1 |
|
/****************************************************************************** |
2 |
|
* Top contributors (to current version): |
3 |
|
* Andrew Reynolds, Mudathir Mohamed, Paul Meng |
4 |
|
* |
5 |
|
* This file is part of the cvc5 project. |
6 |
|
* |
7 |
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS |
8 |
|
* in the top-level source directory and their institutional affiliations. |
9 |
|
* All rights reserved. See the file COPYING in the top-level source |
10 |
|
* directory for licensing information. |
11 |
|
* **************************************************************************** |
12 |
|
* |
13 |
|
* Implementation of sets state object. |
14 |
|
*/ |
15 |
|
|
16 |
|
#include "theory/sets/solver_state.h" |
17 |
|
|
18 |
|
#include "expr/emptyset.h" |
19 |
|
#include "options/sets_options.h" |
20 |
|
#include "theory/sets/theory_sets_private.h" |
21 |
|
|
22 |
|
using namespace std; |
23 |
|
using namespace cvc5::kind; |
24 |
|
|
25 |
|
namespace cvc5 { |
26 |
|
namespace theory { |
27 |
|
namespace sets { |
28 |
|
|
29 |
6271 |
SolverState::SolverState(Env& env, Valuation val, SkolemCache& skc) |
30 |
6271 |
: TheoryState(env, val), d_skCache(skc), d_members(env.getContext()) |
31 |
|
{ |
32 |
6271 |
d_true = NodeManager::currentNM()->mkConst(true); |
33 |
6271 |
d_false = NodeManager::currentNM()->mkConst(false); |
34 |
6271 |
} |
35 |
|
|
36 |
22741 |
void SolverState::reset() |
37 |
|
{ |
38 |
22741 |
d_set_eqc.clear(); |
39 |
22741 |
d_eqc_emptyset.clear(); |
40 |
22741 |
d_eqc_univset.clear(); |
41 |
22741 |
d_eqc_singleton.clear(); |
42 |
22741 |
d_congruent.clear(); |
43 |
22741 |
d_nvar_sets.clear(); |
44 |
22741 |
d_var_set.clear(); |
45 |
22741 |
d_compSets.clear(); |
46 |
22741 |
d_pol_mems[0].clear(); |
47 |
22741 |
d_pol_mems[1].clear(); |
48 |
22741 |
d_members_index.clear(); |
49 |
22741 |
d_singleton_index.clear(); |
50 |
22741 |
d_bop_index.clear(); |
51 |
22741 |
d_op_list.clear(); |
52 |
22741 |
d_allCompSets.clear(); |
53 |
22741 |
} |
54 |
|
|
55 |
86919 |
void SolverState::registerEqc(TypeNode tn, Node r) |
56 |
|
{ |
57 |
86919 |
if (tn.isSet()) |
58 |
|
{ |
59 |
28427 |
d_set_eqc.push_back(r); |
60 |
|
} |
61 |
86919 |
} |
62 |
|
|
63 |
257011 |
void SolverState::registerTerm(Node r, TypeNode tnn, Node n) |
64 |
|
{ |
65 |
257011 |
Kind nk = n.getKind(); |
66 |
257011 |
if (nk == MEMBER) |
67 |
|
{ |
68 |
54033 |
if (r.isConst()) |
69 |
|
{ |
70 |
101480 |
Node s = d_ee->getRepresentative(n[1]); |
71 |
101480 |
Node x = d_ee->getRepresentative(n[0]); |
72 |
50740 |
int pindex = r == d_true ? 0 : (r == d_false ? 1 : -1); |
73 |
50740 |
if (pindex != -1) |
74 |
|
{ |
75 |
50740 |
if (d_pol_mems[pindex][s].find(x) == d_pol_mems[pindex][s].end()) |
76 |
|
{ |
77 |
38642 |
d_pol_mems[pindex][s][x] = n; |
78 |
77284 |
Trace("sets-debug2") << "Membership[" << x << "][" << s << "] : " << n |
