1 |
|
/****************************************************************************** |
2 |
|
* Top contributors (to current version): |
3 |
|
* Andrew Reynolds, Morgan Deters, Tim King |
4 |
|
* |
5 |
|
* This file is part of the cvc5 project. |
6 |
|
* |
7 |
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS |
8 |
|
* in the top-level source directory and their institutional affiliations. |
9 |
|
* All rights reserved. See the file COPYING in the top-level source |
10 |
|
* directory for licensing information. |
11 |
|
* **************************************************************************** |
12 |
|
* |
13 |
|
* A manager for Nodes. |
14 |
|
*/ |
15 |
|
#include "expr/node_manager.h" |
16 |
|
|
17 |
|
#include <algorithm> |
18 |
|
#include <sstream> |
19 |
|
#include <stack> |
20 |
|
#include <utility> |
21 |
|
|
22 |
|
#include "base/check.h" |
23 |
|
#include "base/listener.h" |
24 |
|
#include "expr/attribute.h" |
25 |
|
#include "expr/bound_var_manager.h" |
26 |
|
#include "expr/datatype_index.h" |
27 |
|
#include "expr/dtype.h" |
28 |
|
#include "expr/dtype_cons.h" |
29 |
|
#include "expr/metakind.h" |
30 |
|
#include "expr/node_manager_attributes.h" |
31 |
|
#include "expr/skolem_manager.h" |
32 |
|
#include "expr/type_checker.h" |
33 |
|
#include "theory/bags/make_bag_op.h" |
34 |
|
#include "theory/sets/singleton_op.h" |
35 |
|
#include "util/abstract_value.h" |
36 |
|
#include "util/bitvector.h" |
37 |
|
#include "util/resource_manager.h" |
38 |
|
|
39 |
|
using namespace std; |
40 |
|
using namespace cvc5::expr; |
41 |
|
|
42 |
|
namespace cvc5 { |
43 |
|
|
44 |
|
namespace { |
45 |
|
|
46 |
|
/** |
47 |
|
* This class sets it reference argument to true and ensures that it gets set |
48 |
|
* to false on destruction. This can be used to make sure a flag gets toggled |
49 |
|
* in a function even on exceptional exit (e.g., see reclaimZombies()). |
50 |
|
*/ |
51 |
|
struct ScopedBool { |
52 |
|
bool& d_value; |
53 |
|
|
54 |
240659 |
ScopedBool(bool& value) : |
55 |
240659 |
d_value(value) { |
56 |
|
|
57 |
240659 |
Debug("gc") << ">> setting ScopedBool\n"; |
58 |
240659 |
d_value = true; |
59 |
240659 |
} |
60 |
|
|
61 |
481318 |
~ScopedBool() { |
62 |
240659 |
Debug("gc") << "<< clearing ScopedBool\n"; |
63 |
240659 |
d_value = false; |
64 |
240659 |
} |
65 |
|
}; |
66 |
|
|
67 |
|
/** |
68 |
|
* Similarly, ensure d_nodeUnderDeletion gets set to NULL even on |
69 |
|
* exceptional exit from NodeManager::reclaimZombies(). |
70 |
|
*/ |
71 |
|
struct NVReclaim { |
72 |
|
NodeValue*& d_deletionField; |
73 |
|
|
74 |
33426782 |
NVReclaim(NodeValue*& deletionField) : |
75 |
33426782 |
d_deletionField(deletionField) { |
76 |
|
|
77 |
33426782 |
Debug("gc") << ">> setting NVRECLAIM field\n"; |
78 |
33426782 |
} |
79 |
|
|
80 |
66853564 |
~NVReclaim() { |
81 |
33426782 |
Debug("gc") << "<< clearing NVRECLAIM field\n"; |
82 |
33426782 |
d_deletionField = NULL; |
83 |
33426782 |
} |
84 |
|
}; |
85 |
|
|
86 |
|
} // namespace |
87 |
|
|
88 |
|
namespace attr { |
89 |
|
struct LambdaBoundVarListTag { }; |
90 |
|
} // namespace attr |
91 |
|
|
92 |
|
// attribute that stores the canonical bound variable list for function types |
93 |
|
