1 |
|
/****************************************************************************** |
2 |
|
* Top contributors (to current version): |
3 |
|
* Andrew Reynolds |
4 |
|
* |
5 |
|
* This file is part of the cvc5 project. |
6 |
|
* |
7 |
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS |
8 |
|
* in the top-level source directory and their institutional affiliations. |
9 |
|
* All rights reserved. See the file COPYING in the top-level source |
10 |
|
* directory for licensing information. |
11 |
|
* **************************************************************************** |
12 |
|
* |
13 |
|
* Implementation of LFSC node conversion |
14 |
|
*/ |
15 |
|
|
16 |
|
#include "proof/lfsc/lfsc_node_converter.h" |
17 |
|
|
18 |
|
#include <sstream> |
19 |
|
|
20 |
|
#include "expr/array_store_all.h" |
21 |
|
#include "expr/dtype.h" |
22 |
|
#include "expr/dtype_cons.h" |
23 |
|
#include "expr/nary_term_util.h" |
24 |
|
#include "expr/node_manager_attributes.h" |
25 |
|
#include "expr/sequence.h" |
26 |
|
#include "expr/skolem_manager.h" |
27 |
|
#include "printer/smt2/smt2_printer.h" |
28 |
|
#include "theory/bv/theory_bv_utils.h" |
29 |
|
#include "theory/strings/word.h" |
30 |
|
#include "theory/uf/theory_uf_rewriter.h" |
31 |
|
#include "util/bitvector.h" |
32 |
|
#include "util/iand.h" |
33 |
|
#include "util/rational.h" |
34 |
|
#include "util/regexp.h" |
35 |
|
#include "util/string.h" |
36 |
|
|
37 |
|
using namespace cvc5::kind; |
38 |
|
|
39 |
|
namespace cvc5 { |
40 |
|
namespace proof { |
41 |
|
|
42 |
1 |
LfscNodeConverter::LfscNodeConverter() |
43 |
|
{ |
44 |
1 |
NodeManager* nm = NodeManager::currentNM(); |
45 |
1 |
d_arrow = nm->mkSortConstructor("arrow", 2); |
46 |
|
|
47 |
1 |
d_sortType = nm->mkSort("sortType"); |
48 |
|
// the embedding of arrow into Node, which is binary constructor over sorts |
49 |
2 |
TypeNode anfType = nm->mkFunctionType({d_sortType, d_sortType}, d_sortType); |
50 |
1 |
d_typeAsNode[d_arrow] = getSymbolInternal(FUNCTION_TYPE, anfType, "arrow"); |
51 |
|
|
52 |
2 |
TypeNode intType = nm->integerType(); |
53 |
2 |
TypeNode arrType = nm->mkFunctionType({d_sortType, d_sortType}, d_sortType); |
54 |
1 |
d_typeKindToNodeCons[ARRAY_TYPE] = |
55 |
2 |
getSymbolInternal(FUNCTION_TYPE, arrType, "Array"); |
56 |
2 |
TypeNode bvType = nm->mkFunctionType(intType, d_sortType); |
57 |
1 |
d_typeKindToNodeCons[BITVECTOR_TYPE] = |
58 |
2 |
getSymbolInternal(FUNCTION_TYPE, bvType, "BitVec"); |
59 |
2 |
TypeNode fpType = nm->mkFunctionType({intType, intType}, d_sortType); |
60 |
1 |
d_typeKindToNodeCons[FLOATINGPOINT_TYPE] = |
61 |
2 |
getSymbolInternal(FUNCTION_TYPE, fpType, "FloatingPoint"); |
62 |
2 |
TypeNode setType = nm->mkFunctionType(d_sortType, d_sortType); |
63 |
1 |
d_typeKindToNodeCons[SET_TYPE] = |
64 |
2 |
getSymbolInternal(FUNCTION_TYPE, setType, "Set"); |
65 |
1 |
d_typeKindToNodeCons[BAG_TYPE] = |
66 |
2 |
getSymbolInternal(FUNCTION_TYPE, setType, "Bag"); |
67 |
1 |
d_typeKindToNodeCons[SEQUENCE_TYPE] = |
68 |
2 |
getSymbolInternal(FUNCTION_TYPE, setType, "Seq"); |
69 |
1 |
} |
70 |
|
|
71 |
80 |
Node LfscNodeConverter::postConvert(Node n) |
72 |
|
{ |
73 |
80 |
NodeManager* nm = NodeManager::currentNM(); |
74 |
80 |
Kind k = n.getKind(); |
75 |
80 |
if (k == ASCRIPTION_TYPE) |
76 |
|
{ |
77 |
|
// dummy node, return it |
78 |
|
return n; |
79 |
|
} |
80 |
160 |
TypeNode tn = n.getType(); |
81 |
160 |
Trace("lfsc-term-process-debug") |
82 |
80 |
<< "postConvert " << n << " " << k << std::endl; |
83 |
80 |
if (k == BOUND_VARIABLE) |
84 |
|
{ |
85 |
|
// ignore internally generated symbols |
86 |
3 |
if (d_symbols.find(n) != d_symbols.end()) |
87 |
|
{ |
88 |
3 |
return n; |
89 |
|
} |
90 |
|
// bound variable v is (bvar x T) |
91 |
|
TypeNode intType = nm->integerType(); |
92 |
|
Node x = nm->mkConst(Rational(getOrAssignIndexForVar(n))); |
93 |
|
Node tc = typeAsNode(convertType(tn)); |
94 |
|
TypeNode ftype = nm->mkFunctionType({intType, d_sortType}, tn); |
95 |
|
Node bvarOp = getSymbolInternal(k, ftype, "bvar"); |
96 |
|
return nm->mkNode(APPLY_UF, bvarOp, x, tc); |
97 |
|
} |
98 |
77 |
else if (k == SKOLEM || k == BOOLEAN_TERM_VARIABLE) |
99 |
|
{ |
100 |
|
// constructors/selectors are represented by skolems, which are defined |
101 |
|
// symbols |
102 |
|
if (tn.isConstructor() || tn.isSelector() || tn.isTester() |
103 |
|
|| tn.isUpdater()) |
104 |
|
{ |
105 |
|
// note these are not converted to their user named (cvc.) symbols here, |
106 |
|
// to avoid type errors when constructing terms for postConvert |
107 |
|
return n; |
108 |
|
} |
109 |
|
// skolems v print as their witness forms |
110 |
|
// v is (skolem W) where W is the original or witness form of v |
111 |
|
Node wi = SkolemManager::getOriginalForm(n); |
112 |
|
if (wi == n) |
113 |
|
{ |
114 |
|
// if it is not a purification skolem, maybe it is a witness skolem |
115 |
|
wi = SkolemManager::getWitnessForm(n); |
116 |
|
} |
117 |
|
if (!wi.isNull() && wi != n) |
118 |
|
{ |
119 |
|
