1 |
|
/****************************************************************************** |
2 |
|
* Top contributors (to current version): |
3 |
|
* Andrew Reynolds, Haniel Barbosa, Aina Niemetz |
4 |
|
* |
5 |
|
* This file is part of the cvc5 project. |
6 |
|
* |
7 |
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS |
8 |
|
* in the top-level source directory and their institutional affiliations. |
9 |
|
* All rights reserved. See the file COPYING in the top-level source |
10 |
|
* directory for licensing information. |
11 |
|
* **************************************************************************** |
12 |
|
* |
13 |
|
* Implementation of module for processing proof nodes. |
14 |
|
*/ |
15 |
|
|
16 |
|
#include "smt/proof_post_processor.h" |
17 |
|
|
18 |
|
#include "expr/skolem_manager.h" |
19 |
|
#include "options/proof_options.h" |
20 |
|
#include "preprocessing/assertion_pipeline.h" |
21 |
|
#include "proof/proof_node_algorithm.h" |
22 |
|
#include "proof/proof_node_manager.h" |
23 |
|
#include "smt/solver_engine.h" |
24 |
|
#include "theory/arith/arith_utilities.h" |
25 |
|
#include "theory/builtin/proof_checker.h" |
26 |
|
#include "theory/bv/bitblast/bitblast_proof_generator.h" |
27 |
|
#include "theory/bv/bitblast/proof_bitblaster.h" |
28 |
|
#include "theory/rewriter.h" |
29 |
|
#include "theory/strings/infer_proof_cons.h" |
30 |
|
#include "theory/theory.h" |
31 |
|
#include "util/rational.h" |
32 |
|
|
33 |
|
using namespace cvc5::kind; |
34 |
|
using namespace cvc5::theory; |
35 |
|
|
36 |
|
namespace cvc5 { |
37 |
|
namespace smt { |
38 |
|
|
39 |
7987 |
ProofPostprocessCallback::ProofPostprocessCallback(Env& env, |
40 |
|
ProofGenerator* pppg, |
41 |
|
rewriter::RewriteDb* rdb, |
42 |
7987 |
bool updateScopedAssumptions) |
43 |
|
: EnvObj(env), |
44 |
7987 |
d_pnm(env.getProofNodeManager()), |
45 |
|
d_pppg(pppg), |
46 |
|
d_wfpm(env), |
47 |
15974 |
d_updateScopedAssumptions(updateScopedAssumptions) |
48 |
|
{ |
49 |
7987 |
d_true = NodeManager::currentNM()->mkConst(true); |
50 |
7987 |
} |
51 |
|
|
52 |
7662 |
void ProofPostprocessCallback::initializeUpdate() |
53 |
|
{ |
54 |
7662 |
d_assumpToProof.clear(); |
55 |
7662 |
d_wfAssumptions.clear(); |
56 |
7662 |
} |
57 |
|
|
58 |
58190 |
void ProofPostprocessCallback::setEliminateRule(PfRule rule) |
59 |
|
{ |
60 |
58190 |
d_elimRules.insert(rule); |
61 |
58190 |
} |
62 |
|
|
63 |
2485258 |
bool ProofPostprocessCallback::shouldUpdate(std::shared_ptr<ProofNode> pn, |
64 |
|
const std::vector<Node>& fa, |
65 |
|
bool& continueUpdate) |
66 |
|
{ |
67 |
2485258 |
PfRule id = pn->getRule(); |
68 |
2485258 |
if (d_elimRules.find(id) != d_elimRules.end()) |
69 |
|
{ |
70 |
161018 |
return true; |
71 |
|
} |
72 |
|
// other than elimination rules, we always update assumptions as long as |
73 |
|
// d_updateScopedAssumptions is true or they are *not* in scope, i.e., not in |
74 |
|
// fa |
75 |
4648480 |
if (id != PfRule::ASSUME |
76 |
6698368 |
|| (!d_updateScopedAssumptions |
77 |
2324240 |
&& std::find(fa.begin(), fa.end(), pn->getResult()) != fa.end())) |
78 |
|
{ |
79 |
4099776 |
Trace("smt-proof-pp-debug") |
80 |
2049888 |
<< "... not updating in-scope assumption " << pn->getResult() << "\n"; |
81 |
2049888 |
return false; |
82 |
|
} |
83 |
274352 |
return true; |
84 |
|
} |
85 |
|
|
86 |
505037 |
bool ProofPostprocessCallback::update(Node res, |
87 |
|
PfRule id, |
88 |
|
const std::vector<Node>& children, |
89 |
|
const std::vector<Node>& args, |
90 |
|
CDProof* cdp, |
91 |
|
bool& continueUpdate) |
92 |
|
{ |
93 |
1010074 |
Trace("smt-proof-pp-debug") << "- Post process " << id << " " << children |
94 |
505037 |
<< " / " << args << std::endl; |
95 |
|
|
96 |
505037 |
if (id == PfRule::ASSUME) |
97 |
|
{ |
98 |
|
// we cache based on the assumption node, not the proof node, since there |
99 |
|
// may be multiple occurrences of the same node. |
100 |
548704 |
Node f = args[0]; |
101 |
548704 |
std::shared_ptr<ProofNode> pfn; |
102 |
|
std::map<Node, std::shared_ptr<ProofNode>>::iterator it = |
103 |
274352 |
d_assumpToProof.find(f); |
104 |
274352 |
if (it != d_assumpToProof.end()) |
105 |
|
{ |
106 |
226380 |
Trace("smt-proof-pp-debug") << "...already computed" << std::endl; |
107 |
226380 |
pfn = it->second; |
108 |
|
} |
109 |
|
else |
110 |
|
{ |
111 |
47972 |
Trace("smt-proof-pp-debug") << "...get proof" << std::endl; |
112 |
47972 |
Assert(d_pppg != nullptr); |
113 |
|
// get proof from preprocess proof generator |
114 |
47972 |
pfn = d_pppg->getProofFor(f); |
115 |
47972 |
Trace("smt-proof-pp-debug") << "...finished get proof" << std::endl; |
116 |
|
// print for debugging |
117 |
47972 |
if (pfn == nullptr) |
118 |
|
{ |
119 |
38636 |
Trace("smt-proof-pp-debug") |
120 |
19318 |
<< "...no proof, possibly an input assumption" << std::endl; |
121 |
|
} |
122 |
|
else |
123 |
|
{ |
124 |
28654 |
Assert(pfn->getResult() == f); |
125 |
28654 |
if (Trace.isOn("smt-proof-pp")) |
126 |
|
{ |
127 |
|
Trace("smt-proof-pp") |
128 |
|
<< "=== Connect proof for preprocessing: " << f << std::endl; |
129 |
|
Trace("smt-proof-pp") << *pfn.get() << std::endl; |
130 |
|
} |
131 |
|
} |
132 |
47972 |
d_assumpToProof[f] = pfn; |
133 |
|
} |
134 |
274352 |
if (pfn == nullptr || pfn->getRule() == PfRule::ASSUME) |
135 |
|
{ |
136 |
250511 |
Trace("smt-proof-pp-debug") << "...do not add proof" << std::endl; |
137 |
|
// no update |
138 |
250511 |
return false; |
139 |
|
} |
140 |
23841 |
Trace("smt-proof-pp-debug") << "...add proof" << std::endl; |
141 |
|
// connect the proof |
142 |
23841 |
cdp->addProof(pfn); |
143 |
23841 |
return true; |
144 |
|
} |
145 |
461370 |
Node ret = expandMacros(id, children, args, cdp); |
146 |
230685 |
Trace("smt-proof-pp-debug") << "...expanded = " << !ret.isNull() << std::endl; |
147 |
230685 |
return !ret.isNull(); |
148 |
|
} |
149 |
|
|
150 |
69667 |
bool ProofPostprocessCallback::updateInternal(Node res, |
151 |
|
PfRule id, |
152 |
|
const std::vector<Node>& children, |
153 |
|
const std::vector<Node>& args, |
154 |
|
CDProof* cdp) |
155 |
|
{ |
156 |
69667 |
bool continueUpdate = true; |
157 |
69667 |
return update(res, id, children, args, cdp, continueUpdate); |
158 |
|
} |
159 |
|
|
160 |
34579 |
Node ProofPostprocessCallback::eliminateCrowdingLits( |
161 |
|
const std::vector<Node>& clauseLits, |
162 |
|
const std::vector<Node>& targetClauseLits, |
163 |
|
const std::vector<Node>& children, |
164 |
|
const std::vector<Node>& args, |
165 |
|
CDProof* cdp) |
166 |
|
{ |
167 |
34579 |
Trace("smt-proof-pp-debug2") << push; |
168 |
34579 |
Trace("smt-proof-pp-debug2") << "Clause lits: " << clauseLits << "\n"; |
169 |
34579 |
Trace("smt-proof-pp-debug2") << "Target lits: " << targetClauseLits << "\n\n"; |
170 |
34579 |
NodeManager* nm = NodeManager::currentNM(); |
171 |
69158 |
Node trueNode = nm->mkConst(true); |
172 |
|