typedef expr::Attribute<attr::LambdaBoundVarListTag, Node> LambdaBoundVarListAttr; |
94 |
|
|
95 |
10379 |
NodeManager::NodeManager() |
96 |
10379 |
: d_skManager(new SkolemManager), |
97 |
10379 |
d_bvManager(new BoundVarManager), |
98 |
|
d_initialized(false), |
99 |
|
next_id(0), |
100 |
10379 |
d_attrManager(new expr::attr::AttributeManager()), |
101 |
|
d_nodeUnderDeletion(nullptr), |
102 |
|
d_inReclaimZombies(false), |
103 |
41516 |
d_abstractValueCount(0) |
104 |
|
{ |
105 |
10379 |
} |
106 |
|
|
107 |
39549373792 |
NodeManager* NodeManager::currentNM() |
108 |
|
{ |
109 |
39549373792 |
thread_local static NodeManager nm; |
110 |
39549373792 |
return &nm; |
111 |
|
} |
112 |
|
|
113 |
166799 |
bool NodeManager::isNAryKind(Kind k) |
114 |
|
{ |
115 |
166799 |
return kind::metakind::getMaxArityForKind(k) == expr::NodeValue::MAX_CHILDREN; |
116 |
|
} |
117 |
|
|
118 |
21980712 |
TypeNode NodeManager::booleanType() |
119 |
|
{ |
120 |
21980712 |
return mkTypeConst<TypeConstant>(BOOLEAN_TYPE); |
121 |
|
} |
122 |
|
|
123 |
4132346 |
TypeNode NodeManager::integerType() |
124 |
|
{ |
125 |
4132346 |
return mkTypeConst<TypeConstant>(INTEGER_TYPE); |
126 |
|
} |
127 |
|
|
128 |
4559415 |
TypeNode NodeManager::realType() |
129 |
|
{ |
130 |
4559415 |
return mkTypeConst<TypeConstant>(REAL_TYPE); |
131 |
|
} |
132 |
|
|
133 |
80291 |
TypeNode NodeManager::stringType() |
134 |
|
{ |
135 |
80291 |
return mkTypeConst<TypeConstant>(STRING_TYPE); |
136 |
|
} |
137 |
|
|
138 |
38454 |
TypeNode NodeManager::regExpType() |
139 |
|
{ |
140 |
38454 |
return mkTypeConst<TypeConstant>(REGEXP_TYPE); |
141 |
|
} |
142 |
|
|
143 |
15483 |
TypeNode NodeManager::roundingModeType() |
144 |
|
{ |
145 |
15483 |
return mkTypeConst<TypeConstant>(ROUNDINGMODE_TYPE); |
146 |
|
} |
147 |
|
|
148 |
208509 |
TypeNode NodeManager::boundVarListType() |
149 |
|
{ |
150 |
208509 |
return mkTypeConst<TypeConstant>(BOUND_VAR_LIST_TYPE); |
151 |
|
} |
152 |
|
|
153 |
10745 |
TypeNode NodeManager::instPatternType() |
154 |
|
{ |
155 |
10745 |
return mkTypeConst<TypeConstant>(INST_PATTERN_TYPE); |
156 |
|
} |
157 |
|
|
158 |
25050 |
TypeNode NodeManager::instPatternListType() |
159 |
|
{ |
160 |
25050 |
return mkTypeConst<TypeConstant>(INST_PATTERN_LIST_TYPE); |
161 |
|
} |
162 |
|
|
163 |
7723 |
TypeNode NodeManager::builtinOperatorType() |
164 |
|
{ |
165 |
7723 |
return mkTypeConst<TypeConstant>(BUILTIN_OPERATOR_TYPE); |
166 |
|
} |
167 |
|
|
168 |
562864 |
TypeNode NodeManager::mkBitVectorType(unsigned size) |
169 |
|
{ |
170 |
562864 |
return mkTypeConst<BitVectorSize>(BitVectorSize(size)); |
171 |
|
} |
172 |
|
|
173 |
1140171 |
TypeNode NodeManager::sExprType() |
174 |
|
{ |
175 |
1140171 |
return mkTypeConst<TypeConstant>(SEXPR_TYPE); |
176 |
|
} |
177 |
|
|
178 |
10675 |
TypeNode NodeManager::mkFloatingPointType(unsigned exp, unsigned sig) |
179 |
|
{ |
180 |
10675 |
return mkTypeConst<FloatingPointSize>(FloatingPointSize(exp, sig)); |
181 |
|
} |
182 |
|
|
183 |
5609 |
TypeNode NodeManager::mkFloatingPointType(FloatingPointSize fs) |
184 |
|
{ |
185 |
5609 |
return mkTypeConst<FloatingPointSize>(fs); |
186 |
|
} |
187 |
|
|
188 |
11177 |
void NodeManager::init() { |
189 |
11177 |
if (d_initialized) |
190 |
|
