1 |
|
/****************************************************************************** |
2 |
|
* Top contributors (to current version): |
3 |
|
* Andrew Reynolds, Aina Niemetz |
4 |
|
* |
5 |
|
* This file is part of the cvc5 project. |
6 |
|
* |
7 |
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS |
8 |
|
* in the top-level source directory and their institutional affiliations. |
9 |
|
* All rights reserved. See the file COPYING in the top-level source |
10 |
|
* directory for licensing information. |
11 |
|
* **************************************************************************** |
12 |
|
* |
13 |
|
* Implementation of model engine model class. |
14 |
|
*/ |
15 |
|
|
16 |
|
#include "theory/quantifiers/first_order_model.h" |
17 |
|
#include "options/base_options.h" |
18 |
|
#include "options/quantifiers_options.h" |
19 |
|
#include "theory/quantifiers/fmf/bounded_integers.h" |
20 |
|
#include "theory/quantifiers/fmf/model_engine.h" |
21 |
|
#include "theory/quantifiers/quantifiers_attributes.h" |
22 |
|
#include "theory/quantifiers/term_database.h" |
23 |
|
#include "theory/quantifiers/term_enumeration.h" |
24 |
|
#include "theory/quantifiers/term_registry.h" |
25 |
|
#include "theory/quantifiers/term_util.h" |
26 |
|
|
27 |
|
using namespace cvc5::kind; |
28 |
|
using namespace cvc5::context; |
29 |
|
|
30 |
|
namespace cvc5 { |
31 |
|
namespace theory { |
32 |
|
namespace quantifiers { |
33 |
|
|
34 |
|
struct ModelBasisAttributeId |
35 |
|
{ |
36 |
|
}; |
37 |
|
using ModelBasisAttribute = expr::Attribute<ModelBasisAttributeId, bool>; |
38 |
|
// for APPLY_UF terms, 1 : term has direct child with model basis attribute, |
39 |
|
// 0 : term has no direct child with model basis attribute. |
40 |
|
struct ModelBasisArgAttributeId |
41 |
|
{ |
42 |
|
}; |
43 |
|
using ModelBasisArgAttribute = expr::Attribute<ModelBasisArgAttributeId, uint64_t>; |
44 |
|
|
45 |
15272 |
FirstOrderModel::FirstOrderModel(Env& env, |
46 |
|
QuantifiersState& qs, |
47 |
|
QuantifiersRegistry& qr, |
48 |
15272 |
TermRegistry& tr) |
49 |
|
: EnvObj(env), |
50 |
|
d_model(nullptr), |
51 |
|
d_qreg(qr), |
52 |
|
d_treg(tr), |
53 |
|
d_eq_query(env, qs, this), |
54 |
|
d_forall_asserts(context()), |
55 |
15272 |
d_forallRlvComputed(false) |
56 |
|
{ |
57 |
15272 |
} |
58 |
|
|
59 |
12151 |
void FirstOrderModel::finishInit(TheoryModel* m) { d_model = m; } |
60 |
|
|
61 |
125766 |
Node FirstOrderModel::getValue(TNode n) const { return d_model->getValue(n); } |
62 |
8884 |
bool FirstOrderModel::hasTerm(TNode a) { return d_model->hasTerm(a); } |
63 |
238788 |
Node FirstOrderModel::getRepresentative(TNode a) |
64 |
|
{ |
65 |
238788 |
return d_model->getRepresentative(a); |
66 |
|
} |
67 |
|
bool FirstOrderModel::areEqual(TNode a, TNode b) |
68 |
|
{ |
69 |
|
return d_model->areEqual(a, b); |
70 |
|
} |
71 |
|
bool FirstOrderModel::areDisequal(TNode a, TNode b) |
72 |
|
{ |
73 |
|
return d_model->areDisequal(a, b); |
74 |
|
} |
75 |
|
eq::EqualityEngine* FirstOrderModel::getEqualityEngine() |
76 |
|
{ |
77 |
|
return d_model->getEqualityEngine(); |
78 |
|
} |