Trace("lfsc-term-process-debug") << "...witness form " << wi << std::endl; |
120 |
|
wi = convert(wi); |
121 |
|
Trace("lfsc-term-process-debug") |
122 |
|
<< "...converted witness for " << wi << std::endl; |
123 |
|
TypeNode ftype = nm->mkFunctionType(tn, tn); |
124 |
|
Node skolemOp = getSymbolInternal(k, ftype, "skolem"); |
125 |
|
return nm->mkNode(APPLY_UF, skolemOp, wi); |
126 |
|
} |
127 |
|
// might be a skolem function |
128 |
|
Node ns = maybeMkSkolemFun(n); |
129 |
|
if (!ns.isNull()) |
130 |
|
{ |
131 |
|
return ns; |
132 |
|
} |
133 |
|
// Otherwise, it is an uncategorized skolem, must use a fresh variable. |
134 |
|
// This case will only apply for terms originating from places with no |
135 |
|
// proof support. |
136 |
|
TypeNode intType = nm->integerType(); |
137 |
|
TypeNode varType = nm->mkFunctionType({intType, d_sortType}, tn); |
138 |
|
Node var = mkInternalSymbol("var", varType); |
139 |
|
Node index = nm->mkConst(Rational(getOrAssignIndexForVar(n))); |
140 |
|
Node tc = typeAsNode(convertType(tn)); |
141 |
|
return nm->mkNode(APPLY_UF, var, index, tc); |
142 |
|
} |
143 |
77 |
else if (n.isVar()) |
144 |
|
{ |
145 |
10 |
std::stringstream ss; |
146 |
5 |
ss << n; |
147 |
10 |
Node nn = mkInternalSymbol(getNameForUserName(ss.str()), tn); |
148 |
5 |
return nn; |
149 |
|
} |
150 |
72 |
else if (k == APPLY_UF) |
151 |
|
{ |
152 |
2 |
return convert(theory::uf::TheoryUfRewriter::getHoApplyForApplyUf(n)); |
153 |
|
} |
154 |
70 |
else if (k == APPLY_CONSTRUCTOR || k == APPLY_SELECTOR || k == APPLY_TESTER |
155 |
70 |
|| k == APPLY_SELECTOR_TOTAL || k == APPLY_UPDATER) |
156 |
|
{ |
157 |
|
// must convert other kinds of apply to functions, since we convert to |
158 |
|
// HO_APPLY |
159 |
|
Node opc = getOperatorOfTerm(n, true); |
160 |
|
if (n.getNumChildren() == 0) |
161 |
|
{ |
162 |
|
return opc; |
163 |
|
} |
164 |
|
std::vector<Node> children; |
165 |
|
children.push_back(opc); |
166 |
|
children.insert(children.end(), n.begin(), n.end()); |
167 |
|
return postConvert(nm->mkNode(APPLY_UF, children)); |
168 |
|
} |
169 |
70 |
else if (k == HO_APPLY) |
170 |
|
{ |
171 |
46 |
std::vector<TypeNode> argTypes; |
172 |
23 |
argTypes.push_back(n[0].getType()); |
173 |
23 |
argTypes.push_back(n[1].getType()); |
174 |
46 |
TypeNode tnh = nm->mkFunctionType(argTypes, tn); |
175 |
46 |
Node hconstf = getSymbolInternal(k, tnh, "apply"); |
176 |
23 |
return nm->mkNode(APPLY_UF, hconstf, n[0], n[1]); |
177 |
|
} |
178 |
47 |
else if (k == CONST_RATIONAL || k == CAST_TO_REAL) |
179 |
|
{ |
180 |
5 |
if (k == CAST_TO_REAL) |
181 |
|
{ |
182 |
|
// already converted |
183 |
|
do |
184 |
|
{ |
185 |
|
n = n[0]; |
186 |
|
Assert(n.getKind() == APPLY_UF || n.getKind() == CONST_RATIONAL); |
187 |
|
} while (n.getKind() != CONST_RATIONAL); |
188 |
|
} |
189 |
10 |
TypeNode tnv = nm->mkFunctionType(tn, tn); |
190 |
10 |
Node rconstf; |
191 |
10 |
Node arg; |
192 |
10 |
Rational r = n.getConst<Rational>(); |
193 |
5 |
if (tn.isInteger()) |
194 |
|
{ |
195 |
5 |
rconstf = getSymbolInternal(k, tnv, "int"); |
196 |
5 |
if (r.sgn() == -1) |
197 |
|
{ |
198 |
|
// use LFSC syntax for mpz negation |
199 |
|
Node mpzn = getSymbolInternal(k, nm->mkFunctionType(tn, tn), "~"); |
200 |
|
arg = nm->mkNode(APPLY_UF, mpzn, nm->mkConst(r.abs())); |
201 |
|
} |
202 |
|
else |
203 |
|
{ |
204 |
5 |
arg = n; |
205 |
|
} |
206 |
|
} |
207 |
|
else |
208 |
|
{ |
209 |
|
rconstf = getSymbolInternal(k, tnv, "real"); |
210 |
|
// ensure rationals are printed properly here using mpq syntax |
211 |
|
// Note that inconvieniently, LFSC uses (non-sexpr) syntax n/m for |
212 |
|
// constant rationals, hence we must use a string |
213 |
|
std::stringstream ss; |
214 |
|
ss << "__LFSC_TMP" << r.getNumerator().abs() << "/" << r.getDenominator(); |
215 |
|
arg = mkInternalSymbol(ss.str(), tn); |
216 |
|
// negative (~ n/m) |
217 |
|
if (r.sgn() == -1) |
218 |
|
{ |
219 |
|
Node mpzn = getSymbolInternal(k, nm->mkFunctionType(tn, tn), "~"); |
220 |
|
arg = nm->mkNode(APPLY_UF, mpzn, arg); |
221 |
|
} |
222 |
|
} |
223 |
5 |
return nm->mkNode(APPLY_UF, rconstf, arg); |
224 |
|
} |
225 |
42 |
else if (k == CONST_BITVECTOR) |
226 |
|
{ |
227 |
|
TypeNode btn = nm->booleanType(); |
228 |
|
TypeNode tnv = nm->mkFunctionType(btn, tn); |
229 |
|
TypeNode btnv = nm->mkFunctionType({btn, btn}, btn); |
230 |
|
BitVector bv = n.getConst<BitVector>(); |
231 |
|
size_t w = bv.getSize(); |
232 |
|
Node ret = getSymbolInternal(k, btn, "bvn"); |
233 |
|
Node b0 = getSymbolInternal(k, btn, "b0"); |
234 |
|
Node b1 = getSymbolInternal(k, btn, "b1"); |
235 |
|
Node bvc = getSymbolInternal(k, btnv, "bvc"); |
236 |
|
for (size_t i = 0; i < w; i++) |
237 |
|
{ |
238 |
|
Node arg = bv.isBitSet((w - 1) - i) ? b1 : b0; |
239 |
|
ret = nm->mkNode(APPLY_UF, bvc, arg, ret); |
240 |
|
} |
241 |
|
Node bconstf = getSymbolInternal(k, tnv, "bv"); |
242 |
|
return nm->mkNode(APPLY_UF, bconstf, ret); |
243 |
|
} |
244 |
42 |
else if (k == CONST_STRING) |
245 |
|
{ |
246 |
|
//"" is emptystr |
247 |