79 |
38642 |
<< ", pindex = " << pindex << std::endl; |
80 |
|
} |
81 |
50740 |
if (d_members_index[s].find(x) == d_members_index[s].end()) |
82 |
|
{ |
83 |
38642 |
d_members_index[s][x] = n; |
84 |
38642 |
d_op_list[MEMBER].push_back(n); |
85 |
|
} |
86 |
|
} |
87 |
|
else |
88 |
|
{ |
89 |
|
Assert(false); |
90 |
|
} |
91 |
|
} |
92 |
|
} |
93 |
202978 |
else if (nk == SINGLETON || nk == UNION || nk == INTERSECTION |
94 |
184712 |
|| nk == SETMINUS || nk == EMPTYSET || nk == UNIVERSE_SET) |
95 |
|
{ |
96 |
30092 |
if (nk == SINGLETON) |
97 |
|
{ |
98 |
8840 |
Node re = d_ee->getRepresentative(n[0]); |
99 |
4420 |
if (d_singleton_index.find(re) == d_singleton_index.end()) |
100 |
|
{ |
101 |
3900 |
d_singleton_index[re] = n; |
102 |
3900 |
d_eqc_singleton[r] = n; |
103 |
3900 |
d_op_list[SINGLETON].push_back(n); |
104 |
|
} |
105 |
|
else |
106 |
|
{ |
107 |
520 |
d_congruent[n] = d_singleton_index[re]; |
108 |
|
} |
109 |
|
} |
110 |
25672 |
else if (nk == EMPTYSET) |
111 |
|
{ |
112 |
2021 |
d_eqc_emptyset[tnn] = r; |
113 |
|
} |
114 |
23651 |
else if (nk == UNIVERSE_SET) |
115 |
|
{ |
116 |
1113 |
Assert(options::setsExt()); |
117 |
1113 |
d_eqc_univset[tnn] = r; |
118 |
|
} |
119 |
|
else |
120 |
|
{ |
121 |
45076 |
Node r1 = d_ee->getRepresentative(n[0]); |
122 |
45076 |
Node r2 = d_ee->getRepresentative(n[1]); |
123 |
22538 |
std::map<Node, Node>& binr1 = d_bop_index[nk][r1]; |
124 |
22538 |
std::map<Node, Node>::iterator itb = binr1.find(r2); |
125 |
22538 |
if (itb == binr1.end()) |
126 |
|
{ |
127 |
21388 |
binr1[r2] = n; |
128 |
21388 |
d_op_list[nk].push_back(n); |
129 |
|
} |
130 |
|
else |
131 |
|
{ |
132 |
1150 |
d_congruent[n] = itb->second; |
133 |
|
} |
134 |
|
} |
135 |
30092 |
d_nvar_sets[r].push_back(n); |
136 |
30092 |
Trace("sets-debug2") << "Non-var-set[" << r << "] : " << n << std::endl; |
137 |
|
} |
138 |
172886 |
else if (nk == COMPREHENSION) |
139 |
|
{ |
140 |
44 |
d_compSets[r].push_back(n); |
141 |
44 |
d_allCompSets.push_back(n); |
142 |
44 |
Trace("sets-debug2") << "Comp-set[" << r << "] : " << n << std::endl; |
143 |
|
} |
144 |
172842 |
else if (n.isVar() && !d_skCache.isSkolem(n)) |
145 |
|
{ |
146 |
|
// it is important that we check it is a variable, but not an internally |
147 |
|
// introduced skolem, due to the semantics of the universe set. |
148 |
17492 |
if (tnn.isSet()) |
149 |
|
{ |
150 |
13102 |
if (d_var_set.find(r) == d_var_set.end()) |
151 |
|
{ |
152 |
12247 |
d_var_set[r] = n; |
153 |
12247 |
Trace("sets-debug2") << "var-set[" << r << "] : " << n << std::endl; |
154 |
|
} |
155 |
|
} |
156 |
|
} |
157 |
|
else |
158 |
|
{ |
159 |
155350 |
Trace("sets-debug2") << "Unknown-set[" << r << "] : " << n << std::endl; |
160 |
|
} |
161 |
257011 |
} |
162 |
|
|
163 |
28107 |
void SolverState::addEqualityToExp(Node a, Node b, std::vector<Node>& exp) const |
