2, n2 ); |
1781 |
|
qlitsh.push_back( n2 ); |
1782 |
|
} |
1783 |
|
Node n = NodeManager::currentNM()->mkNode( OR, qlitsh ); |
1784 |
|
if( !qvsh.empty() ){ |
1785 |
|
Node bvl = NodeManager::currentNM()->mkNode(kind::BOUND_VAR_LIST, qvsh); |
1786 |
|
n = NodeManager::currentNM()->mkNode( FORALL, bvl, n ); |
1787 |
|
} |
1788 |
|
Trace("ag-miniscope") << "Return " << n << " for " << body << std::endl; |
1789 |
|
return n; |
1790 |
|
} |
1791 |
|
} |
1792 |
28 |
QAttributes qa; |
1793 |
14 |
return mkForAll( args, body, qa ); |
1794 |
|
} |
1795 |
|
|
1796 |
953672 |
bool QuantifiersRewriter::doOperation(Node q, |
1797 |
|
RewriteStep computeOption, |
1798 |
|
QAttributes& qa) const |
1799 |
|
{ |
1800 |
953672 |
bool is_strict_trigger = |
1801 |
953672 |
qa.d_hasPattern |
1802 |
953672 |
&& d_opts.quantifiers.userPatternsQuant == options::UserPatMode::STRICT; |
1803 |
953672 |
bool is_std = qa.isStandard() && !is_strict_trigger; |
1804 |
953672 |
if (computeOption == COMPUTE_ELIM_SYMBOLS) |
1805 |
|
{ |
1806 |
132765 |
return true; |
1807 |
|
} |
1808 |
820907 |
else if (computeOption == COMPUTE_MINISCOPING) |
1809 |
|
{ |
1810 |
119575 |
return is_std; |
1811 |
|
} |
1812 |
701332 |
else if (computeOption == COMPUTE_AGGRESSIVE_MINISCOPING) |
1813 |
|
{ |
1814 |
117760 |
return d_opts.quantifiers.aggressiveMiniscopeQuant && is_std; |
1815 |
|
} |
1816 |
583572 |
else if (computeOption == COMPUTE_EXT_REWRITE) |
1817 |
|
{ |
1818 |
117760 |
return d_opts.quantifiers.extRewriteQuant; |
1819 |
|
} |
1820 |
465812 |
else if (computeOption == COMPUTE_PROCESS_TERMS) |
1821 |
|
{ |
1822 |
|
return is_std |
1823 |
117748 |
&& d_opts.quantifiers.iteLiftQuant |
1824 |
117748 |
!= options::IteLiftQuantMode::NONE; |
1825 |
|
} |
1826 |
348064 |
else if (computeOption == COMPUTE_COND_SPLIT) |
1827 |
|
{ |
1828 |
114399 |
return (d_opts.quantifiers.iteDtTesterSplitQuant |
1829 |
114041 |
|| d_opts.quantifiers.condVarSplitQuant) |
1830 |
228798 |
&& !is_strict_trigger; |
1831 |
|
} |
1832 |
233665 |
else if (computeOption == COMPUTE_PRENEX) |
1833 |
|
{ |
1834 |
117313 |
return d_opts.quantifiers.prenexQuant != options::PrenexQuantMode::NONE |
1835 |
117313 |
&& !d_opts.quantifiers.aggressiveMiniscopeQuant && is_std; |
1836 |
|
} |
1837 |
116352 |
else if (computeOption == COMPUTE_VAR_ELIMINATION) |
1838 |
|
{ |
1839 |
116352 |
return (d_opts.quantifiers.varElimQuant |
1840 |
|
|| d_opts.quantifiers.dtVarExpandQuant) |
1841 |
232704 |
&& is_std; |
1842 |
|
} |
1843 |
|
else |
1844 |
|
{ |
1845 |
|
return false; |
1846 |
|
} |
1847 |
|
} |
1848 |
|
|
1849 |
|
//general method for computing various rewrites |
1850 |
704674 |
Node QuantifiersRewriter::computeOperation(Node f, |
1851 |
|
RewriteStep computeOption, |
1852 |
|
QAttributes& qa) const |
1853 |
|
{ |
1854 |
704674 |
Trace("quantifiers-rewrite-debug") << "Compute operation " << computeOption << " on " << f << " " << qa.d_qid_num << std::endl; |
1855 |
704674 |
if (computeOption == COMPUTE_MINISCOPING) |
1856 |
|
{ |
1857 |
116383 |
if (d_opts.quantifiers.prenexQuant == options::PrenexQuantMode::NORMAL) |
1858 |
|
{ |
1859 |
|
if( !qa.d_qid_num.isNull() ){ |
1860 |
|
//already processed this, return self |