{ |
191 |
948 |
return; |
192 |
|
} |
193 |
10229 |
d_initialized = true; |
194 |
|
|
195 |
|
// Note: This code cannot be part of the constructor because it indirectly |
196 |
|
// calls `NodeManager::currentNM()`, which is where the `NodeManager` is |
197 |
|
// being constructed. |
198 |
10229 |
poolInsert( &expr::NodeValue::null() ); |
199 |
|
|
200 |
3375570 |
for(unsigned i = 0; i < unsigned(kind::LAST_KIND); ++i) { |
201 |
3365341 |
Kind k = Kind(i); |
202 |
|
|
203 |
3365341 |
if(hasOperator(k)) { |
204 |
2761830 |
d_operators[i] = mkConst(Kind(k)); |
205 |
|
} |
206 |
|
} |
207 |
|
} |
208 |
|
|
209 |
20758 |
NodeManager::~NodeManager() { |
210 |
|
// Destroy skolem and bound var manager before cleaning up attributes and |
211 |
|
// zombies |
212 |
10379 |
d_skManager = nullptr; |
213 |
10379 |
d_bvManager = nullptr; |
214 |
|
|
215 |
|
{ |
216 |
20758 |
ScopedBool dontGC(d_inReclaimZombies); |
217 |
|
// By this point, all SolverEngines should have been deleted, along with |
218 |
|
// all their attributes |
219 |
10379 |
d_attrManager->deleteAllAttributes(); |
220 |
|
} |
221 |
|
|
222 |
3425070 |
for(unsigned i = 0; i < unsigned(kind::LAST_KIND); ++i) { |
223 |
3414691 |
d_operators[i] = Node::null(); |
224 |
|
} |
225 |
|
|
226 |
10379 |
d_unique_vars.clear(); |
227 |
|
|
228 |
20758 |
TypeNode dummy; |
229 |
10379 |
d_tt_cache.d_children.clear(); |
230 |
10379 |
d_tt_cache.d_data = dummy; |
231 |
10379 |
d_rt_cache.d_children.clear(); |
232 |
10379 |
d_rt_cache.d_data = dummy; |
233 |
|
|
234 |
|
// clear the datatypes |
235 |
10379 |
d_dtypes.clear(); |
236 |
|
|
237 |
10379 |
Assert(!d_attrManager->inGarbageCollection()); |
238 |
|
|
239 |
20758 |
std::vector<NodeValue*> order = TopologicalSort(d_maxedOut); |
240 |
10379 |
d_maxedOut.clear(); |
241 |
|
|
242 |
464991 |
while (!d_zombies.empty() || !order.empty()) { |
243 |
227306 |
if (d_zombies.empty()) { |
244 |
|
// Delete the maxed out nodes in toplogical order once we know |
245 |
|
// there are no additional zombies, or other nodes to worry about. |
246 |
7 |
Assert(!order.empty()); |
247 |
|
// We process these in reverse to reverse the topological order. |
248 |
7 |
NodeValue* greatest_maxed_out = order.back(); |
249 |
7 |
order.pop_back(); |
250 |
7 |
Assert(greatest_maxed_out->HasMaximizedReferenceCount()); |
251 |
7 |
Debug("gc") << "Force zombify " << greatest_maxed_out << std::endl; |
252 |
7 |
greatest_maxed_out->d_rc = 0; |
253 |
7 |
markForDeletion(greatest_maxed_out); |
254 |
|
} else { |
255 |
227299 |
reclaimZombies(); |
256 |
|
} |
257 |
|
} |
258 |
|
|
259 |
10379 |
if (d_initialized) |
260 |
|
{ |
261 |
10229 |
poolRemove(&expr::NodeValue::null()); |
262 |
|
} |
263 |
|
|
264 |
10379 |
if(Debug.isOn("gc:leaks")) { |
265 |
|
Debug("gc:leaks") << "still in pool:" << endl; |
266 |
|
for(NodeValuePool::const_iterator i = d_nodeValuePool.begin(), |
267 |
|
iend = d_nodeValuePool.end(); |
268 |
|
i != iend; |
269 |
|
++i) { |
270 |
|
Debug("gc:leaks") << " " << *i |
271 |
|
<< " id=" << (*i)->d_id |
272 |
|
<< " rc=" << (*i)->d_rc |
273 |
|
<< " " << **i << endl; |
274 |
|
} |
275 |
|
Debug("gc:leaks") << ":end:" << endl; |
276 |
|
} |
277 |
|
|
278 |
|