79 |
169789 |
const RepSet* FirstOrderModel::getRepSet() const |
80 |
|
{ |
81 |
169789 |
return d_model->getRepSet(); |
82 |
|
} |
83 |
11199 |
RepSet* FirstOrderModel::getRepSetPtr() { return d_model->getRepSetPtr(); } |
84 |
|
TheoryModel* FirstOrderModel::getTheoryModel() { return d_model; } |
85 |
|
|
86 |
76777 |
Node FirstOrderModel::getInternalRepresentative(Node a, Node q, size_t index) |
87 |
|
{ |
88 |
76777 |
return d_eq_query.getInternalRepresentative(a, q, index); |
89 |
|
} |
90 |
|
|
91 |
69337 |
void FirstOrderModel::assertQuantifier( Node n ){ |
92 |
69337 |
if( n.getKind()==FORALL ){ |
93 |
69337 |
d_forall_asserts.push_back( n ); |
94 |
|
}else if( n.getKind()==NOT ){ |
95 |
|
Assert(n[0].getKind() == FORALL); |
96 |
|
} |
97 |
69337 |
} |
98 |
|
|
99 |
126319 |
size_t FirstOrderModel::getNumAssertedQuantifiers() const |
100 |
|
{ |
101 |
126319 |
return d_forall_asserts.size(); |
102 |
|
} |
103 |
|
|
104 |
729756 |
Node FirstOrderModel::getAssertedQuantifier( unsigned i, bool ordered ) { |
105 |
729756 |
if( !ordered || !d_forallRlvComputed ){ |
106 |
491593 |
return d_forall_asserts[i]; |
107 |
|
} |
108 |
|
// If we computed the relevant forall assertion vector, in reset_round, |
109 |
|
// then it should have the same size as the default assertion vector. |
110 |
238163 |
Assert(d_forall_rlv_assert.size() == d_forall_asserts.size()); |
111 |
238163 |
return d_forall_rlv_assert[i]; |
112 |
|
} |
113 |
|
|
114 |
2127 |
void FirstOrderModel::initialize() { |
115 |
2127 |
processInitialize( true ); |
116 |
|
//this is called after representatives have been chosen and the equality engine has been built |
117 |
|
//for each quantifier, collect all operators we care about |
118 |
11406 |
for( unsigned i=0; i<getNumAssertedQuantifiers(); i++ ){ |
119 |
18558 |
Node f = getAssertedQuantifier( i ); |
120 |
9279 |
if( d_quant_var_id.find( f )==d_quant_var_id.end() ){ |
121 |
3827 |
for(unsigned j=0; j<f[0].getNumChildren(); j++){ |
122 |
2272 |
d_quant_var_id[f][f[0][j]] = j; |
123 |
|
} |
124 |
|
} |
125 |
9279 |
processInitializeQuantifier( f ); |
126 |
|
//initialize relevant models within bodies of all quantifiers |
127 |
18558 |
std::map< Node, bool > visited; |
128 |
9279 |
initializeModelForTerm( f[1], visited ); |
129 |
|
} |
130 |
2127 |
processInitialize( false ); |
131 |
2127 |
} |
132 |
|
|
133 |
223800 |
void FirstOrderModel::initializeModelForTerm( Node n, std::map< Node, bool >& visited ){ |
134 |
223800 |
if( visited.find( n )==visited.end() ){ |
135 |
162488 |
visited[n] = true; |
136 |
162488 |
processInitializeModelForTerm( n ); |
137 |
377009 |
for( int i=0; i<(int)n.getNumChildren(); i++ ){ |
138 |
214521 |
initializeModelForTerm( n[i], visited ); |
139 |
|
} |
140 |
|
} |
141 |
223800 |
} |
142 |
|
|
143 |
3438 |
Node FirstOrderModel::getSomeDomainElement(TypeNode tn){ |
144 |
|
//check if there is even any domain elements at all |
145 |
3438 |
RepSet* rs = d_model->getRepSetPtr(); |
146 |
3438 |
if (!rs->hasType(tn) || rs->getNumRepresentatives(tn) == 0) |
147 |
|
{ |
148 |
258 |