164 |
|
{ |
165 |
28107 |
if (a != b) |
166 |
|
{ |
167 |
9966 |
Assert(areEqual(a, b)); |
168 |
9966 |
exp.push_back(a.eqNode(b)); |
169 |
|
} |
170 |
28107 |
} |
171 |
|
|
172 |
8318 |
Node SolverState::getEmptySetEqClass(TypeNode tn) const |
173 |
|
{ |
174 |
8318 |
std::map<TypeNode, Node>::const_iterator it = d_eqc_emptyset.find(tn); |
175 |
8318 |
if (it != d_eqc_emptyset.end()) |
176 |
|
{ |
177 |
7376 |
return it->second; |
178 |
|
} |
179 |
942 |
return Node::null(); |
180 |
|
} |
181 |
|
|
182 |
2326 |
Node SolverState::getUnivSetEqClass(TypeNode tn) const |
183 |
|
{ |
184 |
2326 |
std::map<TypeNode, Node>::const_iterator it = d_eqc_univset.find(tn); |
185 |
2326 |
if (it != d_eqc_univset.end()) |
186 |
|
{ |
187 |
1795 |
return it->second; |
188 |
|
} |
189 |
531 |
return Node::null(); |
190 |
|
} |
191 |
|
|
192 |
3991 |
Node SolverState::getSingletonEqClass(Node r) const |
193 |
|
{ |
194 |
3991 |
std::map<Node, Node>::const_iterator it = d_eqc_singleton.find(r); |
195 |
3991 |
if (it != d_eqc_singleton.end()) |
196 |
|
{ |
197 |
1 |
return it->second; |
198 |
|
} |
199 |
3990 |
return Node::null(); |
200 |
|
} |
201 |
|
|
202 |
127 |
Node SolverState::getBinaryOpTerm(Kind k, Node r1, Node r2) const |
203 |
|
{ |
204 |
|
std::map<Kind, std::map<Node, std::map<Node, Node> > >::const_iterator itk = |
205 |
127 |
d_bop_index.find(k); |
206 |
127 |
if (itk == d_bop_index.end()) |
207 |
|
{ |
208 |
|
return Node::null(); |
209 |
|
} |
210 |
|
std::map<Node, std::map<Node, Node> >::const_iterator it1 = |
211 |
127 |
itk->second.find(r1); |
212 |
127 |
if (it1 == itk->second.end()) |
213 |
|
{ |
214 |
75 |
return Node::null(); |
215 |
|
} |
216 |
52 |
std::map<Node, Node>::const_iterator it2 = it1->second.find(r2); |
217 |
52 |
if (it2 == it1->second.end()) |
218 |
|
{ |
219 |
34 |
return Node::null(); |
220 |
|
} |
221 |
18 |
return it2->second; |
222 |
|
} |
223 |
|
|
224 |
75370 |
bool SolverState::isEntailed(Node n, bool polarity) const |
225 |
|
{ |
226 |
75370 |
if (n.getKind() == NOT) |
227 |
|
{ |
228 |
5912 |
return isEntailed(n[0], !polarity); |
229 |
|
} |
230 |
69458 |
else if (n.getKind() == EQUAL) |
231 |
|
{ |
232 |
4693 |
if (polarity) |
233 |
|
{ |
234 |
4427 |
return areEqual(n[0], n[1]); |
235 |
|
} |
236 |
266 |
return areDisequal(n[0], n[1]); |
237 |
|
} |
238 |
64765 |
else if (n.getKind() == MEMBER) |
239 |
|
{ |
240 |
33259 |
if (areEqual(n, polarity ? d_true : d_false)) |
241 |
|
{ |
242 |
22901 |
return true; |
243 |
|
} |
244 |
|
// check members cache |
245 |
10358 |
if (polarity && d_ee->hasTerm(n[1])) |
246 |
|
{ |
247 |
15120 |
Node r = d_ee->getRepresentative(n[1]); |
248 |
10096 |
if (isMember(n[0], r)) |
249 |
|
{ |
250 |
5072 |
return true; |
251 |
|
} |
252 |
|
} |
253 |
|
} |
254 |
31506 |
else if (n.getKind() == AND || n.getKind() == OR) |