1861 |
|
return f; |
1862 |
|
} |
1863 |
|
} |
1864 |
|
//return directly |
1865 |
116383 |
return computeMiniscoping(f, qa); |
1866 |
|
} |
1867 |
1176582 |
std::vector<Node> args(f[0].begin(), f[0].end()); |
1868 |
1176582 |
Node n = f[1]; |
1869 |
588291 |
if (computeOption == COMPUTE_ELIM_SYMBOLS) |
1870 |
|
{ |
1871 |
132765 |
n = computeElimSymbols(n); |
1872 |
455526 |
}else if( computeOption==COMPUTE_AGGRESSIVE_MINISCOPING ){ |
1873 |
14 |
return computeAggressiveMiniscoping( args, n ); |
1874 |
|
} |
1875 |
455512 |
else if (computeOption == COMPUTE_EXT_REWRITE) |
1876 |
|
{ |
1877 |
25 |
return computeExtendedRewrite(f); |
1878 |
|
} |
1879 |
455487 |
else if (computeOption == COMPUTE_PROCESS_TERMS) |
1880 |
|
{ |
1881 |
229112 |
std::vector< Node > new_conds; |
1882 |
114556 |
n = computeProcessTerms( n, args, new_conds, f, qa ); |
1883 |
114556 |
if( !new_conds.empty() ){ |
1884 |
|
new_conds.push_back( n ); |
1885 |
|
n = NodeManager::currentNM()->mkNode( OR, new_conds ); |
1886 |
|
} |
1887 |
|
} |
1888 |
340931 |
else if (computeOption == COMPUTE_COND_SPLIT) |
1889 |
|
{ |
1890 |
114399 |
n = computeCondSplit(n, args, qa); |
1891 |
|
} |
1892 |
226532 |
else if (computeOption == COMPUTE_PRENEX) |
1893 |
|
{ |
1894 |
113372 |
if (d_opts.quantifiers.prenexQuant == options::PrenexQuantMode::NORMAL) |
1895 |
|
{ |
1896 |
|
//will rewrite at preprocess time |
1897 |
|
return f; |
1898 |
|
} |
1899 |
|
else |
1900 |
|
{ |
1901 |
226744 |
std::unordered_set<Node> argsSet, nargsSet; |
1902 |
113372 |
n = computePrenex(f, n, argsSet, nargsSet, true, false); |
1903 |
113372 |
Assert(nargsSet.empty()); |
1904 |
113372 |
args.insert(args.end(), argsSet.begin(), argsSet.end()); |
1905 |
|
} |
1906 |
|
} |
1907 |
113160 |
else if (computeOption == COMPUTE_VAR_ELIMINATION) |
1908 |
|
{ |
1909 |
113160 |
n = computeVarElimination( n, args, qa ); |
1910 |
|
} |
1911 |
588252 |
Trace("quantifiers-rewrite-debug") << "Compute Operation: return " << n << ", " << args.size() << std::endl; |
1912 |
588252 |
if( f[1]==n && args.size()==f[0].getNumChildren() ){ |
1913 |
571542 |
return f; |
1914 |
|
}else{ |
1915 |
16710 |
if( args.empty() ){ |
1916 |
760 |
return n; |
1917 |
|
}else{ |
1918 |
31900 |
std::vector< Node > children; |
1919 |
15950 |
children.push_back( NodeManager::currentNM()->mkNode(kind::BOUND_VAR_LIST, args ) ); |
1920 |
15950 |
children.push_back( n ); |
1921 |
15950 |
if( !qa.d_ipl.isNull() && args.size()==f[0].getNumChildren() ){ |
1922 |
2372 |
children.push_back( qa.d_ipl ); |
1923 |
|
} |
1924 |
15950 |
return NodeManager::currentNM()->mkNode(kind::FORALL, children ); |
1925 |
|
} |
1926 |
|
} |
1927 |
|
} |
1928 |
|
|
1929 |
|
bool QuantifiersRewriter::isPrenexNormalForm( Node n ) { |
1930 |
|
if( n.getKind()==FORALL ){ |
1931 |
|
return n[1].getKind()!=FORALL && isPrenexNormalForm( n[1] ); |
1932 |
|
}else if( n.getKind()==NOT ){ |
1933 |
|
return n[0].getKind()!=NOT && isPrenexNormalForm( n[0] ); |
1934 |
|
}else{ |
1935 |
|
return !expr::hasClosure(n); |
1936 |
|
} |
1937 |
|
} |
1938 |
|
|
1939 |
|
} // namespace quantifiers |
1940 |
|
} // namespace theory |
1941 |
29589 |
} // namespace cvc5 |