// get crowding lits and the position of the last clause that includes |
173 |
|
// them. The factoring step must be added after the last inclusion and before |
174 |
|
// its elimination. |
175 |
69158 |
std::unordered_set<TNode> crowding; |
176 |
69158 |
std::vector<std::pair<Node, size_t>> lastInclusion; |
177 |
|
// positions of eliminators of crowding literals, which are the positions of |
178 |
|
// the clauses that eliminate crowding literals *after* their last inclusion |
179 |
69158 |
std::vector<size_t> eliminators; |
180 |
1775265 |
for (size_t i = 0, size = clauseLits.size(); i < size; ++i) |
181 |
|
{ |
182 |
5222058 |
if (!crowding.count(clauseLits[i]) |
183 |
8269554 |
&& std::find( |
184 |
1523748 |
targetClauseLits.begin(), targetClauseLits.end(), clauseLits[i]) |
185 |
4788182 |
== targetClauseLits.end()) |
186 |
|
{ |
187 |
515178 |
Node crowdLit = clauseLits[i]; |
188 |
257589 |
crowding.insert(crowdLit); |
189 |
257589 |
Trace("smt-proof-pp-debug2") << "crowding lit " << crowdLit << "\n"; |
190 |
|
// found crowding lit, now get its last inclusion position, which is the |
191 |
|
// position of the last resolution link that introduces the crowding |
192 |
|
// literal. Note that this position has to be *before* the last link, as a |
193 |
|
// link *after* the last inclusion must eliminate the crowding literal. |
194 |
|
size_t j; |
195 |
5308845 |
for (j = children.size() - 1; j > 0; --j) |
196 |
|
{ |
197 |
|
// notice that only non-singleton clauses may be introducing the |
198 |
|
// crowding literal, so we only care about non-singleton OR nodes. We |
199 |
|
// check then against the kind and whether the whole OR node occurs as a |
200 |
|
// pivot of the respective resolution |
201 |
5308845 |
if (children[j - 1].getKind() != kind::OR) |
202 |
|
{ |
203 |
753184 |
continue; |
204 |
|
} |
205 |
4555661 |
uint64_t pivotIndex = 2 * (j - 1); |
206 |
9111322 |
if (args[pivotIndex] == children[j - 1] |
207 |
9111322 |
|| args[pivotIndex].notNode() == children[j - 1]) |
208 |
|
{ |
209 |
14647 |
continue; |
210 |
|
} |
211 |
13623042 |
if (std::find(children[j - 1].begin(), children[j - 1].end(), crowdLit) |
212 |
13623042 |
!= children[j - 1].end()) |
213 |
|
{ |
214 |
257589 |
break; |
215 |
|
} |
216 |
|
} |
217 |
257589 |
Assert(j > 0); |
218 |
257589 |
lastInclusion.emplace_back(crowdLit, j - 1); |
219 |
|
|
220 |
257589 |
Trace("smt-proof-pp-debug2") << "last inc " << j - 1 << "\n"; |
221 |
|
// get elimination position, starting from the following link as the last |
222 |
|
// inclusion one. The result is the last (in the chain, but first from |
223 |
|
// this point on) resolution link that eliminates the crowding literal. A |
224 |
|
// literal l is eliminated by a link if it contains a literal l' with |
225 |
|
// opposite polarity to l. |
226 |
1785243 |
for (; j < children.size(); ++j) |
227 |
|
{ |
228 |
1021416 |
bool posFirst = args[(2 * j) - 1] == trueNode; |
229 |
1785243 |
Node pivot = args[(2 * j)]; |
230 |
2042832 |
Trace("smt-proof-pp-debug2") |
231 |
1021416 |
<< "\tcheck w/ args " << posFirst << " / " << pivot << "\n"; |
232 |
|
// To eliminate the crowding literal (crowdLit), the clause must contain |
233 |
|
// it with opposite polarity. There are three successful cases, |
234 |
|
// according to the pivot and its sign |
235 |
|
// |
236 |
|
// - crowdLit is the same as the pivot and posFirst is true, which means |
237 |
|
// that the clause contains its negation and eliminates it |
238 |
|
// |
239 |
|
// - crowdLit is the negation of the pivot and posFirst is false, so the |
240 |
|
// clause contains the node whose negation is crowdLit. Note that this |
241 |
|
// case may either be crowdLit.notNode() == pivot or crowdLit == |
242 |
|
// pivot.notNode(). |
243 |
2168007 |
if ((crowdLit == pivot && posFirst) |
244 |
1917657 |
|| (crowdLit.notNode() == pivot && !posFirst) |
245 |
2939073 |
|| (pivot.notNode() == crowdLit && !posFirst)) |
246 |
|
{ |
247 |
257589 |
Trace("smt-proof-pp-debug2") << "\t\tfound it!\n"; |
248 |
257589 |
eliminators.push_back(j); |
249 |
257589 |
break; |
250 |
|
} |
251 |
|
} |
252 |
257589 |
AlwaysAssert(j < children.size()); |
253 |
|
} |
254 |
|
} |
255 |
34579 |
Assert(!lastInclusion.empty()); |
256 |
|
// order map so that we process crowding literals in the order of the clauses |
257 |
|
// that last introduce them |
258 |
775874 |
auto cmp = [](std::pair<Node, size_t>& a, std::pair<Node, size_t>& b) { |
259 |
775874 |
return a.second < b.second; |
260 |
775874 |
}; |
261 |
34579 |
std::sort(lastInclusion.begin(), lastInclusion.end(), cmp); |
262 |
|
// order eliminators |
263 |
34579 |
std::sort(eliminators.begin(), eliminators.end()); |
264 |
34579 |
if (Trace.isOn("smt-proof-pp-debug")) |
265 |
|
{ |
266 |
|
Trace("smt-proof-pp-debug") << "crowding lits last inclusion:\n"; |
267 |
|
for (const auto& pair : lastInclusion) |
268 |
|
{ |
269 |
|
Trace("smt-proof-pp-debug") |
270 |
|
<< "\t- [" << pair.second << "] : " << pair.first << "\n"; |
271 |
|
} |
272 |
|
Trace("smt-proof-pp-debug") << "eliminators:"; |
273 |
|
for (size_t elim : eliminators) |
274 |
|
{ |
275 |
|
Trace("smt-proof-pp-debug") << " " << elim; |
276 |
|
} |
277 |
|
Trace("smt-proof-pp-debug") << "\n"; |
278 |
|
} |
279 |
|
// TODO (cvc4-wishues/issues/77): implement also simpler version and compare |
280 |
|
// |
281 |
|
// We now start to break the chain, one step at a time. Naively this breaking |
282 |
|
// down would be one resolution/factoring to each crowding literal, but we can |
283 |
|
// merge some of the cases. Effectively we do the following: |
284 |
|
// |
285 |
|
// |
286 |
|
// lastClause children[start] ... children[end] |
287 |
|
// ---------------------------------------------- CHAIN_RES |
288 |
|
// C |
289 |
|
// ----------- FACTORING |
290 |
|
// lastClause' children[start'] ... children[end'] |
291 |
|
// -------------------------------------------------------------- CHAIN_RES |
292 |
|
// ... |
293 |
|
// |
294 |
|
// where |
295 |
|
// lastClause_0 = children[0] |
296 |
|
// start_0 = 1 |
297 |
|
// end_0 = eliminators[0] - 1 |
298 |
|
// start_i+1 = nextGuardedElimPos - 1 |
299 |
|
// |
300 |
|
// The important point is how end_i+1 is computed. It is based on what we call |
301 |
|
// the "nextGuardedElimPos", i.e., the next elimination position that requires |
302 |
|
// removal of duplicates. The intuition is that a factoring step may eliminate |
303 |
|
// the duplicates of crowding literals l1 and l2. If the last inclusion of l2 |
304 |
|
// is before the elimination of l1, then we can go ahead and also perform the |
305 |
|
// elimination of l2 without another factoring. However if another literal l3 |
306 |
|
// has its last inclusion after the elimination of l2, then the elimination of |
307 |
|
// l3 is the next guarded elimination. |
308 |
|
// |
309 |
|
// To do the above computation then we determine, after a resolution/factoring |