|
//"A" is (char 65) |
248 |
|
//"ABC" is (str.++ (char 65) (str.++ (char 66) (str.++ (char 67) emptystr))) |
249 |
|
std::vector<Node> charVec; |
250 |
|
getCharVectorInternal(n, charVec); |
251 |
|
Assert(!charVec.empty()); |
252 |
|
if (charVec.size() == 1) |
253 |
|
{ |
254 |
|
// handles empty string and singleton character |
255 |
|
return charVec[0]; |
256 |
|
} |
257 |
|
std::reverse(charVec.begin(), charVec.end()); |
258 |
|
Node ret = postConvert(getNullTerminator(STRING_CONCAT, tn)); |
259 |
|
for (size_t i = 0, size = charVec.size(); i < size; i++) |
260 |
|
{ |
261 |
|
ret = nm->mkNode(STRING_CONCAT, charVec[i], ret); |
262 |
|
} |
263 |
|
return ret; |
264 |
|
} |
265 |
42 |
else if (k == CONST_SEQUENCE) |
266 |
|
{ |
267 |
|
const std::vector<Node>& charVec = n.getConst<Sequence>().getVec(); |
268 |
|
TypeNode etype = nm->mkFunctionType(d_sortType, tn); |
269 |
|
Node ret = getSymbolInternal(k, etype, "seq.empty"); |
270 |
|
ret = nm->mkNode(APPLY_UF, ret, typeAsNode(convertType(tn))); |
271 |
|
std::vector<Node> vecu; |
272 |
|
for (size_t i = 0, size = charVec.size(); i < size; i++) |
273 |
|
{ |
274 |
|
Node u = nm->mkNode(SEQ_UNIT, postConvert(charVec[size - (i + 1)])); |
275 |
|
if (size == 1) |
276 |
|
{ |
277 |
|
// singleton case |
278 |
|
return u; |
279 |
|
} |
280 |
|
ret = nm->mkNode(STRING_CONCAT, u, ret); |
281 |
|
} |
282 |
|
return ret; |
283 |
|
} |
284 |
42 |
else if (k == STORE_ALL) |
285 |
|
{ |
286 |
|
Node t = typeAsNode(convertType(tn)); |
287 |
|
TypeNode caRetType = nm->mkFunctionType(tn.getArrayConstituentType(), tn); |
288 |
|
TypeNode catype = nm->mkFunctionType(d_sortType, caRetType); |
289 |
|
Node bconstf = getSymbolInternal(k, catype, "array_const"); |
290 |
|
Node f = nm->mkNode(APPLY_UF, bconstf, t); |
291 |
|
ArrayStoreAll storeAll = n.getConst<ArrayStoreAll>(); |
292 |
|
return nm->mkNode(APPLY_UF, f, convert(storeAll.getValue())); |
293 |
|
} |
294 |
126 |
else if (k == GEQ || k == GT || k == LEQ || k == LT || k == MINUS |
295 |
42 |
|| k == DIVISION || k == DIVISION_TOTAL || k == INTS_DIVISION |
296 |
42 |
|| k == INTS_DIVISION_TOTAL || k == INTS_MODULUS |
297 |
42 |
|| k == INTS_MODULUS_TOTAL || k == UMINUS || k == POW |
298 |
84 |
|| isIndexedOperatorKind(k)) |
299 |
|
{ |
300 |
|
// must give special names to SMT-LIB operators with arithmetic subtyping |
301 |
|
// note that MINUS is not n-ary |
302 |
|
// get the macro-apply version of the operator |
303 |
|
Node opc = getOperatorOfTerm(n, true); |
304 |
|
std::vector<Node> children; |
305 |
|
children.push_back(opc); |
306 |
|
children.insert(children.end(), n.begin(), n.end()); |
307 |
|
return nm->mkNode(APPLY_UF, children); |
308 |
|
} |
309 |
42 |
else if (k == EMPTYSET || k == UNIVERSE_SET || k == EMPTYBAG) |
310 |
|
{ |
311 |
|
Node t = typeAsNode(convertType(tn)); |
312 |
|
TypeNode etype = nm->mkFunctionType(d_sortType, tn); |
313 |
|
Node ef = getSymbolInternal( |
314 |
|
k, |
315 |
|
etype, |
316 |
|
k == EMPTYSET ? "emptyset" |
317 |
|
: (k == UNIVERSE_SET ? "univset" : "emptybag")); |
318 |
|
return nm->mkNode(APPLY_UF, ef, t); |
319 |
|
} |
320 |
42 |
else if (n.isClosure()) |
321 |
|
{ |
322 |
|
// (forall ((x1 T1) ... (xn Tk)) P) is |
323 |
|
// ((forall x1 T1) ((forall x2 T2) ... ((forall xk Tk) P))). We use |
324 |
|
// SEXPR to do this, which avoids the need for indexed operators. |
325 |
|
Node ret = n[1]; |
326 |
|
Node cop = getOperatorOfClosure(n, true); |
327 |
|
for (size_t i = 0, nchild = n[0].getNumChildren(); i < nchild; i++) |
328 |
|
{ |
329 |
|
size_t ii = (nchild - 1) - i; |
330 |
|
Node v = n[0][ii]; |
331 |
|
Node vop = getOperatorOfBoundVar(cop, v); |
332 |
|
ret = nm->mkNode(APPLY_UF, vop, ret); |
333 |
|
} |
334 |
|
// notice that intentionally we drop annotations here |
335 |
|
return ret; |
336 |
|
} |
337 |
42 |
else if (k == REGEXP_LOOP) |
338 |
|
{ |
339 |
|
// ((_ re.loop n1 n2) t) is ((re.loop n1 n2) t) |
340 |
|
TypeNode intType = nm->integerType(); |
341 |
|
TypeNode relType = |
342 |
|
nm->mkFunctionType({intType, intType}, nm->mkFunctionType(tn, tn)); |
343 |
|
Node rop = getSymbolInternal( |
344 |
|
k, relType, printer::smt2::Smt2Printer::smtKindString(k)); |
345 |
|
RegExpLoop op = n.getOperator().getConst<RegExpLoop>(); |
346 |
|
Node n1 = nm->mkConst(Rational(op.d_loopMinOcc)); |
347 |
|
Node n2 = nm->mkConst(Rational(op.d_loopMaxOcc)); |
348 |
|
return nm->mkNode(APPLY_UF, nm->mkNode(APPLY_UF, rop, n1, n2), n[0]); |
349 |
|
} |
350 |
42 |
else if (k == MATCH) |
351 |
|
{ |
352 |
|
// currently unsupported |
353 |
|
return n; |
354 |
|
} |
355 |
42 |
else if (k == BITVECTOR_BB_TERM) |
356 |
|
{ |
357 |
|
TypeNode btn = nm->booleanType(); |
358 |
|
// (bbT t1 ... tn) is (bbT t1 (bbT t2 ... (bbT tn emptybv))) |
359 |
|
// where notice that each bbT has a different type |
360 |
|
Node curr = getNullTerminator(BITVECTOR_CONCAT, tn); |
361 |
|
for (size_t i = 0, nchild = n.getNumChildren(); i < nchild; ++i) |
362 |
|
{ |
363 |
|
TypeNode bvt = nm->mkBitVectorType(i + 1); |