Trace("fm-debug") << "Must create domain element for " << tn << "..." |
149 |
129 |
<< std::endl; |
150 |
258 |
Node mbt = getModelBasisTerm(tn); |
151 |
129 |
Trace("fm-debug") << "Add to representative set..." << std::endl; |
152 |
129 |
rs->add(tn, mbt); |
153 |
|
} |
154 |
3438 |
return rs->getRepresentative(tn, 0); |
155 |
|
} |
156 |
|
|
157 |
7586 |
bool FirstOrderModel::initializeRepresentativesForType(TypeNode tn) |
158 |
|
{ |
159 |
7586 |
RepSet* rs = d_model->getRepSetPtr(); |
160 |
7586 |
if (tn.isSort()) |
161 |
|
{ |
162 |
|
// must ensure uninterpreted type is non-empty. |
163 |
1808 |
if (!rs->hasType(tn)) |
164 |
|
{ |
165 |
|
// terms in rep_set are now constants which mapped to terms through |
166 |
|
// TheoryModel. Thus, should introduce a constant and a term. |
167 |
|
// For now, we just add an arbitrary term. |
168 |
14 |
Node var = getSomeDomainElement(tn); |
169 |
14 |
Trace("mkVar") << "RepSetIterator:: Make variable " << var << " : " << tn |
170 |
7 |
<< std::endl; |
171 |
7 |
rs->add(tn, var); |
172 |
|
} |
173 |
1808 |
return true; |
174 |
|
} |
175 |
|
else |
176 |
|
{ |
177 |
|
// can we complete it? |
178 |
5778 |
if (d_qreg.getQuantifiersBoundInference().mayComplete(tn)) |
179 |
|
{ |
180 |
4268 |
Trace("fm-debug") << " do complete, since cardinality is small (" |
181 |
2134 |
<< tn.getCardinality() << ")..." << std::endl; |
182 |
2134 |
rs->complete(tn); |
183 |
|
// must have succeeded |
184 |
2134 |
Assert(rs->hasType(tn)); |
185 |
2134 |
return true; |
186 |
|
} |
187 |
3644 |
Trace("fm-debug") << " variable cannot be bounded." << std::endl; |
188 |
3644 |
return false; |
189 |
|
} |
190 |
|
} |
191 |
|
|
192 |
|
bool FirstOrderModel::isModelBasis(TNode n) |
193 |
|
{ |
194 |
|
return n.getAttribute(ModelBasisAttribute()); |
195 |
|
} |
196 |
|
|
197 |
15272 |
EqualityQuery* FirstOrderModel::getEqualityQuery() { return &d_eq_query; } |
198 |
|
|
199 |
|
/** needs check */ |
200 |
123215 |
bool FirstOrderModel::checkNeeded() { |
201 |
123215 |
return d_forall_asserts.size()>0; |
202 |
|
} |
203 |
|
|
204 |
35350 |
void FirstOrderModel::reset_round() { |
205 |
35350 |
d_quant_active.clear(); |
206 |
|
|
207 |
|
// compute which quantified formulas are asserted if necessary |
208 |
70700 |
std::map<Node, bool> qassert; |
209 |
35350 |
if (!d_forall_rlv_vec.empty()) |
210 |
|
{ |
211 |
6740 |
Trace("fm-relevant-debug") |
212 |
3370 |
<< "Mark asserted quantified formulas..." << std::endl; |
213 |
153814 |
for (const Node& q : d_forall_asserts) |
214 |
|
{ |
215 |
150444 |
qassert[q] = true; |
216 |
|
} |
217 |
|
} |
218 |
|
//order the quantified formulas |
219 |
35350 |
d_forall_rlv_assert.clear(); |
220 |
35350 |
d_forallRlvComputed = false; |
221 |
35350 |
if( !d_forall_rlv_vec.empty() ){ |
222 |
3370 |
d_forallRlvComputed = true; |
223 |
3370 |
Trace("fm-relevant") << "Build sorted relevant list..." << std::endl; |
224 |
3370 |
Trace("fm-relevant-debug") << "Add relevant asserted formulas..." << std::endl; |
225 |
3370 |
std::map<Node, bool>::iterator ita; |
226 |
11872 |
for( int i=(int)(d_forall_rlv_vec.size()-1); i>=0; i-- ){ |