310 |
|
// step, the first crowded literal to have its last inclusion after "end". The |
311 |
|
// first elimination position to be bigger than the position of that crowded |
312 |
|
// literal is the next guarded elimination position. |
313 |
34579 |
size_t lastElim = 0; |
314 |
34579 |
Node lastClause = children[0]; |
315 |
69158 |
std::vector<Node> childrenRes; |
316 |
69158 |
std::vector<Node> childrenResArgs; |
317 |
69158 |
Node resPlaceHolder; |
318 |
34579 |
size_t nextGuardedElimPos = eliminators[0]; |
319 |
|
do |
320 |
|
{ |
321 |
198685 |
size_t start = lastElim + 1; |
322 |
198685 |
size_t end = nextGuardedElimPos - 1; |
323 |
397370 |
Trace("smt-proof-pp-debug2") |
324 |
198685 |
<< "res with:\n\t\tlastClause: " << lastClause |
325 |
198685 |
<< "\n\t\tstart: " << start << "\n\t\tend: " << end << "\n"; |
326 |
198685 |
childrenRes.push_back(lastClause); |
327 |
|
// note that the interval of insert is exclusive in the end, so we add 1 |
328 |
596055 |
childrenRes.insert(childrenRes.end(), |
329 |
397370 |
children.begin() + start, |
330 |
993425 |
children.begin() + end + 1); |
331 |
596055 |
childrenResArgs.insert(childrenResArgs.end(), |
332 |
397370 |
args.begin() + (2 * start) - 1, |
333 |
993425 |
args.begin() + (2 * end) + 1); |
334 |
198685 |
Trace("smt-proof-pp-debug2") << "\tres children: " << childrenRes << "\n"; |
335 |
198685 |
Trace("smt-proof-pp-debug2") << "\tres args: " << childrenResArgs << "\n"; |
336 |
397370 |
resPlaceHolder = d_pnm->getChecker()->checkDebug(PfRule::CHAIN_RESOLUTION, |
337 |
|
childrenRes, |
338 |
|
childrenResArgs, |
339 |
397370 |
Node::null(), |
340 |
|
""); |
341 |
397370 |
Trace("smt-proof-pp-debug2") |
342 |
198685 |
<< "resPlaceHorder: " << resPlaceHolder << "\n"; |
343 |
198685 |
Trace("smt-proof-pp-debug2") << "-------\n"; |
344 |
198685 |
cdp->addStep( |
345 |
|
resPlaceHolder, PfRule::CHAIN_RESOLUTION, childrenRes, childrenResArgs); |
346 |
|
// I need to add factoring if end < children.size(). Otherwise, this is |
347 |
|
// to be handled by the caller |
348 |
198685 |
if (end < children.size() - 1) |
349 |
|
{ |
350 |
492318 |
lastClause = d_pnm->getChecker()->checkDebug( |
351 |
492318 |
PfRule::FACTORING, {resPlaceHolder}, {}, Node::null(), ""); |
352 |
164106 |
if (!lastClause.isNull()) |
353 |
|
{ |
354 |
164106 |
cdp->addStep(lastClause, PfRule::FACTORING, {resPlaceHolder}, {}); |
355 |
164106 |
Trace("smt-proof-pp-debug2") << "Apply factoring.\n"; |
356 |
|
} |
357 |
|
else |
358 |
|
{ |
359 |
|
lastClause = resPlaceHolder; |
360 |
|
} |
361 |
164106 |
Trace("smt-proof-pp-debug2") << "lastClause: " << lastClause << "\n"; |
362 |
|
} |
363 |
|
else |
364 |
|
{ |
365 |
34579 |
lastClause = resPlaceHolder; |
366 |
34579 |
break; |
367 |
|
} |
368 |
|
// update for next round |
369 |
164106 |
childrenRes.clear(); |
370 |
164106 |
childrenResArgs.clear(); |
371 |
164106 |
lastElim = end; |
372 |
|
|
373 |
|
// find the position of the last inclusion of the next crowded literal |
374 |
164106 |
size_t nextCrowdedInclusionPos = lastInclusion.size(); |
375 |
1405806 |
for (size_t i = 0, size = lastInclusion.size(); i < size; ++i) |
376 |
|
{ |
377 |
1371227 |
if (lastInclusion[i].second > lastElim) |
378 |
|
{ |
379 |
129527 |
nextCrowdedInclusionPos = i; |
380 |
129527 |
break; |
381 |
|
} |
382 |
|
} |
383 |
328212 |
Trace("smt-proof-pp-debug2") |
384 |
164106 |
<< "nextCrowdedInclusion/Pos: " |
385 |
164106 |
<< lastInclusion[nextCrowdedInclusionPos].second << "/" |
386 |
164106 |
<< nextCrowdedInclusionPos << "\n"; |
387 |
|
// if there is none, then the remaining literals will be used in the next |
388 |
|
// round |
389 |
164106 |
if (nextCrowdedInclusionPos == lastInclusion.size()) |
390 |
|
{ |
391 |
34579 |
nextGuardedElimPos = children.size(); |
392 |
|
} |
393 |
|
else |
394 |
|
{ |
395 |
129527 |
nextGuardedElimPos = children.size(); |
396 |
1048873 |
for (size_t i = 0, size = eliminators.size(); i < size; ++i) |
397 |
|
{ |
398 |
|
// nextGuardedElimPos is the largest element of |
399 |
|
// eliminators bigger the next crowded literal's last inclusion |
400 |
1048873 |
if (eliminators[i] > lastInclusion[nextCrowdedInclusionPos].second) |
401 |
|
{ |
402 |
129527 |
nextGuardedElimPos = eliminators[i]; |
403 |
129527 |
break; |
404 |
|
} |
405 |
|
} |
406 |
129527 |
Assert(nextGuardedElimPos < children.size()); |
407 |
|
} |
408 |
328212 |
Trace("smt-proof-pp-debug2") |
409 |
328212 |
<< "nextGuardedElimPos: " << nextGuardedElimPos << "\n"; |
410 |
|
} while (true); |
411 |
69158 |
Trace("smt-proof-pp-debug2") << pop; |
412 |
69158 |
return lastClause; |
413 |
|
} |
414 |
|
|
415 |
322349 |
Node ProofPostprocessCallback::expandMacros(PfRule id, |
416 |
|
const std::vector<Node>& children, |
417 |
|
const std::vector<Node>& args, |
418 |
|
CDProof* cdp) |
419 |
|
{ |
420 |
322349 |
if (d_elimRules.find(id) == d_elimRules.end()) |
421 |
|
{ |
422 |
|
// not eliminated |
423 |
20 |
return Node::null(); |
424 |
|
} |
425 |
|
// macro elimination |
426 |
322329 |
if (id == PfRule::MACRO_SR_EQ_INTRO) |
427 |
|
{ |
428 |
|
// (TRANS |
429 |
|
// (SUBS <children> :args args[0:1]) |
430 |
|
// (REWRITE :args <t.substitute(x1,t1). ... .substitute(xn,tn)> args[2])) |
431 |
196904 |
std::vector<Node> tchildren; |
432 |
196904 |
Node t = args[0]; |
433 |
196904 |
Node ts; |
434 |
98452 |
if (!children.empty()) |
435 |
|
{ |
436 |
29184 |
std::vector<Node> sargs; |
437 |
14592 |
sargs.push_back(t); |
438 |
14592 |
MethodId ids = MethodId::SB_DEFAULT; |
439 |
14592 |
if (args.size() >= 2) |
440 |
|
{ |
441 |
10979 |
if (getMethodId(args[1], ids)) |
442 |
|
{ |
443 |
10979 |
sargs.push_back(args[1]); |
444 |
|
} |
445 |
|
} |
446 |
14592 |
MethodId ida = MethodId::SBA_SEQUENTIAL; |
447 |
14592 |
if (args.size() >= 3) |
448 |
|
{ |
449 |
3087 |
if (getMethodId(args[2], ida)) |
450 |
|
{ |
451 |
3087 |
sargs.push_back(args[2]); |
452 |
|
} |
453 |
|
} |
454 |
14592 |
ts = builtin::BuiltinProofRuleChecker::applySubstitution( |
455 |
|
t, children, ids, ida); |
456 |
29184 |
Trace("smt-proof-pp-debug") |
457 |
14592 |
<< "...eq intro subs equality is " << t << " == " << ts << ", from " |
458 |
14592 |
<< ids << " " << ida << std::endl; |
459 |
14592 |
if (ts != t) |
460 |
|
{ |
461 |
18080 |
Node eq = t.eqNode(ts); |
462 |
|
// apply SUBS proof rule if necessary |
463 |
9040 |
if (!updateInternal(eq, PfRule::SUBS, children, sargs, cdp)) |
464 |
|
{ |
465 |
|
// if we specified that we did not want to eliminate, add as step |
466 |
|
cdp->addStep(eq, PfRule::SUBS, children, sargs); |
467 |
|
} |
468 |
9040 |
tchildren.push_back(eq); |
469 |
|
} |
470 |
|
} |
471 |
|
else |
472 |
|
{ |
473 |
|
// no substitute |
474 |
83860 |
ts = t; |
475 |
|
} |
476 |
196904 |
std::vector<Node> rargs; |
477 |
98452 |
rargs.push_back(ts); |
478 |
98452 |
MethodId idr = MethodId::RW_REWRITE; |