255 |
|
{ |
256 |
16522 |
bool conj = (n.getKind() == AND) == polarity; |
257 |
38739 |
for (const Node& nc : n) |
258 |
|
{ |
259 |
29710 |
bool isEnt = isEntailed(nc, polarity); |
260 |
29710 |
if (isEnt != conj) |
261 |
|
{ |
262 |
7493 |
return !conj; |
263 |
|
} |
264 |
|
} |
265 |
9029 |
return conj; |
266 |
|
} |
267 |
14984 |
else if (n.isConst()) |
268 |
|
{ |
269 |
8289 |
return (polarity && n == d_true) || (!polarity && n == d_false); |
270 |
|
} |
271 |
11981 |
return false; |
272 |
|
} |
273 |
|
|
274 |
3081 |
bool SolverState::isSetDisequalityEntailed(Node r1, Node r2) const |
275 |
|
{ |
276 |
3081 |
Assert(d_ee->hasTerm(r1) && d_ee->getRepresentative(r1) == r1); |
277 |
3081 |
Assert(d_ee->hasTerm(r2) && d_ee->getRepresentative(r2) == r2); |
278 |
6162 |
TypeNode tn = r1.getType(); |
279 |
6162 |
Node re = getEmptySetEqClass(tn); |
280 |
4538 |
for (unsigned e = 0; e < 2; e++) |
281 |
|
{ |
282 |
5571 |
Node a = e == 0 ? r1 : r2; |
283 |
5571 |
Node b = e == 0 ? r2 : r1; |
284 |
4114 |
if (isSetDisequalityEntailedInternal(a, b, re)) |
285 |
|
{ |
286 |
2657 |
return true; |
287 |
|
} |
288 |
|
} |
289 |
424 |
return false; |
290 |
|
} |
291 |
|
|
292 |
4114 |
bool SolverState::isSetDisequalityEntailedInternal(Node a, |
293 |
|
Node b, |
294 |
|
Node re) const |
295 |
|
{ |
296 |
|
// if there are members in a |
297 |
|
std::map<Node, std::map<Node, Node> >::const_iterator itpma = |
298 |
4114 |
d_pol_mems[0].find(a); |
299 |
4114 |
if (itpma == d_pol_mems[0].end()) |
300 |
|
{ |
301 |
|
// no positive members, continue |
302 |
736 |
return false; |
303 |
|
} |
304 |
|
// if b is empty |
305 |
3378 |
if (b == re) |
306 |
|
{ |
307 |
975 |
if (!itpma->second.empty()) |
308 |
|
{ |
309 |
1950 |
Trace("sets-deq") << "Disequality is satisfied because members are in " |
310 |
975 |
<< a << " and " << b << " is empty" << std::endl; |
311 |
975 |
return true; |
312 |
|
} |
313 |
|
else |
314 |
|
{ |
315 |
|
// a should not be singleton |
316 |
|
Assert(d_eqc_singleton.find(a) == d_eqc_singleton.end()); |
317 |
|
} |
318 |
|
return false; |
319 |
|
} |
320 |
2403 |
std::map<Node, Node>::const_iterator itsb = d_eqc_singleton.find(b); |
321 |
|
std::map<Node, std::map<Node, Node> >::const_iterator itpmb = |
322 |
2403 |
d_pol_mems[1].find(b); |
323 |
4806 |
std::vector<Node> prev; |
324 |
4106 |
for (const std::pair<const Node, Node>& itm : itpma->second) |
325 |
|
{ |
326 |
|
// if b is a singleton |
327 |
3385 |
if (itsb != d_eqc_singleton.end()) |
328 |
|
{ |
329 |
1377 |
if (areDisequal(itm.first, itsb->second[0])) |
330 |
|
{ |
331 |
2106 |
Trace("sets-deq") << "Disequality is satisfied because of " |
332 |
2106 |
<< itm.second << ", singleton eq " << itsb->second[0] |
333 |
1053 |
<< std::endl; |
334 |
2735 |
return true; |
335 |
|
} |
336 |
|
// or disequal with another member |
337 |