364 |
|
TypeNode ftype = nm->mkFunctionType({btn, curr.getType()}, bvt); |
365 |
|
Node bbt = getSymbolInternal(k, ftype, "bbT"); |
366 |
|
curr = nm->mkNode(APPLY_UF, bbt, n[nchild - (i + 1)], curr); |
367 |
|
} |
368 |
|
return curr; |
369 |
|
} |
370 |
42 |
else if (k == SEP_NIL) |
371 |
|
{ |
372 |
|
Node tnn = typeAsNode(convertType(tn)); |
373 |
|
TypeNode ftype = nm->mkFunctionType(d_sortType, tn); |
374 |
|
Node s = getSymbolInternal(k, ftype, "sep.nil"); |
375 |
|
return nm->mkNode(APPLY_UF, s, tnn); |
376 |
|
} |
377 |
42 |
else if (NodeManager::isNAryKind(k) && n.getNumChildren() >= 2) |
378 |
|
{ |
379 |
7 |
size_t nchild = n.getNumChildren(); |
380 |
7 |
Assert(n.getMetaKind() != metakind::PARAMETERIZED); |
381 |
|
// convert all n-ary applications to binary |
382 |
14 |
std::vector<Node> children(n.begin(), n.end()); |
383 |
|
// distinct is special case |
384 |
7 |
if (k == DISTINCT) |
385 |
|
{ |
386 |
|
// DISTINCT(x1,...,xn) ---> |
387 |
|
// AND(DISTINCT(x1,x2), AND(,..., AND(,..,DISTINCT(x_{n-1},x_n)))) |
388 |
2 |
Node ret = nm->mkNode(k, children[0], children[1]); |
389 |
4 |
for (unsigned i = 0; i < nchild; i++) |
390 |
6 |
for (unsigned j = i + 1; j < nchild; j++) |
391 |
|
{ |
392 |
3 |
if (i != 0 && j != 1) |
393 |
|
{ |
394 |
1 |
ret = nm->mkNode(AND, ret, nm->mkNode(k, children[i], children[j])); |
395 |
|
} |
396 |
|
} |
397 |
2 |
Trace("lfsc-term-process-debug") << "n: " << n << std::endl |
398 |
1 |
<< "ret: " << ret << std::endl; |
399 |
1 |
return ret; |
400 |
|
} |
401 |
6 |
std::reverse(children.begin(), children.end()); |
402 |
|
// Add the null-terminator. This is done to disambiguate the number |
403 |
|
// of children for term with n-ary operators. In particular note that |
404 |
|
// (or A B C (or D E)) has representation: |
405 |
|
// (or A (or B (or C (or (or D E) false)))) |
406 |
|
// This makes the AST above distinguishable from (or A B C D E), |
407 |
|
// which otherwise would both have representation: |
408 |
|
// (or A (or B (or C (or D E)))) |
409 |
12 |
Node nullTerm = getNullTerminator(k, tn); |
410 |
|
// Most operators simply get binarized |
411 |
12 |
Node ret; |
412 |
6 |
size_t istart = 0; |
413 |
6 |
if (nullTerm.isNull()) |
414 |
|
{ |
415 |
|
ret = children[0]; |
416 |
|
istart = 1; |
417 |
|
} |
418 |
|
else |
419 |
|
{ |
420 |
|
// must convert recursively, since nullTerm may have subterms. |
421 |
6 |
ret = convert(nullTerm); |
422 |
|
} |
423 |
|
// the kind to chain |
424 |
6 |
Kind ck = k; |
425 |
|
// check whether we are also changing the operator name, in which case |
426 |
|
// we build a binary uninterpreted function opc |
427 |
12 |
Node opc; |
428 |
6 |
if (k == PLUS || k == MULT || k == NONLINEAR_MULT) |
429 |
|
{ |
430 |
|
std::stringstream opName; |
431 |
|
// currently allow subtyping |
432 |
|
opName << "a."; |
433 |
|
opName << printer::smt2::Smt2Printer::smtKindString(k); |
434 |
|
TypeNode ftype = nm->mkFunctionType({tn, tn}, tn); |
435 |
|
opc = getSymbolInternal(k, ftype, opName.str()); |
436 |
|
ck = APPLY_UF; |
437 |
|
} |
438 |
|
// now, iterate over children and make binary conversion |
439 |
22 |
for (size_t i = istart, npchild = children.size(); i < npchild; i++) |
440 |
|
{ |
441 |
16 |
if (!opc.isNull()) |
442 |
|
{ |
443 |
|
ret = nm->mkNode(ck, opc, children[i], ret); |
444 |
|
} |
445 |
|
else |
446 |
|
{ |
447 |
16 |
ret = nm->mkNode(ck, children[i], ret); |
448 |
|
} |
449 |
|
} |
450 |
6 |
return ret; |
451 |
|
} |
452 |
35 |
return n; |
453 |
|
} |
454 |
|
|
455 |
3 |
TypeNode LfscNodeConverter::postConvertType(TypeNode tn) |
456 |
|
{ |
457 |
3 |
NodeManager* nm = NodeManager::currentNM(); |
458 |
3 |
TypeNode cur = tn; |
459 |
6 |
Node tnn; |
460 |
3 |
Kind k = tn.getKind(); |
461 |
6 |
Trace("lfsc-term-process-debug") |
462 |
6 |
<< "postConvertType " << tn << " " << tn.getNumChildren() << " " << k |
463 |
3 |
<< std::endl; |
464 |
3 |
if (k == FUNCTION_TYPE) |
465 |
|
{ |
466 |
|
// (-> T1 ... Tn T) is (arrow T1 .... (arrow Tn T)) |
467 |
2 |
std::vector<TypeNode> argTypes = tn.getArgTypes(); |
468 |
|
// also make the node embedding of the type |
469 |
2 |
Node arrown = d_typeAsNode[d_arrow]; |
470 |
1 |
Assert(!arrown.isNull()); |
471 |
1 |
cur = tn.getRangeType(); |
472 |
1 |
tnn = typeAsNode(cur); |
473 |
2 |
for (std::vector<TypeNode>::reverse_iterator it = argTypes.rbegin(); |
474 |
2 |
it != argTypes.rend(); |
475 |
|
++it) |
476 |
|
{ |
477 |
2 |
std::vector<TypeNode> aargs; |
478 |
1 |
aargs.push_back(*it); |
479 |
1 |
aargs.push_back(cur); |
480 |
1 |
cur = nm->mkSort(d_arrow, aargs); |
481 |
1 |
tnn = nm->mkNode(APPLY_UF, arrown, typeAsNode(*it), tnn); |
482 |
|
} |
483 |
|
} |
484 |
2 |
else if (k == BITVECTOR_TYPE) |
485 |
|
{ |
486 |
|
tnn = d_typeKindToNodeCons[k]; |
487 |
|
Node w = nm->mkConst(Rational(tn.getBitVectorSize())); |
488 |
|
tnn = nm->mkNode(APPLY_UF, tnn, w); |
489 |
|
} |
490 |
2 |
else if (k == FLOATINGPOINT_TYPE) |
491 |
|
{ |
492 |
|
tnn = d_typeKindToNodeCons[k]; |