479 |
98452 |
if (args.size() >= 4) |
480 |
|
{ |
481 |
90 |
if (getMethodId(args[3], idr)) |
482 |
|
{ |
483 |
90 |
rargs.push_back(args[3]); |
484 |
|
} |
485 |
|
} |
486 |
196904 |
Node tr = d_env.rewriteViaMethod(ts, idr); |
487 |
196904 |
Trace("smt-proof-pp-debug") |
488 |
98452 |
<< "...eq intro rewrite equality is " << ts << " == " << tr << ", from " |
489 |
98452 |
<< idr << std::endl; |
490 |
98452 |
if (ts != tr) |
491 |
|
{ |
492 |
121254 |
Node eq = ts.eqNode(tr); |
493 |
|
// apply REWRITE proof rule |
494 |
60627 |
if (!updateInternal(eq, PfRule::REWRITE, {}, rargs, cdp)) |
495 |
|
{ |
496 |
|
// if not elimianted, add as step |
497 |
7 |
cdp->addStep(eq, PfRule::REWRITE, {}, rargs); |
498 |
|
} |
499 |
60627 |
tchildren.push_back(eq); |
500 |
|
} |
501 |
98452 |
if (t == tr) |
502 |
|
{ |
503 |
|
// typically not necessary, but done to be robust |
504 |
36523 |
cdp->addStep(t.eqNode(tr), PfRule::REFL, {}, {t}); |
505 |
36523 |
return t.eqNode(tr); |
506 |
|
} |
507 |
|
// must add TRANS if two step |
508 |
61929 |
return addProofForTrans(tchildren, cdp); |
509 |
|
} |
510 |
223877 |
else if (id == PfRule::MACRO_SR_PRED_INTRO) |
511 |
|
{ |
512 |
16132 |
std::vector<Node> tchildren; |
513 |
16132 |
std::vector<Node> sargs = args; |
514 |
|
// take into account witness form, if necessary |
515 |
8066 |
bool reqWitness = d_wfpm.requiresWitnessFormIntro(args[0]); |
516 |
16132 |
Trace("smt-proof-pp-debug") |
517 |
8066 |
<< "...pred intro reqWitness=" << reqWitness << std::endl; |
518 |
|
// (TRUE_ELIM |
519 |
|
// (TRANS |
520 |
|
// (MACRO_SR_EQ_INTRO <children> :args (t args[1:])) |
521 |
|
// ... proof of apply_SR(t) = toWitness(apply_SR(t)) ... |
522 |
|
// (MACRO_SR_EQ_INTRO {} {toWitness(apply_SR(t))}) |
523 |
|
// )) |
524 |
|
// Notice this is an optimized, one sided version of the expansion of |
525 |
|
// MACRO_SR_PRED_TRANSFORM below. |
526 |
|
// We call the expandMacros method on MACRO_SR_EQ_INTRO, where notice |
527 |
|
// that this rule application is immediately expanded in the recursive |
528 |
|
// call and not added to the proof. |
529 |
16132 |
Node conc = expandMacros(PfRule::MACRO_SR_EQ_INTRO, children, sargs, cdp); |
530 |
16132 |
Trace("smt-proof-pp-debug") |
531 |
8066 |
<< "...pred intro conclusion is " << conc << std::endl; |
532 |
8066 |
Assert(!conc.isNull()); |
533 |
8066 |
Assert(conc.getKind() == EQUAL); |
534 |
8066 |
Assert(conc[0] == args[0]); |
535 |
8066 |
tchildren.push_back(conc); |
536 |
8066 |
if (reqWitness) |
537 |
|
{ |
538 |
5886 |
Node weq = addProofForWitnessForm(conc[1], cdp); |
539 |
2943 |
Trace("smt-proof-pp-debug") << "...weq is " << weq << std::endl; |
540 |
2943 |
if (addToTransChildren(weq, tchildren)) |
541 |
|
{ |
542 |
|
// toWitness(apply_SR(t)) = apply_SR(toWitness(apply_SR(t))) |
543 |
|
// rewrite again, don't need substitution. Also we always use the |
544 |
|
// default rewriter, due to the definition of MACRO_SR_PRED_INTRO. |
545 |
5606 |
Node weqr = expandMacros(PfRule::MACRO_SR_EQ_INTRO, {}, {weq[1]}, cdp); |
546 |
2803 |
addToTransChildren(weqr, tchildren); |
547 |
|
} |
548 |
|
} |
549 |
|
// apply transitivity if necessary |
550 |
16132 |
Node eq = addProofForTrans(tchildren, cdp); |
551 |
8066 |
Assert(!eq.isNull()); |
552 |
8066 |
Assert(eq.getKind() == EQUAL); |
553 |
8066 |
Assert(eq[0] == args[0]); |
554 |
8066 |
Assert(eq[1] == d_true); |
555 |
|
|
556 |
8066 |
cdp->addStep(eq[0], PfRule::TRUE_ELIM, {eq}, {}); |
557 |
8066 |
return eq[0]; |
558 |
|
} |
559 |
215811 |
else if (id == PfRule::MACRO_SR_PRED_ELIM) |
560 |
|
{ |
561 |
|
// (EQ_RESOLVE |
562 |
|
// children[0] |
563 |
|
// (MACRO_SR_EQ_INTRO children[1:] :args children[0] ++ args)) |
564 |
4188 |
std::vector<Node> schildren(children.begin() + 1, children.end()); |
565 |
4188 |
std::vector<Node> srargs; |
566 |
2094 |
srargs.push_back(children[0]); |
567 |
2094 |
srargs.insert(srargs.end(), args.begin(), args.end()); |
568 |
4188 |
Node conc = expandMacros(PfRule::MACRO_SR_EQ_INTRO, schildren, srargs, cdp); |
569 |
2094 |
Assert(!conc.isNull()); |
570 |
2094 |
Assert(conc.getKind() == EQUAL); |
571 |
2094 |
Assert(conc[0] == children[0]); |
572 |
|
// apply equality resolve |
573 |
2094 |
cdp->addStep(conc[1], PfRule::EQ_RESOLVE, {children[0], conc}, {}); |
574 |
2094 |
return conc[1]; |
575 |
|
} |
576 |
213717 |
else if (id == PfRule::MACRO_SR_PRED_TRANSFORM) |
577 |
|
{ |
578 |
|
// (EQ_RESOLVE |
579 |
|
// children[0] |
580 |
|
// (TRANS |
581 |
|
// (MACRO_SR_EQ_INTRO children[1:] :args (children[0] args[1:])) |
582 |
|
// ... proof of c = wc |
583 |
|
// (MACRO_SR_EQ_INTRO {} wc) |
584 |
|
// (SYMM |
585 |
|
// (MACRO_SR_EQ_INTRO children[1:] :args <args>) |
586 |
|
// ... proof of a = wa |
587 |
|
// (MACRO_SR_EQ_INTRO {} wa)))) |
588 |
|
// where |
589 |
|
// wa = toWitness(apply_SR(args[0])) and |
590 |
|
// wc = toWitness(apply_SR(children[0])). |
591 |
81562 |
Trace("smt-proof-pp-debug") |
592 |
40781 |
<< "Transform " << children[0] << " == " << args[0] << std::endl; |
593 |
40781 |
if (CDProof::isSame(children[0], args[0])) |
594 |
|
{ |
595 |
4454 |
Trace("smt-proof-pp-debug") << "...nothing to do" << std::endl; |
596 |
|
// nothing to do |
597 |
4454 |
return children[0]; |
598 |
|
} |
599 |
72654 |
std::vector<Node> tchildren; |
600 |
72654 |
std::vector<Node> schildren(children.begin() + 1, children.end()); |
601 |
72654 |
std::vector<Node> sargs = args; |
602 |
|
// first, compute if we need |
603 |
36327 |
bool reqWitness = d_wfpm.requiresWitnessFormTransform(children[0], args[0]); |
604 |
36327 |
Trace("smt-proof-pp-debug") << "...reqWitness=" << reqWitness << std::endl; |
605 |
|
// convert both sides, in three steps, take symmetry of second chain |
606 |
108981 |
for (unsigned r = 0; r < 2; r++) |
607 |
|
{ |
608 |
145308 |
std::vector<Node> tchildrenr; |
609 |
|
// first rewrite children[0], then args[0] |
610 |
72654 |
sargs[0] = r == 0 ? children[0] : args[0]; |
611 |
|
// t = apply_SR(t) |
612 |
145308 |
Node eq = expandMacros(PfRule::MACRO_SR_EQ_INTRO, schildren, sargs, cdp); |
613 |
145308 |
Trace("smt-proof-pp-debug") |
614 |
72654 |
<< "transform subs_rewrite (" << r << "): " << eq << std::endl; |
615 |
72654 |
Assert(!eq.isNull() && eq.getKind() == EQUAL && eq[0] == sargs[0]); |
616 |
72654 |
addToTransChildren(eq, tchildrenr); |
617 |
|
// apply_SR(t) = toWitness(apply_SR(t)) |
618 |
72654 |
if (reqWitness) |
619 |
|
{ |
620 |
23648 |
Node weq = addProofForWitnessForm(eq[1], cdp); |
621 |
23648 |
Trace("smt-proof-pp-debug") |
622 |
11824 |
<< "transform toWitness (" << r << "): " << weq << std::endl; |
623 |
11824 |
if (addToTransChildren(weq, tchildrenr)) |
624 |
|
{ |
625 |
|
// toWitness(apply_SR(t)) = apply_SR(toWitness(apply_SR(t))) |
626 |
|
// rewrite again, don't need substitution. Also, we always use the |
627 |
|