354 |
for (const Node& p : prev) |
338 |
|
{ |
339 |
34 |
if (areDisequal(itm.first, p)) |
340 |
|
{ |
341 |
8 |
Trace("sets-deq") |
342 |
4 |
<< "Disequality is satisfied because of disequal members " |
343 |
4 |
<< itm.first << " " << p << ", singleton eq " << std::endl; |
344 |
4 |
return true; |
345 |
|
} |
346 |
|
} |
347 |
|
// if a has positive member that is negative member in b |
348 |
|
} |
349 |
2008 |
else if (itpmb != d_pol_mems[1].end()) |
350 |
|
{ |
351 |
2408 |
for (const std::pair<const Node, Node>& itnm : itpmb->second) |
352 |
|
{ |
353 |
1764 |
if (areEqual(itm.first, itnm.first)) |
354 |
|
{ |
355 |
1250 |
Trace("sets-deq") << "Disequality is satisfied because of " |
356 |
625 |
<< itm.second << " " << itnm.second << std::endl; |
357 |
625 |
return true; |
358 |
|
} |
359 |
|
} |
360 |
|
} |
361 |
1703 |
prev.push_back(itm.first); |
362 |
|
} |
363 |
721 |
return false; |
364 |
|
} |
365 |
|
|
366 |
|
Node SolverState::getCongruent(Node n) const |
367 |
|
{ |
368 |
|
Assert(d_ee->hasTerm(n)); |
369 |
|
std::map<Node, Node>::const_iterator it = d_congruent.find(n); |
370 |
|
if (it == d_congruent.end()) |
371 |
|
{ |
372 |
|
return n; |
373 |
|
} |
374 |
|
return it->second; |
375 |
|
} |
376 |
39811 |
bool SolverState::isCongruent(Node n) const |
377 |
|
{ |
378 |
39811 |
return d_congruent.find(n) != d_congruent.end(); |
379 |
|
} |
380 |
40835 |
const std::vector<Node>& SolverState::getNonVariableSets(Node r) const |
381 |
|
{ |
382 |
40835 |
std::map<Node, std::vector<Node> >::const_iterator it = d_nvar_sets.find(r); |
383 |
40835 |
if (it == d_nvar_sets.end()) |
384 |
|
{ |
385 |
11813 |
return d_emptyVec; |
386 |
|
} |
387 |
29022 |
return it->second; |
388 |
|
} |
389 |
|
|
390 |
11808 |
Node SolverState::getVariableSet(Node r) const |
391 |
|
{ |
392 |
11808 |
std::map<Node, Node>::const_iterator it = d_var_set.find(r); |
393 |
11808 |
if (it != d_var_set.end()) |
394 |
|
{ |
395 |
3601 |
return it->second; |
396 |
|
} |
397 |
8207 |
return Node::null(); |
398 |
|
} |
399 |
|
|
400 |
|
const std::vector<Node>& SolverState::getComprehensionSets(Node r) const |
401 |
|
{ |
402 |
|
std::map<Node, std::vector<Node> >::const_iterator it = d_compSets.find(r); |
403 |
|
if (it == d_compSets.end()) |
404 |
|
{ |
405 |
|
return d_emptyVec; |
406 |
|
} |
407 |
|
return it->second; |
408 |
|
} |
409 |
|
|
410 |
56403 |
const std::map<Node, Node>& SolverState::getMembers(Node r) const |
411 |
|
{ |
412 |
56403 |
return getMembersInternal(r, 0); |
413 |
|
} |
414 |
15741 |
const std::map<Node, Node>& SolverState::getNegativeMembers(Node r) const |
415 |
|
{ |
416 |
15741 |
return getMembersInternal(r, 1); |
417 |
|
} |
418 |
72144 |
const std::map<Node, Node>& SolverState::getMembersInternal(Node r, |
419 |
|
unsigned i) const |
420 |
|
{ |
421 |
|
std::map<Node, std::map<Node, Node> >::const_iterator itp = |