493 |
|
Node e = nm->mkConst(Rational(tn.getFloatingPointExponentSize())); |
494 |
|
Node s = nm->mkConst(Rational(tn.getFloatingPointSignificandSize())); |
495 |
|
tnn = nm->mkNode(APPLY_UF, tnn, e, s); |
496 |
|
} |
497 |
2 |
else if (tn.getNumChildren() == 0) |
498 |
|
{ |
499 |
|
// special case: tuples must be distinguished by their arity |
500 |
2 |
if (tn.isTuple()) |
501 |
|
{ |
502 |
|
const DType& dt = tn.getDType(); |
503 |
|
unsigned int nargs = dt[0].getNumArgs(); |
504 |
|
if (nargs > 0) |
505 |
|
{ |
506 |
|
std::vector<TypeNode> types; |
507 |
|
std::vector<TypeNode> convTypes; |
508 |
|
std::vector<Node> targs; |
509 |
|
for (unsigned int i = 0; i < nargs; i++) |
510 |
|
{ |
511 |
|
// it is not converted yet, convert here |
512 |
|
TypeNode tnc = convertType(dt[0][i].getRangeType()); |
513 |
|
types.push_back(d_sortType); |
514 |
|
convTypes.push_back(tnc); |
515 |
|
targs.push_back(typeAsNode(tnc)); |
516 |
|
} |
517 |
|
TypeNode ftype = nm->mkFunctionType(types, d_sortType); |
518 |
|
// must distinguish by arity |
519 |
|
std::stringstream ss; |
520 |
|
ss << "Tuple_" << nargs; |
521 |
|
targs.insert(targs.begin(), getSymbolInternal(k, ftype, ss.str())); |
522 |
|
tnn = nm->mkNode(APPLY_UF, targs); |
523 |
|
// we are changing its name, we must make a sort constructor |
524 |
|
cur = nm->mkSortConstructor(ss.str(), nargs); |
525 |
|
cur = nm->mkSort(cur, convTypes); |
526 |
|
} |
527 |
|
} |
528 |
2 |
if (tnn.isNull()) |
529 |
|
{ |
530 |
4 |
std::stringstream ss; |
531 |
2 |
tn.toStream(ss, Language::LANG_SMTLIB_V2_6); |
532 |
2 |
if (tn.isSort() || (tn.isDatatype() && !tn.isTuple())) |
533 |
|
{ |
534 |
2 |
std::stringstream sss; |
535 |
1 |
sss << LfscNodeConverter::getNameForUserName(ss.str()); |
536 |
1 |
tnn = getSymbolInternal(k, d_sortType, sss.str()); |
537 |
1 |
cur = nm->mkSort(sss.str()); |
538 |
|
} |
539 |
|
else |
540 |
|
{ |
541 |
1 |
tnn = getSymbolInternal(k, d_sortType, ss.str()); |
542 |
|
} |
543 |
|
} |
544 |
|
} |
545 |
|
else |
546 |
|
{ |
547 |
|
// to build the type-as-node, must convert the component types |
548 |
|
std::vector<Node> targs; |
549 |
|
std::vector<TypeNode> types; |
550 |
|
for (const TypeNode& tnc : tn) |
551 |
|
{ |
552 |
|
targs.push_back(typeAsNode(tnc)); |
553 |
|
types.push_back(d_sortType); |
554 |
|
} |
555 |
|
Node op; |
556 |
|
if (k == PARAMETRIC_DATATYPE) |
557 |
|
{ |
558 |
|
// erase first child, which repeats the datatype |
559 |
|
targs.erase(targs.begin(), targs.begin() + 1); |
560 |
|
types.erase(types.begin(), types.begin() + 1); |
561 |
|
TypeNode ftype = nm->mkFunctionType(types, d_sortType); |
562 |
|
// the operator has been converted; it is no longer a datatype, thus |
563 |
|
// we must print to get its name. |
564 |
|
std::stringstream ss; |
565 |
|
ss << tn[0]; |
566 |
|
op = getSymbolInternal(k, ftype, ss.str()); |
567 |
|
} |
568 |
|
else if (k == SORT_TYPE) |
569 |
|
{ |
570 |
|
TypeNode ftype = nm->mkFunctionType(types, d_sortType); |
571 |
|
std::string name; |
572 |
|
tn.getAttribute(expr::VarNameAttr(), name); |
573 |
|
op = getSymbolInternal(k, ftype, name); |
574 |
|
} |
575 |
|
else |
576 |
|
{ |
577 |
|
std::map<Kind, Node>::iterator it = d_typeKindToNodeCons.find(k); |
578 |
|
if (it != d_typeKindToNodeCons.end()) |
579 |
|
{ |
580 |
|
op = it->second; |
581 |
|
} |
582 |
|
} |
583 |
|
if (!op.isNull()) |
584 |
|
{ |
585 |
|
targs.insert(targs.begin(), op); |
586 |
|
tnn = nm->mkNode(APPLY_UF, targs); |
587 |
|
} |
588 |
|
else |
589 |
|
{ |
590 |
|
AlwaysAssert(false); |
591 |
|
} |
592 |
|
} |
593 |
3 |
Assert(!tnn.isNull()); |
594 |
3 |
Trace("lfsc-term-process-debug") << "...type as node: " << tnn << std::endl; |
595 |
3 |
d_typeAsNode[cur] = tnn; |
596 |
6 |
return cur; |
597 |
|
} |
598 |
|
|
599 |
6 |
std::string LfscNodeConverter::getNameForUserName(const std::string& name) |
600 |
|
{ |
601 |
12 |
std::stringstream ss; |
602 |
6 |
ss << "cvc." << name; |
603 |
12 |
return ss.str(); |
604 |
|
} |
605 |
|
|
606 |
80 |
bool LfscNodeConverter::shouldTraverse(Node n) |
607 |
|
{ |
608 |
80 |
Kind k = n.getKind(); |
609 |
|
// don't convert bound variable or instantiation pattern list directly |
610 |
80 |
if (k == BOUND_VAR_LIST || k == INST_PATTERN_LIST) |
611 |
|
{ |
612 |
|
return false; |
613 |
|
} |
614 |
|
// should not traverse internal applications |
615 |
80 |
if (k == APPLY_UF) |
616 |
|
{ |
617 |
2 |
if (d_symbols.find(n.getOperator()) != d_symbols.end()) |
618 |
|
{ |
619 |
|
return false; |
620 |
|
} |
621 |
|
} |
622 |
80 |
return true; |
623 |
|
} |
624 |
|
|
625 |
|
Node LfscNodeConverter::maybeMkSkolemFun(Node k, bool macroApply) |
626 |
|
{ |
627 |
|
NodeManager* nm = NodeManager::currentNM(); |
628 |
|
SkolemManager* sm = nm->getSkolemManager(); |
629 |
|
SkolemFunId sfi = SkolemFunId::NONE; |
630 |
|
Node cacheVal; |
631 |
|
TypeNode tn = k.getType(); |
632 |
|
if (sm->isSkolemFunction(k, sfi, cacheVal)) |
633 |
|
{ |
634 |
|
if (sfi == SkolemFunId::SHARED_SELECTOR) |
635 |
|
{ |