// default rewriter, due to the definition of MACRO_SR_PRED_TRANSFORM. |
628 |
|
Node weqr = |
629 |
12054 |
expandMacros(PfRule::MACRO_SR_EQ_INTRO, {}, {weq[1]}, cdp); |
630 |
12054 |
Trace("smt-proof-pp-debug") << "transform rewrite_witness (" << r |
631 |
6027 |
<< "): " << weqr << std::endl; |
632 |
6027 |
addToTransChildren(weqr, tchildrenr); |
633 |
|
} |
634 |
|
} |
635 |
145308 |
Trace("smt-proof-pp-debug") |
636 |
72654 |
<< "transform connect (" << r << ")" << std::endl; |
637 |
|
// add to overall chain |
638 |
72654 |
if (r == 0) |
639 |
|
{ |
640 |
|
// add the current chain to the overall chain |
641 |
36327 |
tchildren.insert(tchildren.end(), tchildrenr.begin(), tchildrenr.end()); |
642 |
|
} |
643 |
|
else |
644 |
|
{ |
645 |
|
// add the current chain to cdp |
646 |
72654 |
Node eqr = addProofForTrans(tchildrenr, cdp); |
647 |
36327 |
if (!eqr.isNull()) |
648 |
|
{ |
649 |
46714 |
Trace("smt-proof-pp-debug") << "transform connect sym " << tchildren |
650 |
23357 |
<< " " << eqr << std::endl; |
651 |
|
// take symmetry of above and add it to the overall chain |
652 |
23357 |
addToTransChildren(eqr, tchildren, true); |
653 |
|
} |
654 |
|
} |
655 |
145308 |
Trace("smt-proof-pp-debug") |
656 |
72654 |
<< "transform finish (" << r << ")" << std::endl; |
657 |
|
} |
658 |
|
|
659 |
|
// apply transitivity if necessary |
660 |
72654 |
Node eq = addProofForTrans(tchildren, cdp); |
661 |
|
|
662 |
36327 |
cdp->addStep(eq[1], PfRule::EQ_RESOLVE, {children[0], eq}, {}); |
663 |
36327 |
return args[0]; |
664 |
|
} |
665 |
172936 |
else if (id == PfRule::MACRO_RESOLUTION |
666 |
172936 |
|| id == PfRule::MACRO_RESOLUTION_TRUST) |
667 |
|
{ |
668 |
|
// first generate the naive chain_resolution |
669 |
180726 |
std::vector<Node> chainResArgs{args.begin() + 1, args.end()}; |
670 |
90363 |
Node chainConclusion = d_pnm->getChecker()->checkDebug( |
671 |
180726 |
PfRule::CHAIN_RESOLUTION, children, chainResArgs, Node::null(), ""); |
672 |
90363 |
Trace("smt-proof-pp-debug") << "Original conclusion: " << args[0] << "\n"; |
673 |
180726 |
Trace("smt-proof-pp-debug") |
674 |
90363 |
<< "chainRes conclusion: " << chainConclusion << "\n"; |
675 |
|
// There are n cases: |
676 |
|
// - if the conclusion is the same, just replace |
677 |
|
// - if they have the same literals but in different quantity, add a |
678 |
|
// FACTORING step |
679 |
|
// - if the order is not the same, add a REORDERING step |
680 |
|
// - if there are literals in chainConclusion that are not in the original |
681 |
|
// conclusion, we need to transform the MACRO_RESOLUTION into a series of |
682 |
|
// CHAIN_RESOLUTION + FACTORING steps, so that we explicitly eliminate all |
683 |
|
// these "crowding" literals. We do this via FACTORING so we avoid adding |
684 |
|
// an exponential number of premises, which would happen if we just |
685 |
|
// repeated in the premises the clauses needed for eliminating crowding |
686 |
|
// literals, which could themselves add crowding literals. |
687 |
90363 |
if (chainConclusion == args[0]) |
688 |
|
{ |
689 |
40625 |
Trace("smt-proof-pp-debug") << "..same conclusion, DONE.\n"; |
690 |
40625 |
cdp->addStep( |
691 |
|
chainConclusion, PfRule::CHAIN_RESOLUTION, children, chainResArgs); |
692 |
40625 |
return chainConclusion; |
693 |
|
} |
694 |
49738 |
NodeManager* nm = NodeManager::currentNM(); |
695 |
|
// If we got here, then chainConclusion is NECESSARILY an OR node |
696 |
49738 |
Assert(chainConclusion.getKind() == kind::OR); |
697 |
|
// get the literals in the chain conclusion |
698 |
|
std::vector<Node> chainConclusionLits{chainConclusion.begin(), |
699 |
99476 |
chainConclusion.end()}; |
700 |
|
std::set<Node> chainConclusionLitsSet{chainConclusion.begin(), |
701 |
99476 |
chainConclusion.end()}; |
702 |
99476 |
Trace("smt-proof-pp-debug2") |
703 |
49738 |
<< "..chainConclusionLits: " << chainConclusionLits << "\n"; |
704 |
99476 |
Trace("smt-proof-pp-debug2") |
705 |
49738 |
<< "..chainConclusionLitsSet: " << chainConclusionLitsSet << "\n"; |
706 |
99476 |
std::vector<Node> conclusionLits; |
707 |
|
// is args[0] a singleton clause? Yes if it's not an OR node. One might also |
708 |
|
// think that it is a singleton if args[0] occurs in chainConclusionLitsSet. |
709 |
|
// However it's not possible to know this only looking at the sets. For |
710 |
|
// example with |
711 |
|
// |
712 |
|
// args[0] : (or b c) |
713 |
|
// chairConclusionLitsSet : {b, c, (or b c)} |
714 |
|
// |
715 |
|
// we have that if args[0] occurs in the set but as a crowding literal, then |
716 |
|
// args[0] is *not* a singleton clause. But if b and c were crowding |
717 |
|
// literals, then args[0] would be a singleton clause. Since our intention |
718 |
|
// is to determine who are the crowding literals exactly based on whether |
719 |
|
// args[0] is a singleton or not, we must determine in another way whether |
720 |
|
// args[0] is a singleton. |
721 |
|
// |
722 |
|
// Thus we rely on the standard utility to determine if args[0] is singleton |
723 |
|
// based on the premises and arguments of the resolution |
724 |
49738 |
if (expr::isSingletonClause(args[0], children, chainResArgs)) |
725 |
|
{ |
726 |
8799 |
conclusionLits.push_back(args[0]); |
727 |
|
} |
728 |
|
else |
729 |
|
{ |
730 |
40939 |
Assert(args[0].getKind() == kind::OR); |
731 |
40939 |
conclusionLits.insert( |
732 |
81878 |
conclusionLits.end(), args[0].begin(), args[0].end()); |
733 |
|
} |
734 |
|
std::set<Node> conclusionLitsSet{conclusionLits.begin(), |
735 |
99476 |
conclusionLits.end()}; |
736 |
|
// If the sets are different, there are "crowding" literals, i.e. literals |
737 |
|
// that were removed by implicit multi-usage of premises in the resolution |
738 |
|
// chain. |
739 |
49738 |
if (chainConclusionLitsSet != conclusionLitsSet) |
740 |
|
{ |
741 |
34579 |
Trace("smt-proof-pp-debug") << "..need to eliminate crowding lits.\n"; |
742 |
34579 |
chainConclusion = eliminateCrowdingLits( |
743 |
|
chainConclusionLits, conclusionLits, children, args, cdp); |
744 |
|
// update vector of lits. Note that the set is no longer used, so we don't |
745 |
|
// need to update it |
746 |
|
// |
747 |
|
// We need again to check whether chainConclusion is a singleton |
748 |
|
// clause. As above, it's a singleton if it's in the original |
749 |
|
// chainConclusionLitsSet. |
750 |
34579 |
chainConclusionLits.clear(); |
751 |
34579 |
if (chainConclusionLitsSet.count(chainConclusion)) |
752 |
|
{ |
753 |
|
chainConclusionLits.push_back(chainConclusion); |
754 |
|
} |
755 |
|
else |
756 |
|
{ |
757 |
34579 |
Assert(chainConclusion.getKind() == kind::OR); |
758 |
103737 |
chainConclusionLits.insert(chainConclusionLits.end(), |
759 |
|
chainConclusion.begin(), |
760 |
103737 |
chainConclusion.end()); |
761 |
|
} |
762 |
|
} |
763 |
|
else |
764 |
|
{ |
765 |
15159 |
Trace("smt-proof-pp-debug") << "..add chainRes step directly.\n"; |