422 |
72144 |
d_pol_mems[i].find(r); |
423 |
72144 |
if (itp == d_pol_mems[i].end()) |
424 |
|
{ |
425 |
22880 |
return d_emptyMap; |
426 |
|
} |
427 |
49264 |
return itp->second; |
428 |
|
} |
429 |
|
|
430 |
691 |
bool SolverState::hasMembers(Node r) const |
431 |
|
{ |
432 |
|
std::map<Node, std::map<Node, Node> >::const_iterator it = |
433 |
691 |
d_pol_mems[0].find(r); |
434 |
691 |
if (it == d_pol_mems[0].end()) |
435 |
|
{ |
436 |
250 |
return false; |
437 |
|
} |
438 |
441 |
return !it->second.empty(); |
439 |
|
} |
440 |
|
const std::map<Kind, std::map<Node, std::map<Node, Node> > >& |
441 |
12829 |
SolverState::getBinaryOpIndex() const |
442 |
|
{ |
443 |
12829 |
return d_bop_index; |
444 |
|
} |
445 |
|
|
446 |
|
const std::map<Node, std::map<Node, Node>>& SolverState::getBinaryOpIndex( |
447 |
|
Kind k) |
448 |
|
{ |
449 |
|
return d_bop_index[k]; |
450 |
|
} |
451 |
|
|
452 |
5237 |
const std::map<Kind, std::vector<Node> >& SolverState::getOperatorList() const |
453 |
|
{ |
454 |
5237 |
return d_op_list; |
455 |
|
} |
456 |
|
|
457 |
11964 |
const std::vector<Node>& SolverState::getComprehensionSets() const |
458 |
|
{ |
459 |
11964 |
return d_allCompSets; |
460 |
|
} |
461 |
|
|
462 |
619 |
const vector<Node> SolverState::getSetsEqClasses(const TypeNode& t) const |
463 |
|
{ |
464 |
619 |
vector<Node> representatives; |
465 |
5714 |
for (const Node& eqc : getSetsEqClasses()) |
466 |
|
{ |
467 |
5095 |
if (eqc.getType().getSetElementType() == t) |
468 |
|
{ |
469 |
5095 |
representatives.push_back(eqc); |
470 |
|
} |
471 |
|
} |
472 |
619 |
return representatives; |
473 |
|
} |
474 |
|
|
475 |
31079 |
bool SolverState::isMember(TNode x, TNode s) const |
476 |
|
{ |
477 |
31079 |
Assert(hasTerm(s) && getRepresentative(s) == s); |
478 |
31079 |
NodeIntMap::const_iterator mem_i = d_members.find(s); |
479 |
31079 |
if (mem_i != d_members.end()) |
480 |
|
{ |
481 |
|
std::map<Node, std::vector<Node> >::const_iterator itd = |
482 |
27944 |
d_members_data.find(s); |
483 |
27944 |
Assert(itd != d_members_data.end()); |
484 |
27944 |
const std::vector<Node>& members = itd->second; |
485 |
27944 |
Assert((*mem_i).second <= members.size()); |
486 |
57093 |
for (size_t i = 0, nmem = (*mem_i).second; i < nmem; i++) |
487 |
|
{ |
488 |
53833 |
if (areEqual(members[i][0], x)) |
489 |
|
{ |
490 |
24684 |
return true; |
491 |
|
} |
492 |
|
} |
493 |
|
} |
494 |
6395 |
return false; |
495 |
|
} |
496 |
|
|
497 |
17726 |
void SolverState::addMember(TNode r, TNode atom) |
498 |
|
{ |
499 |
17726 |
NodeIntMap::iterator mem_i = d_members.find(r); |
500 |
17726 |
size_t n_members = 0; |
501 |
17726 |
if (mem_i != d_members.end()) |
502 |
|
{ |
503 |
11437 |
n_members = (*mem_i).second; |
504 |
|
} |
505 |
17726 |
d_members[r] = n_members + 1; |
506 |
17726 |
if (n_members < d_members_data[r].size()) |