227 |
17004 |
Node q = d_forall_rlv_vec[i]; |
228 |
8502 |
ita = qassert.find(q); |
229 |
8502 |
if (ita != qassert.end()) |
230 |
|
{ |
231 |
7913 |
Trace("fm-relevant") << " " << q << std::endl; |
232 |
7913 |
d_forall_rlv_assert.push_back( q ); |
233 |
7913 |
qassert.erase(ita); |
234 |
|
} |
235 |
|
} |
236 |
3370 |
Trace("fm-relevant-debug") << "Add remaining asserted formulas..." << std::endl; |
237 |
153814 |
for (const Node& q : d_forall_asserts) |
238 |
|
{ |
239 |
|
// if we didn't include it above |
240 |
150444 |
if (qassert.find(q) != qassert.end()) |
241 |
|
{ |
242 |
142531 |
d_forall_rlv_assert.push_back( q ); |
243 |
|
}else{ |
244 |
7913 |
Trace("fm-relevant-debug") << "...already included " << q << std::endl; |
245 |
|
} |
246 |
|
} |
247 |
3370 |
Trace("fm-relevant-debug") << "Sizes : " << d_forall_rlv_assert.size() << " " << d_forall_asserts.size() << std::endl; |
248 |
3370 |
Assert(d_forall_rlv_assert.size() == d_forall_asserts.size()); |
249 |
|
} |
250 |
35350 |
} |
251 |
|
|
252 |
2443 |
void FirstOrderModel::markRelevant( Node q ) { |
253 |
|
// Put q on the back of the vector d_forall_rlv_vec. |
254 |
|
// If we were the last quantifier marked relevant, this is a no-op, return. |
255 |
2443 |
if( q!=d_last_forall_rlv ){ |
256 |
1164 |
Trace("fm-relevant") << "Mark relevant : " << q << std::endl; |
257 |
|
std::vector<Node>::iterator itr = |
258 |
1164 |
std::find(d_forall_rlv_vec.begin(), d_forall_rlv_vec.end(), q); |
259 |
1164 |
if (itr != d_forall_rlv_vec.end()) |
260 |
|
{ |
261 |
156 |
d_forall_rlv_vec.erase(itr, itr + 1); |
262 |
|
} |
263 |
1164 |
d_forall_rlv_vec.push_back(q); |
264 |
1164 |
d_last_forall_rlv = q; |
265 |
|
} |
266 |
2443 |
} |
267 |
|
|
268 |
1623 |
void FirstOrderModel::setQuantifierActive( TNode q, bool active ) { |
269 |
1623 |
d_quant_active[q] = active; |
270 |
1623 |
} |
271 |
|
|
272 |
326580 |
bool FirstOrderModel::isQuantifierActive(TNode q) const |
273 |
|
{ |
274 |
326580 |
std::map<TNode, bool>::const_iterator it = d_quant_active.find(q); |
275 |
326580 |
if( it==d_quant_active.end() ){ |
276 |
326502 |
return true; |
277 |
|
} |
278 |
78 |
return it->second; |
279 |
|
} |
280 |
|
|
281 |
27216 |
bool FirstOrderModel::isQuantifierAsserted(TNode q) const |
282 |
|
{ |
283 |
27216 |
return std::find( d_forall_asserts.begin(), d_forall_asserts.end(), q )!=d_forall_asserts.end(); |
284 |
|
} |
285 |
|
|
286 |
88420 |
Node FirstOrderModel::getModelBasisTerm(TypeNode tn) |
287 |
|
{ |
288 |
88420 |
if (d_model_basis_term.find(tn) == d_model_basis_term.end()) |
289 |
|
{ |
290 |
2224 |
Node mbt; |
291 |
1112 |
if (tn.isClosedEnumerable()) |
292 |
|
{ |
293 |
595 |
mbt = d_treg.getTermEnumeration()->getEnumerateTerm(tn, 0); |
294 |
|
} |
295 |
|
else |
296 |
|
{ |
297 |
517 |
if (options::fmfFreshDistConst()) |
298 |
|
{ |
299 |
|
mbt = d_treg.getTermDatabase()->getOrMakeTypeFreshVariable(tn); |
300 |
|
} |
301 |
|
else |
302 |
|
{ |
303 |
|
// The model basis term cannot be an interpreted function, or else we |
304 |
|
// may produce an inconsistent model by choosing an arbitrary |