636 |
|
// a skolem corresponding to shared selector should print in |
637 |
|
// LFSC as (sel T n) where T is the type and n is the index of the |
638 |
|
// shared selector. |
639 |
|
TypeNode fselt = nm->mkFunctionType(tn.getSelectorDomainType(), |
640 |
|
tn.getSelectorRangeType()); |
641 |
|
TypeNode intType = nm->integerType(); |
642 |
|
TypeNode selt = nm->mkFunctionType({d_sortType, intType}, fselt); |
643 |
|
Node sel = getSymbolInternal(k.getKind(), selt, "sel"); |
644 |
|
Node kn = typeAsNode(convertType(tn.getSelectorRangeType())); |
645 |
|
Assert(!cacheVal.isNull() && cacheVal.getKind() == CONST_RATIONAL); |
646 |
|
return nm->mkNode(APPLY_UF, sel, kn, cacheVal); |
647 |
|
} |
648 |
|
else if (sfi == SkolemFunId::RE_UNFOLD_POS_COMPONENT) |
649 |
|
{ |
650 |
|
// a skolem corresponding to a regular expression unfolding component |
651 |
|
// should print as (skolem_re_unfold_pos t R n) where the skolem is the |
652 |
|
// n^th component for the unfolding of (str.in_re t R). |
653 |
|
TypeNode strType = nm->stringType(); |
654 |
|
TypeNode reType = nm->regExpType(); |
655 |
|
TypeNode intType = nm->integerType(); |
656 |
|
TypeNode reut = nm->mkFunctionType({strType, reType, intType}, strType); |
657 |
|
Node sk = getSymbolInternal(k.getKind(), reut, "skolem_re_unfold_pos"); |
658 |
|
Assert(!cacheVal.isNull() && cacheVal.getKind() == SEXPR |
659 |
|
&& cacheVal.getNumChildren() == 3); |
660 |
|
// third value is mpz, which is not converted |
661 |
|
return nm->mkNode( |
662 |
|
APPLY_UF, |
663 |
|
{sk, convert(cacheVal[0]), convert(cacheVal[1]), cacheVal[2]}); |
664 |
|
} |
665 |
|
} |
666 |
|
return Node::null(); |
667 |
|
} |
668 |
|
|
669 |
2 |
Node LfscNodeConverter::typeAsNode(TypeNode tni) const |
670 |
|
{ |
671 |
|
// should always exist in the cache, as we always run types through |
672 |
|
// postConvertType before calling this method. |
673 |
2 |
std::map<TypeNode, Node>::const_iterator it = d_typeAsNode.find(tni); |
674 |
2 |
AlwaysAssert(it != d_typeAsNode.end()) << "Missing typeAsNode " << tni; |
675 |
2 |
return it->second; |
676 |
|
} |
677 |
|
|
678 |
23 |
Node LfscNodeConverter::mkInternalSymbol(const std::string& name, TypeNode tn) |
679 |
|
{ |
680 |
23 |
Node sym = NodeManager::currentNM()->mkBoundVar(name, tn); |
681 |
23 |
d_symbols.insert(sym); |
682 |
23 |
return sym; |
683 |
|
} |
684 |
|
|
685 |
|
Node LfscNodeConverter::getSymbolInternalFor(Node n, const std::string& name) |
686 |
|
{ |
687 |
|
return getSymbolInternal(n.getKind(), n.getType(), name); |
688 |
|
} |
689 |
|
|
690 |
42 |
Node LfscNodeConverter::getSymbolInternal(Kind k, |
691 |
|
TypeNode tn, |
692 |
|
const std::string& name) |
693 |
|
{ |
694 |
84 |
std::tuple<Kind, TypeNode, std::string> key(k, tn, name); |
695 |
|
std::map<std::tuple<Kind, TypeNode, std::string>, Node>::iterator it = |
696 |
42 |
d_symbolsMap.find(key); |
697 |
42 |
if (it != d_symbolsMap.end()) |
698 |
|
{ |
699 |
26 |
return it->second; |
700 |
|
} |
701 |
32 |
Node sym = mkInternalSymbol(name, tn); |
702 |
16 |
d_symbolToBuiltinKind[sym] = k; |
703 |
16 |
d_symbolsMap[key] = sym; |
704 |
16 |
return sym; |
705 |
|
} |
706 |
|
|
707 |
|
void LfscNodeConverter::getCharVectorInternal(Node c, std::vector<Node>& chars) |
708 |
|
{ |
709 |
|
Assert(c.getKind() == CONST_STRING); |
710 |
|
NodeManager* nm = NodeManager::currentNM(); |
711 |
|
const std::vector<unsigned>& vec = c.getConst<String>().getVec(); |
712 |
|
if (vec.size() == 0) |
713 |
|
{ |
714 |
|
Node ec = getSymbolInternalFor(c, "emptystr"); |
715 |
|
chars.push_back(ec); |
716 |
|
return; |
717 |
|
} |
718 |
|
TypeNode tnc = nm->mkFunctionType(nm->integerType(), c.getType()); |
719 |
|
Node aconstf = getSymbolInternal(CONST_STRING, tnc, "char"); |
720 |
|
for (unsigned i = 0, size = vec.size(); i < size; i++) |
721 |
|
{ |
722 |
|
Node cc = nm->mkNode(APPLY_UF, aconstf, nm->mkConst(Rational(vec[i]))); |
723 |
|
chars.push_back(cc); |
724 |
|
} |
725 |
|
} |
726 |
|
|
727 |
47 |
bool LfscNodeConverter::isIndexedOperatorKind(Kind k) |
728 |
|
{ |
729 |
47 |
return k == BITVECTOR_EXTRACT || k == BITVECTOR_REPEAT |
730 |
47 |
|| k == BITVECTOR_ZERO_EXTEND || k == BITVECTOR_SIGN_EXTEND |
731 |
47 |
|| k == BITVECTOR_ROTATE_LEFT || k == BITVECTOR_ROTATE_RIGHT |
732 |
47 |
|| k == INT_TO_BITVECTOR || k == IAND || k == APPLY_UPDATER |
733 |
94 |
|| k == APPLY_TESTER; |
734 |
|
} |
735 |
|
|
736 |
|
std::vector<Node> LfscNodeConverter::getOperatorIndices(Kind k, Node n) |
737 |
|
{ |
738 |
|
NodeManager* nm = NodeManager::currentNM(); |
739 |
|
std::vector<Node> indices; |
740 |
|
switch (k) |
741 |
|
{ |
742 |
|
case BITVECTOR_EXTRACT: |
743 |
|
{ |
744 |
|
BitVectorExtract p = n.getConst<BitVectorExtract>(); |
745 |
|
indices.push_back(nm->mkConst(Rational(p.d_high))); |
746 |
|
indices.push_back(nm->mkConst(Rational(p.d_low))); |
747 |
|
break; |
748 |
|
} |
749 |
|
case BITVECTOR_REPEAT: |
750 |
|
indices.push_back( |
751 |
|
nm->mkConst(Rational(n.getConst<BitVectorRepeat>().d_repeatAmount))); |