766 |
15159 |
cdp->addStep( |
767 |
|
chainConclusion, PfRule::CHAIN_RESOLUTION, children, chainResArgs); |
768 |
|
} |
769 |
99476 |
Trace("smt-proof-pp-debug") |
770 |
49738 |
<< "Conclusion after chain_res/elimCrowd: " << chainConclusion << "\n"; |
771 |
99476 |
Trace("smt-proof-pp-debug") |
772 |
49738 |
<< "Conclusion lits: " << chainConclusionLits << "\n"; |
773 |
|
// Placeholder for running conclusion |
774 |
99476 |
Node n = chainConclusion; |
775 |
|
// factoring |
776 |
49738 |
if (chainConclusionLits.size() != conclusionLits.size()) |
777 |
|
{ |
778 |
48139 |
Trace("smt-proof-pp-debug") << "..add factoring step.\n"; |
779 |
|
// We build it rather than taking conclusionLits because the order may be |
780 |
|
// different |
781 |
96278 |
std::vector<Node> factoredLits; |
782 |
96278 |
std::unordered_set<TNode> clauseSet; |
783 |
930612 |
for (size_t i = 0, size = chainConclusionLits.size(); i < size; ++i) |
784 |
|
{ |
785 |
882473 |
if (clauseSet.count(chainConclusionLits[i])) |
786 |
|
{ |
787 |
369325 |
continue; |
788 |
|
} |
789 |
513148 |
factoredLits.push_back(n[i]); |
790 |
513148 |
clauseSet.insert(n[i]); |
791 |
|
} |
792 |
48139 |
Node factored = factoredLits.empty() |
793 |
|
? nm->mkConst(false) |
794 |
48139 |
: factoredLits.size() == 1 |
795 |
8799 |
? factoredLits[0] |
796 |
153216 |
: nm->mkNode(kind::OR, factoredLits); |
797 |
48139 |
cdp->addStep(factored, PfRule::FACTORING, {n}, {}); |
798 |
48139 |
n = factored; |
799 |
|
} |
800 |
|
// either same node or n as a clause |
801 |
49738 |
Assert(n == args[0] || n.getKind() == kind::OR); |
802 |
|
// reordering |
803 |
49738 |
if (n != args[0]) |
804 |
|
{ |
805 |
33314 |
Trace("smt-proof-pp-debug") << "..add reordering step.\n"; |
806 |
33314 |
cdp->addStep(args[0], PfRule::REORDERING, {n}, {args[0]}); |
807 |
|
} |
808 |
49738 |
return args[0]; |
809 |
|
} |
810 |
82573 |
else if (id == PfRule::SUBS) |
811 |
|
{ |
812 |
9040 |
NodeManager* nm = NodeManager::currentNM(); |
813 |
|
// Notice that a naive way to reconstruct SUBS is to do a term conversion |
814 |
|
// proof for each substitution. |
815 |
|
// The proof of f(a) * { a -> g(b) } * { b -> c } = f(g(c)) is: |
816 |
|
// TRANS( CONG{f}( a=g(b) ), CONG{f}( CONG{g}( b=c ) ) ) |
817 |
|
// Notice that more optimal proofs are possible that do a single traversal |
818 |
|
// over t. This is done by applying later substitutions to the range of |
819 |
|
// previous substitutions, until a final simultaneous substitution is |
820 |
|
// applied to t. For instance, in the above example, we first prove: |
821 |
|
// CONG{g}( b = c ) |
822 |
|
// by applying the second substitution { b -> c } to the range of the first, |
823 |
|
// giving us a proof of g(b)=g(c). We then construct the updated proof |
824 |
|
// by tranitivity: |
825 |
|
// TRANS( a=g(b), CONG{g}( b=c ) ) |
826 |
|
// We then apply the substitution { a -> g(c), b -> c } to f(a), to obtain: |
827 |
|
// CONG{f}( TRANS( a=g(b), CONG{g}( b=c ) ) ) |
828 |
|
// which notice is more compact than the proof above. |
829 |
18080 |
Node t = args[0]; |
830 |
|
// get the kind of substitution |
831 |
9040 |
MethodId ids = MethodId::SB_DEFAULT; |
832 |
9040 |
if (args.size() >= 2) |
833 |
|
{ |
834 |
6953 |
getMethodId(args[1], ids); |
835 |
|
} |
836 |
9040 |
MethodId ida = MethodId::SBA_SEQUENTIAL; |
837 |
9040 |
if (args.size() >= 3) |
838 |
|
{ |
839 |
3007 |
getMethodId(args[2], ida); |
840 |
|
} |
841 |
18080 |
std::vector<std::shared_ptr<CDProof>> pfs; |
842 |
18080 |
std::vector<TNode> vsList; |
843 |
18080 |
std::vector<TNode> ssList; |
844 |
18080 |
std::vector<TNode> fromList; |
845 |
18080 |
std::vector<ProofGenerator*> pgs; |
846 |
|
// first, compute the entire substitution |
847 |
560825 |
for (size_t i = 0, nchild = children.size(); i < nchild; i++) |
848 |
|
{ |
849 |
|
// get the substitution |
850 |
1103570 |
builtin::BuiltinProofRuleChecker::getSubstitutionFor( |
851 |
551785 |
children[i], vsList, ssList, fromList, ids); |
852 |
|
// ensure proofs for each formula in fromList |
853 |
551785 |
if (children[i].getKind() == AND && ids == MethodId::SB_DEFAULT) |
854 |
|
{ |
855 |
|
for (size_t j = 0, nchildi = children[i].getNumChildren(); j < nchildi; |
856 |
|
j++) |
857 |
|
{ |
858 |
|
Node nodej = nm->mkConst(Rational(j)); |
859 |
|
cdp->addStep( |
860 |
|
children[i][j], PfRule::AND_ELIM, {children[i]}, {nodej}); |
861 |
|
} |
862 |
|
} |
863 |
|
} |
864 |
18080 |
std::vector<Node> vvec; |
865 |
18080 |
std::vector<Node> svec; |
866 |
560825 |
for (size_t i = 0, nvs = vsList.size(); i < nvs; i++) |
867 |
|
{ |
868 |
|
// Note we process in forward order, since later substitution should be |
869 |
|
// applied to earlier ones, and the last child of a SUBS is processed |
870 |
|
// first. |
871 |
1103311 |
TNode var = vsList[i]; |
872 |
1103311 |
TNode subs = ssList[i]; |
873 |
1103311 |
TNode childFrom = fromList[i]; |
874 |
1103570 |
Trace("smt-proof-pp-debug") |
875 |
551785 |
<< "...process " << var << " -> " << subs << " (" << childFrom << ", " |
876 |
551785 |
<< ids << ")" << std::endl; |
877 |
|
// apply the current substitution to the range |
878 |
551785 |
if (!vvec.empty() && ida == MethodId::SBA_SEQUENTIAL) |
879 |
|
{ |
880 |
|
Node ss = |
881 |
2025 |
subs.substitute(vvec.begin(), vvec.end(), svec.begin(), svec.end()); |
882 |
1142 |
if (ss != subs) |
883 |
|
{ |
884 |
518 |
Trace("smt-proof-pp-debug") |
885 |
259 |
<< "......updated to " << var << " -> " << ss |
886 |
259 |
<< " based on previous substitution" << std::endl; |
887 |
|
// make the proof for the tranitivity step |
888 |
518 |
std::shared_ptr<CDProof> pf = std::make_shared<CDProof>(d_pnm); |
889 |
259 |
pfs.push_back(pf); |
890 |
|
// prove the updated substitution |
891 |
|
TConvProofGenerator tcg(d_pnm, |
892 |
|
nullptr, |
893 |
|
TConvPolicy::ONCE, |
894 |
|
TConvCachePolicy::NEVER, |
895 |
|
"nested_SUBS_TConvProofGenerator", |
896 |
|
nullptr, |
897 |
518 |
true); |
898 |
|
// add previous rewrite steps |
899 |
916 |
for (unsigned j = 0, nvars = vvec.size(); j < nvars; j++) |
900 |
|
{ |
901 |
|
// substitutions are pre-rewrites |
902 |
657 |
tcg.addRewriteStep(vvec[j], svec[j], pgs[j], true); |
903 |
|
} |
904 |
|
// get the proof for the update to the current substitution |
905 |
518 |
Node seqss = subs.eqNode(ss); |
906 |
518 |
std::shared_ptr<ProofNode> pfn = tcg.getProofFor(seqss); |
907 |
259 |
Assert(pfn != nullptr); |
908 |
|
// add the proof |
909 |
259 |
pf->addProof(pfn); |
910 |
|
// get proof for childFrom from cdp |
911 |
259 |
pfn = cdp->getProofFor(childFrom); |
912 |
259 |
pf->addProof(pfn); |
913 |
|
// ensure we have a proof of var = subs |
914 |
518 |
Node veqs = addProofForSubsStep(var, subs, childFrom, pf.get()); |
915 |
|
// transitivity |
916 |
259 |
pf->addStep(var.eqNode(ss), PfRule::TRANS, {veqs, seqss}, {}); |
917 |
|