305 |
|
// equivalence class for it. Hence, we require that it be an existing or |
306 |
|
// fresh variable. |
307 |
517 |
mbt = d_treg.getTermDatabase()->getOrMakeTypeGroundTerm(tn, true); |
308 |
|
} |
309 |
|
} |
310 |
|
ModelBasisAttribute mba; |
311 |
1112 |
mbt.setAttribute(mba, true); |
312 |
1112 |
d_model_basis_term[tn] = mbt; |
313 |
2224 |
Trace("model-basis-term") << "Choose " << mbt << " as model basis term for " |
314 |
1112 |
<< tn << std::endl; |
315 |
|
} |
316 |
88420 |
return d_model_basis_term[tn]; |
317 |
|
} |
318 |
|
|
319 |
75260 |
bool FirstOrderModel::isModelBasisTerm(Node n) |
320 |
|
{ |
321 |
75260 |
return n == getModelBasisTerm(n.getType()); |
322 |
|
} |
323 |
|
|
324 |
11359 |
Node FirstOrderModel::getModelBasisOpTerm(Node op) |
325 |
|
{ |
326 |
11359 |
if (d_model_basis_op_term.find(op) == d_model_basis_op_term.end()) |
327 |
|
{ |
328 |
2208 |
TypeNode t = op.getType(); |
329 |
2208 |
std::vector<Node> children; |
330 |
1104 |
children.push_back(op); |
331 |
2723 |
for (int i = 0; i < (int)(t.getNumChildren() - 1); i++) |
332 |
|
{ |
333 |
1619 |
children.push_back(getModelBasisTerm(t[i])); |
334 |
|
} |
335 |
1104 |
if (children.size() == 1) |
336 |
|
{ |
337 |
|
d_model_basis_op_term[op] = op; |
338 |
|
} |
339 |
|
else |
340 |
|
{ |
341 |
1104 |
d_model_basis_op_term[op] = |
342 |
2208 |
NodeManager::currentNM()->mkNode(APPLY_UF, children); |
343 |
|
} |
344 |
|
} |
345 |
11359 |
return d_model_basis_op_term[op]; |
346 |
|
} |
347 |
|
|
348 |
|
Node FirstOrderModel::getModelBasis(Node q, Node n) |
349 |
|
{ |
350 |
|
// make model basis |
351 |
|
if (d_model_basis_terms.find(q) == d_model_basis_terms.end()) |
352 |
|
{ |
353 |
|
for (unsigned j = 0; j < q[0].getNumChildren(); j++) |
354 |
|
{ |
355 |
|
d_model_basis_terms[q].push_back(getModelBasisTerm(q[0][j].getType())); |
356 |
|
} |
357 |
|
} |
358 |
|
Node gn = d_qreg.substituteInstConstants(n, q, d_model_basis_terms[q]); |
359 |
|
return gn; |
360 |
|
} |
361 |
|
|
362 |
24579 |
void FirstOrderModel::computeModelBasisArgAttribute(Node n) |
363 |
|
{ |
364 |
24579 |
if (!n.hasAttribute(ModelBasisArgAttribute())) |
365 |
|
{ |
366 |
|
// ensure that the model basis terms have been defined |
367 |
4046 |
if (n.getKind() == APPLY_UF) |
368 |
|
{ |
369 |
4046 |
getModelBasisOpTerm(n.getOperator()); |
370 |
|
} |
371 |
4046 |
uint64_t val = 0; |
372 |
|
// determine if it has model basis attribute |
373 |
11156 |
for (unsigned j = 0, nchild = n.getNumChildren(); j < nchild; j++) |
374 |
|
{ |
375 |
7110 |
if (n[j].getAttribute(ModelBasisAttribute())) |
376 |
|
{ |
377 |
920 |
val++; |
378 |
|
} |
379 |
|
} |
380 |
|
ModelBasisArgAttribute mbaa; |
381 |
4046 |
n.setAttribute(mbaa, val); |
382 |
|
} |
383 |
24579 |
} |
384 |
|
|
385 |
24579 |
unsigned FirstOrderModel::getModelBasisArg(Node n) |
386 |
|
{ |
387 |
24579 |
computeModelBasisArgAttribute(n); |
388 |
24579 |
return n.getAttribute(ModelBasisArgAttribute()); |
389 |
|
} |
390 |
|
|
391 |
|
} // namespace quantifiers |
392 |
|
} // namespace theory |
393 |
31137 |
} // namespace cvc5 |