752 |
|
break; |
753 |
|
case BITVECTOR_ZERO_EXTEND: |
754 |
|
indices.push_back(nm->mkConst( |
755 |
|
Rational(n.getConst<BitVectorZeroExtend>().d_zeroExtendAmount))); |
756 |
|
break; |
757 |
|
case BITVECTOR_SIGN_EXTEND: |
758 |
|
indices.push_back(nm->mkConst( |
759 |
|
Rational(n.getConst<BitVectorSignExtend>().d_signExtendAmount))); |
760 |
|
break; |
761 |
|
case BITVECTOR_ROTATE_LEFT: |
762 |
|
indices.push_back(nm->mkConst( |
763 |
|
Rational(n.getConst<BitVectorRotateLeft>().d_rotateLeftAmount))); |
764 |
|
break; |
765 |
|
case BITVECTOR_ROTATE_RIGHT: |
766 |
|
indices.push_back(nm->mkConst( |
767 |
|
Rational(n.getConst<BitVectorRotateRight>().d_rotateRightAmount))); |
768 |
|
break; |
769 |
|
case INT_TO_BITVECTOR: |
770 |
|
indices.push_back( |
771 |
|
nm->mkConst(Rational(n.getConst<IntToBitVector>().d_size))); |
772 |
|
break; |
773 |
|
case IAND: |
774 |
|
indices.push_back(nm->mkConst(Rational(n.getConst<IntAnd>().d_size))); |
775 |
|
break; |
776 |
|
case APPLY_TESTER: |
777 |
|
{ |
778 |
|
unsigned index = DType::indexOf(n); |
779 |
|
const DType& dt = DType::datatypeOf(n); |
780 |
|
indices.push_back(dt[index].getConstructor()); |
781 |
|
} |
782 |
|
break; |
783 |
|
case APPLY_UPDATER: |
784 |
|
{ |
785 |
|
unsigned index = DType::indexOf(n); |
786 |
|
const DType& dt = DType::datatypeOf(n); |
787 |
|
unsigned cindex = DType::cindexOf(n); |
788 |
|
indices.push_back(dt[cindex][index].getSelector()); |
789 |
|
} |
790 |
|
break; |
791 |
|
default: Assert(false); break; |
792 |
|
} |
793 |
|
return indices; |
794 |
|
} |
795 |
|
|
796 |
11 |
Node LfscNodeConverter::getNullTerminator(Kind k, TypeNode tn) |
797 |
|
{ |
798 |
11 |
NodeManager* nm = NodeManager::currentNM(); |
799 |
22 |
Node nullTerm; |
800 |
11 |
switch (k) |
801 |
|
{ |
802 |
|
case REGEXP_CONCAT: |
803 |
|
// the language containing only the empty string, which has special |
804 |
|
// syntax in LFSC |
805 |
|
nullTerm = getSymbolInternal(k, tn, "re.empty"); |
806 |
|
break; |
807 |
|
case BITVECTOR_CONCAT: |
808 |
|
{ |
809 |
|
// the null terminator of bitvector concat is a dummy variable of |
810 |
|
// bit-vector type with zero width, regardless of the type of the overall |
811 |
|
// concat. |
812 |
|
TypeNode bvz = nm->mkBitVectorType(0); |
813 |
|
nullTerm = getSymbolInternal(k, bvz, "emptybv"); |
814 |
|
} |
815 |
|
break; |
816 |
11 |
default: |
817 |
|
// no special handling, or not null terminated |
818 |
11 |
break; |
819 |
|
} |
820 |
11 |
if (!nullTerm.isNull()) |
821 |
|
{ |
822 |
|
return nullTerm; |
823 |
|
} |
824 |
|
// otherwise, fall back to standard utility |
825 |
11 |
return expr::getNullTerminator(k, tn); |
826 |
|
} |
827 |
|
|
828 |
|
Kind LfscNodeConverter::getBuiltinKindForInternalSymbol(Node op) const |
829 |
|
{ |
830 |
|
std::map<Node, Kind>::const_iterator it = d_symbolToBuiltinKind.find(op); |
831 |
|
if (it != d_symbolToBuiltinKind.end()) |
832 |
|
{ |
833 |
|
return it->second; |
834 |
|
} |
835 |
|
return UNDEFINED_KIND; |
836 |
|
} |
837 |
|
|
838 |
5 |
Node LfscNodeConverter::getOperatorOfTerm(Node n, bool macroApply) |
839 |
|
{ |
840 |
5 |
Assert(n.hasOperator()); |
841 |
5 |
Assert(!n.isClosure()); |
842 |
5 |
NodeManager* nm = NodeManager::currentNM(); |
843 |
5 |
Kind k = n.getKind(); |
844 |
10 |
std::stringstream opName; |
845 |
10 |
Trace("lfsc-term-process-debug2") |
846 |
5 |
<< "getOperatorOfTerm " << n << " " << k << " " |
847 |
10 |
<< (n.getMetaKind() == metakind::PARAMETERIZED) << " " |
848 |
5 |
<< isIndexedOperatorKind(k) << std::endl; |
849 |
5 |
if (n.getMetaKind() == metakind::PARAMETERIZED) |
850 |
|
{ |
851 |
|
Node op = n.getOperator(); |
852 |
|
std::vector<Node> indices; |
853 |
|
if (isIndexedOperatorKind(k)) |
854 |
|
{ |
855 |
|
indices = getOperatorIndices(k, n.getOperator()); |
856 |
|
// we must convert the name of indices on updaters and testers |
857 |
|
if (k == APPLY_UPDATER || k == APPLY_TESTER) |
858 |
|
{ |
859 |
|
Assert(indices.size() == 1); |
860 |
|
// must convert to user name |
861 |
|
std::stringstream sss; |
862 |
|
sss << indices[0]; |
863 |
|
TypeNode intType = nm->integerType(); |
864 |
|
indices[0] = |
865 |
|
getSymbolInternal(k, intType, getNameForUserName(sss.str())); |
866 |
|
} |
867 |
|
} |
868 |
|
else if (op.getType().isFunction()) |
869 |
|
{ |
870 |
|
return op; |
871 |
|
} |
872 |
|
// note other kinds of functions (e.g. selectors and testers) |
873 |
|
std::vector<TypeNode> argTypes; |
874 |
|
for (const Node& nc : n) |
875 |
|
{ |
876 |
|
argTypes.push_back(nc.getType()); |
877 |
|
} |
878 |
|
TypeNode ftype = n.getType(); |
879 |
|
if (!argTypes.empty()) |
880 |
|
{ |
881 |
|
ftype = nm->mkFunctionType(argTypes, ftype); |
882 |
|
} |
883 |
|
Node ret; |
884 |
|
if (isIndexedOperatorKind(k)) |
885 |
|
{ |
886 |
|
std::vector<TypeNode> itypes; |
887 |
|
for (const Node& i : indices) |
888 |
|
{ |
889 |
|
itypes.push_back(i.getType()); |
890 |
|
} |
891 |
|
if (!itypes.empty()) |
892 |
|
{ |
893 |
|