// add to the substitution |
918 |
259 |
vvec.push_back(var); |
919 |
259 |
svec.push_back(ss); |
920 |
259 |
pgs.push_back(pf.get()); |
921 |
259 |
continue; |
922 |
|
} |
923 |
|
} |
924 |
|
// Just use equality from CDProof, but ensure we have a proof in cdp. |
925 |
|
// This may involve a TRUE_INTRO/FALSE_INTRO if the substitution step |
926 |
|
// uses the assumption childFrom as a Boolean assignment (e.g. |
927 |
|
// childFrom = true if we are using MethodId::SB_LITERAL). |
928 |
551526 |
addProofForSubsStep(var, subs, childFrom, cdp); |
929 |
551526 |
vvec.push_back(var); |
930 |
551526 |
svec.push_back(subs); |
931 |
551526 |
pgs.push_back(cdp); |
932 |
|
} |
933 |
|
// should be implied by the substitution now |
934 |
9040 |
TConvPolicy tcpolicy = ida == MethodId::SBA_FIXPOINT ? TConvPolicy::FIXPOINT |
935 |
|
: TConvPolicy::ONCE; |
936 |
|
TConvProofGenerator tcpg(d_pnm, |
937 |
|
nullptr, |
938 |
|
tcpolicy, |
939 |
|
TConvCachePolicy::NEVER, |
940 |
|
"SUBS_TConvProofGenerator", |
941 |
|
nullptr, |
942 |
18080 |
true); |
943 |
560825 |
for (unsigned j = 0, nvars = vvec.size(); j < nvars; j++) |
944 |
|
{ |
945 |
|
// substitutions are pre-rewrites |
946 |
551785 |
tcpg.addRewriteStep(vvec[j], svec[j], pgs[j], true); |
947 |
|
} |
948 |
|
// add the proof constructed by the term conversion utility |
949 |
18080 |
std::shared_ptr<ProofNode> pfn = tcpg.getProofForRewriting(t); |
950 |
18080 |
Node eq = pfn->getResult(); |
951 |
|
Node ts = builtin::BuiltinProofRuleChecker::applySubstitution( |
952 |
18080 |
t, children, ids, ida); |
953 |
18080 |
Node eqq = t.eqNode(ts); |
954 |
9040 |
if (eq != eqq) |
955 |
|
{ |
956 |
|
pfn = nullptr; |
957 |
|
} |
958 |
|
// should give a proof, if not, then tcpg does not agree with the |
959 |
|
// substitution. |
960 |
9040 |
if (pfn == nullptr) |
961 |
|
{ |
962 |
|
warning() << "resort to TRUST_SUBS" << std::endl |
963 |
|
<< eq << std::endl |
964 |
|
<< eqq << std::endl |
965 |
|
<< "from " << children << " applied to " << t << std::endl; |
966 |
|
cdp->addStep(eqq, PfRule::TRUST_SUBS, {}, {eqq}); |
967 |
|
} |
968 |
|
else |
969 |
|
{ |
970 |
9040 |
cdp->addProof(pfn); |
971 |
|
} |
972 |
9040 |
return eqq; |
973 |
|
} |
974 |
73533 |
else if (id == PfRule::REWRITE) |
975 |
|
{ |
976 |
|
// get the kind of rewrite |
977 |
65943 |
MethodId idr = MethodId::RW_REWRITE; |
978 |
65943 |
TheoryId theoryId = Theory::theoryOf(args[0]); |
979 |
65943 |
if (args.size() >= 2) |
980 |
|
{ |
981 |
89 |
getMethodId(args[1], idr); |
982 |
|
} |
983 |
65943 |
Rewriter* rr = d_env.getRewriter(); |
984 |
131886 |
Node ret = d_env.rewriteViaMethod(args[0], idr); |
985 |
131886 |
Node eq = args[0].eqNode(ret); |
986 |
65943 |
if (idr == MethodId::RW_REWRITE || idr == MethodId::RW_REWRITE_EQ_EXT) |
987 |
|
{ |
988 |
|
// rewrites from theory::Rewriter |
989 |
65923 |
bool isExtEq = (idr == MethodId::RW_REWRITE_EQ_EXT); |
990 |
|
// use rewrite with proof interface |
991 |
131846 |
TrustNode trn = rr->rewriteWithProof(args[0], isExtEq); |
992 |
131846 |
std::shared_ptr<ProofNode> pfn = trn.toProofNode(); |
993 |
65923 |
if (pfn == nullptr) |
994 |
|
{ |
995 |
138 |
Trace("smt-proof-pp-debug") |
996 |
69 |
<< "Use TRUST_REWRITE for " << eq << std::endl; |
997 |
|
// did not have a proof of rewriting, probably isExtEq is true |
998 |
69 |
if (isExtEq) |
999 |
|
{ |
1000 |
|
// update to THEORY_REWRITE with idr |
1001 |
69 |
Assert(args.size() >= 1); |
1002 |
138 |
Node tid = builtin::BuiltinProofRuleChecker::mkTheoryIdNode(theoryId); |
1003 |
69 |
cdp->addStep(eq, PfRule::THEORY_REWRITE, {}, {eq, tid, args[1]}); |
1004 |
|
} |
1005 |
|
else |
1006 |
|
{ |
1007 |
|
// this should never be applied |
1008 |
|
cdp->addStep(eq, PfRule::TRUST_REWRITE, {}, {eq}); |
1009 |
|
} |
1010 |
|
} |
1011 |
|
else |
1012 |
|
{ |
1013 |
65854 |
cdp->addProof(pfn); |
1014 |
|
} |
1015 |
131846 |
Assert(trn.getNode() == ret) |
1016 |
65923 |
<< "Unexpected rewrite " << args[0] << std::endl |
1017 |
65923 |
<< "Got: " << trn.getNode() << std::endl |
1018 |
65923 |
<< "Expected: " << ret; |
1019 |
|
} |
1020 |
20 |
else if (idr == MethodId::RW_EVALUATE) |
1021 |
|
{ |
1022 |
|
// change to evaluate, which is never eliminated |
1023 |
|
cdp->addStep(eq, PfRule::EVALUATE, {}, {args[0]}); |
1024 |
|
} |
1025 |
|
else |
1026 |
|
{ |
1027 |
|
// try to reconstruct as a standalone rewrite |
1028 |
20 |
std::vector<Node> targs; |
1029 |
20 |
targs.push_back(eq); |
1030 |
20 |
targs.push_back( |
1031 |
40 |
builtin::BuiltinProofRuleChecker::mkTheoryIdNode(theoryId)); |
1032 |
|
// in this case, must be a non-standard rewrite kind |
1033 |
20 |
Assert(args.size() >= 2); |
1034 |
20 |
targs.push_back(args[1]); |
1035 |
20 |
Node eqp = expandMacros(PfRule::THEORY_REWRITE, {}, targs, cdp); |
1036 |
20 |
if (eqp.isNull()) |
1037 |
|
{ |
1038 |
|
// don't know how to eliminate |
1039 |
20 |
return Node::null(); |
1040 |
|
} |
1041 |
|
} |
1042 |
65923 |
if (args[0] == ret) |
1043 |
|
{ |
1044 |
|
// should not be necessary typically |
1045 |
|
cdp->addStep(eq, PfRule::REFL, {}, {args[0]}); |
1046 |
|
} |
1047 |
65923 |
return eq; |
1048 |
|
} |
1049 |
7590 |
else if (id == PfRule::THEORY_REWRITE) |
1050 |
|
{ |
1051 |
|
Assert(!args.empty()); |
1052 |
|
Node eq = args[0]; |
1053 |
|
Assert(eq.getKind() == EQUAL); |
1054 |
|
// try to replay theory rewrite |
1055 |
|
// first, check that maybe its just an evaluation step |
1056 |
|
ProofChecker* pc = d_pnm->getChecker(); |
1057 |
|
Node ceval = |
1058 |
|
pc->checkDebug(PfRule::EVALUATE, {}, {eq[0]}, eq, "smt-proof-pp-debug"); |
1059 |
|
if (!ceval.isNull() && ceval == eq) |
1060 |
|
{ |
1061 |
|
cdp->addStep(eq, PfRule::EVALUATE, {}, {eq[0]}); |
1062 |
|
return eq; |
1063 |
|
} |
1064 |
|
// otherwise no update |
1065 |
|
Trace("final-pf-hole") << "hole: " << id << " : " << eq << std::endl; |
1066 |
|
} |
1067 |
7590 |
else if (id == PfRule::MACRO_ARITH_SCALE_SUM_UB) |
1068 |
|
{ |
1069 |
4948 |
Debug("macro::arith") << "Expand MACRO_ARITH_SCALE_SUM_UB" << std::endl; |
1070 |
4948 |
if (Debug.isOn("macro::arith")) |
1071 |
|
{ |
1072 |
|
for (const auto& child : children) |
1073 |
|
{ |
1074 |
|
Debug("macro::arith") << " child: " << child << std::endl; |
1075 |
|
} |
1076 |
|
Debug("macro::arith") << " args: " << args << std::endl; |
1077 |
|
} |
1078 |
4948 |
Assert(args.size() == children.size()); |
1079 |
4948 |
NodeManager* nm = NodeManager::currentNM(); |
1080 |
9896 |
ProofStepBuffer steps{d_pnm->getChecker()}; |
1081 |
|
|
1082 |
|
// Scale all children, accumulating |
1083 |
9896 |
std::vector<Node> scaledRels; |
1084 |
35326 |
for (size_t i = 0; i < children.size(); ++i) |
1085 |
|
{ |
1086 |
60756 |
TNode child = children[i]; |
1087 |
60756 |
TNode scalar = args[i]; |
1088 |
30378 |
bool isPos = scalar.getConst<Rational>() > 0; |
1089 |
|
Node scalarCmp = |
1090 |
60756 |