507 |
|
{ |
508 |
13772 |
d_members_data[r][n_members] = atom; |
509 |
|
} |
510 |
|
else |
511 |
|
{ |
512 |
3954 |
d_members_data[r].push_back(atom); |
513 |
|
} |
514 |
17726 |
} |
515 |
|
|
516 |
7104 |
bool SolverState::merge(TNode t1, |
517 |
|
TNode t2, |
518 |
|
std::vector<Node>& facts, |
519 |
|
TNode cset) |
520 |
|
{ |
521 |
7104 |
NodeIntMap::iterator mem_i2 = d_members.find(t2); |
522 |
7104 |
if (mem_i2 == d_members.end()) |
523 |
|
{ |
524 |
|
// no members in t2, we are done |
525 |
4304 |
return true; |
526 |
|
} |
527 |
2800 |
NodeIntMap::iterator mem_i1 = d_members.find(t1); |
528 |
2800 |
size_t n_members = 0; |
529 |
2800 |
if (mem_i1 != d_members.end()) |
530 |
|
{ |
531 |
2630 |
n_members = (*mem_i1).second; |
532 |
|
} |
533 |
6400 |
for (size_t i = 0, nmem2 = (*mem_i2).second; i < nmem2; i++) |
534 |
|
{ |
535 |
3646 |
Assert(i < d_members_data[t2].size() |
536 |
|
&& d_members_data[t2][i].getKind() == MEMBER); |
537 |
7246 |
Node m2 = d_members_data[t2][i]; |
538 |
|
// check if redundant |
539 |
3646 |
bool add = true; |
540 |
5237 |
for (size_t j = 0; j < n_members; j++) |
541 |
|
{ |
542 |
4758 |
Assert(j < d_members_data[t1].size() |
543 |
|
&& d_members_data[t1][j].getKind() == MEMBER); |
544 |
4758 |
if (areEqual(m2[0], d_members_data[t1][j][0])) |
545 |
|
{ |
546 |
3167 |
add = false; |
547 |
3167 |
break; |
548 |
|
} |
549 |
|
} |
550 |
3646 |
if (add) |
551 |
|
{ |
552 |
|
// if there is a concrete set in t1, propagate new facts or conflicts |
553 |
479 |
if (!cset.isNull()) |
554 |
|
{ |
555 |
160 |
NodeManager* nm = NodeManager::currentNM(); |
556 |
160 |
Assert(areEqual(m2[1], cset)); |
557 |
274 |
Node exp = nm->mkNode(AND, m2[1].eqNode(cset), m2); |
558 |
160 |
if (cset.getKind() == SINGLETON) |
559 |
|
{ |
560 |
114 |
if (cset[0] != m2[0]) |
561 |
|
{ |
562 |
228 |
Node eq = cset[0].eqNode(m2[0]); |
563 |
228 |
Trace("sets-prop") << "Propagate eq-mem eq inference : " << exp |
564 |
114 |
<< " => " << eq << std::endl; |
565 |
228 |
Node fact = nm->mkNode(IMPLIES, exp, eq); |
566 |
114 |
facts.push_back(fact); |
567 |
|
} |
568 |
|
} |
569 |
|
else |
570 |
|
{ |
571 |
|
// conflict |
572 |
46 |
Assert(facts.empty()); |
573 |
92 |
Trace("sets-prop") |
574 |
46 |
<< "Propagate eq-mem conflict : " << exp << std::endl; |
575 |
46 |
facts.push_back(exp); |
576 |
46 |
return false; |
577 |
|
} |
578 |
|
} |
579 |
433 |
if (n_members < d_members_data[t1].size()) |
580 |
|
{ |
581 |
328 |
d_members_data[t1][n_members] = m2; |
582 |
|
} |
583 |
|
else |
584 |
|
{ |
585 |
105 |
d_members_data[t1].push_back(m2); |
586 |
|
} |
587 |
433 |
n_members++; |
588 |
|
} |
589 |
|
} |
590 |
2754 |
d_members[t1] = n_members; |
591 |
2754 |
return true; |
592 |
|
} |
593 |
|
|
594 |
|
} // namespace sets |
595 |
|
} // namespace theory |
596 |
22746 |
} // namespace cvc5 |