ftype = nm->mkFunctionType(itypes, ftype); |
894 |
|
} |
895 |
|
if (!macroApply) |
896 |
|
{ |
897 |
|
if (k != APPLY_UPDATER && k != APPLY_TESTER) |
898 |
|
{ |
899 |
|
opName << "f_"; |
900 |
|
} |
901 |
|
} |
902 |
|
opName << printer::smt2::Smt2Printer::smtKindString(k); |
903 |
|
} |
904 |
|
else if (k == APPLY_CONSTRUCTOR) |
905 |
|
{ |
906 |
|
unsigned index = DType::indexOf(op); |
907 |
|
const DType& dt = DType::datatypeOf(op); |
908 |
|
std::stringstream ssc; |
909 |
|
ssc << dt[index].getConstructor(); |
910 |
|
opName << getNameForUserName(ssc.str()); |
911 |
|
} |
912 |
|
else if (k == APPLY_SELECTOR) |
913 |
|
{ |
914 |
|
unsigned index = DType::indexOf(op); |
915 |
|
const DType& dt = DType::datatypeOf(op); |
916 |
|
unsigned cindex = DType::cindexOf(op); |
917 |
|
std::stringstream sss; |
918 |
|
sss << dt[cindex][index].getSelector(); |
919 |
|
opName << getNameForUserName(sss.str()); |
920 |
|
} |
921 |
|
else if (k == APPLY_SELECTOR_TOTAL) |
922 |
|
{ |
923 |
|
ret = maybeMkSkolemFun(op, macroApply); |
924 |
|
Assert(!ret.isNull()); |
925 |
|
} |
926 |
|
else if (k == SINGLETON || k == MK_BAG) |
927 |
|
{ |
928 |
|
if (!macroApply) |
929 |
|
{ |
930 |
|
opName << "f_"; |
931 |
|
} |
932 |
|
opName << printer::smt2::Smt2Printer::smtKindString(k); |
933 |
|
} |
934 |
|
else |
935 |
|
{ |
936 |
|
opName << op; |
937 |
|
} |
938 |
|
if (ret.isNull()) |
939 |
|
{ |
940 |
|
ret = getSymbolInternal(k, ftype, opName.str()); |
941 |
|
} |
942 |
|
// if indexed, apply to index |
943 |
|
if (!indices.empty()) |
944 |
|
{ |
945 |
|
std::vector<Node> ichildren; |
946 |
|
ichildren.push_back(ret); |
947 |
|
ichildren.insert(ichildren.end(), indices.begin(), indices.end()); |
948 |
|
ret = nm->mkNode(APPLY_UF, ichildren); |
949 |
|
} |
950 |
|
Trace("lfsc-term-process-debug2") << "...return " << ret << std::endl; |
951 |
|
return ret; |
952 |
|
} |
953 |
10 |
std::vector<TypeNode> argTypes; |
954 |
15 |
for (const Node& nc : n) |
955 |
|
{ |
956 |
10 |
argTypes.push_back(nc.getType()); |
957 |
|
} |
958 |
|
// we only use binary operators |
959 |
5 |
if (NodeManager::isNAryKind(k)) |
960 |
|
{ |
961 |
3 |
argTypes.resize(2); |
962 |
|
} |
963 |
10 |
TypeNode tn = n.getType(); |
964 |
10 |
TypeNode ftype = nm->mkFunctionType(argTypes, tn); |
965 |
|
// most functions are called f_X where X is the SMT-LIB name, if we are |
966 |
|
// getting the macroApply variant, then we don't prefix with `f_`. |
967 |
5 |
if (!macroApply) |
968 |
|
{ |
969 |
5 |
opName << "f_"; |
970 |
|
} |
971 |
|
// all arithmetic kinds must explicitly deal with real vs int subtyping |
972 |
5 |
if (k == PLUS || k == MULT || k == NONLINEAR_MULT || k == GEQ || k == GT |
973 |
5 |
|| k == LEQ || k == LT || k == MINUS || k == DIVISION |
974 |
5 |
|| k == DIVISION_TOTAL || k == INTS_DIVISION || k == INTS_DIVISION_TOTAL |
975 |
5 |
|| k == INTS_MODULUS || k == INTS_MODULUS_TOTAL || k == UMINUS |
976 |
5 |
|| k == POW) |
977 |
|
{ |
978 |
|
// currently allow subtyping |
979 |
|
opName << "a."; |
980 |
|
} |
981 |
5 |
if (k == UMINUS) |
982 |
|
{ |
983 |
|
opName << "u"; |
984 |
|
} |
985 |
5 |
opName << printer::smt2::Smt2Printer::smtKindString(k); |
986 |
5 |
if (k == DIVISION_TOTAL || k == INTS_DIVISION_TOTAL |
987 |
5 |
|| k == INTS_MODULUS_TOTAL) |
988 |
|
{ |
989 |
|
opName << "_total"; |
990 |
|
} |
991 |
5 |
return getSymbolInternal(k, ftype, opName.str()); |
992 |
|
} |
993 |
|
|
994 |
|
Node LfscNodeConverter::getOperatorOfClosure(Node q, bool macroApply) |
995 |
|
{ |
996 |
|
NodeManager* nm = NodeManager::currentNM(); |
997 |
|
TypeNode bodyType = nm->mkFunctionType(q[1].getType(), q.getType()); |
998 |
|
// We permit non-flat function types here |
999 |
|
// intType is used here for variable indices |
1000 |
|
TypeNode intType = nm->integerType(); |
1001 |
|
TypeNode ftype = nm->mkFunctionType({intType, d_sortType}, bodyType); |
1002 |
|
Kind k = q.getKind(); |
1003 |
|
std::stringstream opName; |
1004 |
|
if (!macroApply) |
1005 |
|
{ |
1006 |
|
opName << "f_"; |
1007 |
|
} |
1008 |
|
opName << printer::smt2::Smt2Printer::smtKindString(k); |
1009 |
|
return getSymbolInternal(k, ftype, opName.str()); |
1010 |
|
} |
1011 |
|
|
1012 |
|
Node LfscNodeConverter::getOperatorOfBoundVar(Node cop, Node v) |
1013 |
|
{ |
1014 |
|
NodeManager* nm = NodeManager::currentNM(); |
1015 |
|
Node x = nm->mkConst(Rational(getOrAssignIndexForVar(v))); |
1016 |
|
Node tc = typeAsNode(convertType(v.getType())); |
1017 |
|
return nm->mkNode(APPLY_UF, cop, x, tc); |
1018 |
|
} |
1019 |
|
|
1020 |
5 |
size_t LfscNodeConverter::getOrAssignIndexForVar(Node v) |
1021 |
|
{ |
1022 |
5 |
Assert(v.isVar()); |
1023 |
5 |
std::map<Node, size_t>::iterator it = d_varIndex.find(v); |
1024 |
5 |
if (it != d_varIndex.end()) |
1025 |
|
{ |
1026 |
|
return it->second; |
1027 |
|
} |
1028 |
5 |
size_t id = d_varIndex.size(); |
1029 |
5 |
d_varIndex[v] = id; |
1030 |
5 |
return id; |
1031 |
|
} |
1032 |
|
|
1033 |
|
} // namespace proof |
1034 |
31137 |
} // namespace cvc5 |