nm->mkNode(isPos ? GT : LT, scalar, nm->mkConst(Rational(0))); |
1091 |
|
// (= scalarCmp true) |
1092 |
60756 |
Node scalarCmpOrTrue = steps.tryStep(PfRule::EVALUATE, {}, {scalarCmp}); |
1093 |
30378 |
Assert(!scalarCmpOrTrue.isNull()); |
1094 |
|
// scalarCmp |
1095 |
30378 |
steps.addStep(PfRule::TRUE_ELIM, {scalarCmpOrTrue}, {}, scalarCmp); |
1096 |
|
// (and scalarCmp relation) |
1097 |
|
Node scalarCmpAndRel = |
1098 |
60756 |
steps.tryStep(PfRule::AND_INTRO, {scalarCmp, child}, {}); |
1099 |
30378 |
Assert(!scalarCmpAndRel.isNull()); |
1100 |
|
// (=> (and scalarCmp relation) scaled) |
1101 |
|
Node impl = |
1102 |
|
steps.tryStep(isPos ? PfRule::ARITH_MULT_POS : PfRule::ARITH_MULT_NEG, |
1103 |
|
{}, |
1104 |
60756 |
{scalar, child}); |
1105 |
30378 |
Assert(!impl.isNull()); |
1106 |
|
// scaled |
1107 |
|
Node scaled = |
1108 |
60756 |
steps.tryStep(PfRule::MODUS_PONENS, {scalarCmpAndRel, impl}, {}); |
1109 |
30378 |
Assert(!scaled.isNull()); |
1110 |
30378 |
scaledRels.emplace_back(scaled); |
1111 |
|
} |
1112 |
|
|
1113 |
9896 |
Node sumBounds = steps.tryStep(PfRule::ARITH_SUM_UB, scaledRels, {}); |
1114 |
4948 |
cdp->addSteps(steps); |
1115 |
9896 |
Debug("macro::arith") << "Expansion done. Proved: " << sumBounds |
1116 |
4948 |
<< std::endl; |
1117 |
4948 |
return sumBounds; |
1118 |
|
} |
1119 |
2642 |
else if (id == PfRule::STRING_INFERENCE) |
1120 |
|
{ |
1121 |
|
// get the arguments |
1122 |
1074 |
Node conc; |
1123 |
|
InferenceId iid; |
1124 |
|
bool isRev; |
1125 |
1074 |
std::vector<Node> exp; |
1126 |
1074 |
if (strings::InferProofCons::unpackArgs(args, conc, iid, isRev, exp)) |
1127 |
|
{ |
1128 |
1074 |
if (strings::InferProofCons::addProofTo(cdp, conc, iid, isRev, exp)) |
1129 |
|
{ |
1130 |
1074 |
return conc; |
1131 |
|
} |
1132 |
|
} |
1133 |
|
} |
1134 |
1568 |
else if (id == PfRule::BV_BITBLAST) |
1135 |
|
{ |
1136 |
3136 |
bv::BBProof bb(d_env, nullptr, d_pnm, true); |
1137 |
3136 |
Node eq = args[0]; |
1138 |
1568 |
Assert(eq.getKind() == EQUAL); |
1139 |
1568 |
bb.bbAtom(eq[0]); |
1140 |
3136 |
Node bbAtom = bb.getStoredBBAtom(eq[0]); |
1141 |
1568 |
bb.getProofGenerator()->addProofTo(eq[0].eqNode(bbAtom), cdp); |
1142 |
1568 |
return eq; |
1143 |
|
} |
1144 |
|
|
1145 |
|
// TRUST, PREPROCESS, THEORY_LEMMA, THEORY_PREPROCESS? |
1146 |
|
|
1147 |
|
return Node::null(); |
1148 |
|
} |
1149 |
|
|
1150 |
14767 |
Node ProofPostprocessCallback::addProofForWitnessForm(Node t, CDProof* cdp) |
1151 |
|
{ |
1152 |
29534 |
Node tw = SkolemManager::getOriginalForm(t); |
1153 |
14767 |
Node eq = t.eqNode(tw); |
1154 |
14767 |
if (t == tw) |
1155 |
|
{ |
1156 |
|
// not necessary, add REFL step |
1157 |
5937 |
cdp->addStep(eq, PfRule::REFL, {}, {t}); |
1158 |
5937 |
return eq; |
1159 |
|
} |
1160 |
17660 |
std::shared_ptr<ProofNode> pn = d_wfpm.getProofFor(eq); |
1161 |
8830 |
if (pn != nullptr) |
1162 |
|
{ |
1163 |
|
// add the proof |
1164 |
8830 |
cdp->addProof(pn); |
1165 |
|
} |
1166 |
|
else |
1167 |
|
{ |
1168 |
|
Assert(false) << "ProofPostprocessCallback::addProofForWitnessForm: failed " |
1169 |
|
"to add proof for witness form of " |
1170 |
|
<< t; |
1171 |
|
} |
1172 |
8830 |
return eq; |
1173 |
|
} |
1174 |
|
|
1175 |
142649 |
Node ProofPostprocessCallback::addProofForTrans( |
1176 |
|
const std::vector<Node>& tchildren, CDProof* cdp) |
1177 |
|
{ |
1178 |
142649 |
size_t tsize = tchildren.size(); |
1179 |
142649 |
if (tsize > 1) |
1180 |
|
{ |
1181 |
36124 |
Node lhs = tchildren[0][0]; |
1182 |
36124 |
Node rhs = tchildren[tsize - 1][1]; |
1183 |
36124 |
Node eq = lhs.eqNode(rhs); |
1184 |
18062 |
cdp->addStep(eq, PfRule::TRANS, tchildren, {}); |
1185 |
18062 |
return eq; |
1186 |
|
} |
1187 |
124587 |
else if (tsize == 1) |
1188 |
|
{ |
1189 |
111617 |
return tchildren[0]; |
1190 |
|
} |
1191 |
12970 |
return Node::null(); |
1192 |
|
} |
1193 |
|
|
1194 |
551785 |
Node ProofPostprocessCallback::addProofForSubsStep(Node var, |
1195 |
|
Node subs, |
1196 |
|
Node assump, |
1197 |
|
CDProof* cdp) |
1198 |
|
{ |
1199 |
|
// ensure we have a proof of var = subs |
1200 |
551785 |
Node veqs = var.eqNode(subs); |
1201 |
551785 |
if (veqs != assump) |
1202 |
|
{ |
1203 |
|
// should be true intro or false intro |
1204 |
3946 |
Assert(subs.isConst()); |
1205 |
11838 |
cdp->addStep( |
1206 |
|
veqs, |
1207 |
3946 |
subs.getConst<bool>() ? PfRule::TRUE_INTRO : PfRule::FALSE_INTRO, |
1208 |
|
{assump}, |
1209 |
3946 |
{}); |
1210 |
|
} |
1211 |
551785 |
return veqs; |
1212 |
|
} |
1213 |
|
|
1214 |
119608 |
bool ProofPostprocessCallback::addToTransChildren(Node eq, |
1215 |
|
std::vector<Node>& tchildren, |
1216 |
|
bool isSymm) |
1217 |
|
{ |
1218 |
119608 |
Assert(!eq.isNull()); |
1219 |
119608 |
Assert(eq.getKind() == kind::EQUAL); |
1220 |
119608 |
if (eq[0] == eq[1]) |
1221 |
|
{ |
1222 |
41755 |
return false; |
1223 |
|
} |
1224 |
155706 |
Node equ = isSymm ? eq[1].eqNode(eq[0]) : eq; |
1225 |
77853 |
Assert(tchildren.empty() |
1226 |
|
|| (tchildren[tchildren.size() - 1].getKind() == kind::EQUAL |
1227 |
|
&& tchildren[tchildren.size() - 1][1] == equ[0])); |
1228 |
77853 |
tchildren.push_back(equ); |
1229 |
77853 |
return true; |
1230 |
|
} |
1231 |
|
|
1232 |
7987 |
ProofPostproccess::ProofPostproccess(Env& env, |
1233 |
|
ProofGenerator* pppg, |
1234 |
|
rewriter::RewriteDb* rdb, |
1235 |
7987 |
bool updateScopedAssumptions) |
1236 |
|
: EnvObj(env), |
1237 |
|
d_cb(env, pppg, rdb, updateScopedAssumptions), |
1238 |
|
// the update merges subproofs |
1239 |
|
d_updater( |
1240 |
7987 |
env.getProofNodeManager(), d_cb, options().proof.proofPpMerge), |
1241 |
|
d_finalCb(env.getProofNodeManager()), |
1242 |
15974 |
d_finalizer(env.getProofNodeManager(), d_finalCb) |
1243 |
|
{ |
1244 |
7987 |
} |
1245 |
|
|
1246 |
15974 |
ProofPostproccess::~ProofPostproccess() {} |
1247 |
|
|
1248 |
7662 |
void ProofPostproccess::process(std::shared_ptr<ProofNode> pf) |
1249 |
|
{ |
1250 |
|
// Initialize the callback, which computes necessary static information about |
1251 |
|
// how to process, including how to process assumptions in pf. |
1252 |
7662 |
d_cb.initializeUpdate(); |
1253 |
|
// now, process |
1254 |
7662 |
d_updater.process(pf); |
1255 |
|
// take stats and check pedantic |
1256 |
7662 |
d_finalCb.initializeUpdate(); |
1257 |
7662 |
d_finalizer.process(pf); |
1258 |
|
|
1259 |
15324 |
std::stringstream serr; |
1260 |
7662 |
bool wasPedanticFailure = d_finalCb.wasPedanticFailure(serr); |
1261 |
7662 |
if (wasPedanticFailure) |
1262 |
|
{ |
1263 |
|
AlwaysAssert(!wasPedanticFailure) |
1264 |
|
<< "ProofPostproccess::process: pedantic failure:" << std::endl |
1265 |
|
<< serr.str(); |
1266 |
|
} |
1267 |
7662 |
} |
1268 |
|
|
1269 |
58190 |
void ProofPostproccess::setEliminateRule(PfRule rule) |
1270 |
|
{ |
1271 |
58190 |
d_cb.setEliminateRule(rule); |
1272 |
58190 |
} |
1273 |
|
|
1274 |
|
} // namespace smt |
1275 |
31137 |
} // namespace cvc5 |