// defensive coding, in case destruction-order issues pop up (they often do) |
279 |
10379 |
delete d_attrManager; |
280 |
10379 |
d_attrManager = NULL; |
281 |
10379 |
} |
282 |
|
|
283 |
7117419 |
const DType& NodeManager::getDTypeForIndex(size_t index) const |
284 |
|
{ |
285 |
|
// if this assertion fails, it is likely due to not managing datatypes |
286 |
|
// properly w.r.t. multiple NodeManagers. |
287 |
7117419 |
Assert(index < d_dtypes.size()); |
288 |
7117419 |
return *d_dtypes[index]; |
289 |
|
} |
290 |
|
|
291 |
230280 |
void NodeManager::reclaimZombies() { |
292 |
|
// FIXME multithreading |
293 |
230280 |
Assert(!d_attrManager->inGarbageCollection()); |
294 |
|
|
295 |
230280 |
Debug("gc") << "reclaiming " << d_zombies.size() << " zombie(s)!\n"; |
296 |
|
|
297 |
|
// during reclamation, reclaimZombies() is never supposed to be called |
298 |
230280 |
Assert(!d_inReclaimZombies) |
299 |
|
<< "NodeManager::reclaimZombies() not re-entrant!"; |
300 |
|
|
301 |
|
// whether exit is normal or exceptional, the Reclaim dtor is called |
302 |
|
// and ensures that d_inReclaimZombies is set back to false. |
303 |
460560 |
ScopedBool r(d_inReclaimZombies); |
304 |
|
|
305 |
|
// We copy the set away and clear the NodeManager's set of zombies. |
306 |
|
// This is because reclaimZombie() decrements the RC of the |
307 |
|
// NodeValue's children, which may (recursively) reclaim them. |
308 |
|
// |
309 |
|
// Let's say we're reclaiming zombie NodeValue "A" and its child "B" |
310 |
|
// then becomes a zombie (NodeManager::markForDeletion(B) is called). |
311 |
|
// |
312 |
|
// One way to handle B's zombification would be simply to put it |
313 |
|
// into d_zombies. This is what we do. However, if we were to |
314 |
|
// concurrently process d_zombies in the loop below, such addition |
315 |
|
// may be invisible to us (B is leaked) or even invalidate our |
316 |
|
// iterator, causing a crash. So we need to copy the set away. |
317 |
|
|
318 |
460560 |
vector<NodeValue*> zombies; |
319 |
230280 |
zombies.reserve(d_zombies.size()); |
320 |
230280 |
remove_copy_if(d_zombies.begin(), |
321 |
|
d_zombies.end(), |
322 |
|
back_inserter(zombies), |
323 |
230280 |
NodeValueReferenceCountNonZero()); |
324 |
230280 |
d_zombies.clear(); |
325 |
|
|
326 |
|
#ifdef _LIBCPP_VERSION |
327 |
|
NodeValue* last = NULL; |
328 |
|
#endif |
329 |
33657062 |
for(vector<NodeValue*>::iterator i = zombies.begin(); |
330 |
33657062 |
i != zombies.end(); |
331 |
|
++i) { |
332 |
33426782 |
NodeValue* nv = *i; |
333 |
|
#ifdef _LIBCPP_VERSION |
334 |
|
// Work around an apparent bug in libc++'s hash_set<> which can |
335 |
|
// (very occasionally) have an element repeated. |
336 |
|
if(nv == last) { |
337 |
|
continue; |
338 |
|
} |
339 |
|
last = nv; |
340 |
|
#endif |
341 |
|
|
342 |
|
// collect ONLY IF still zero |
343 |
33426782 |
if(nv->d_rc == 0) { |
344 |
33426782 |
if(Debug.isOn("gc")) { |
345 |
|
Debug("gc") << "deleting node value " << nv |
346 |
|
<< " [" << nv->d_id << "]: "; |
347 |
|
nv->printAst(Debug("gc")); |
348 |
|
Debug("gc") << endl; |
349 |
|
} |
350 |
|
|
351 |
|
// remove from the pool |
352 |
33426782 |
kind::MetaKind mk = nv->getMetaKind(); |
353 |
33426782 |
if(mk != kind::metakind::VARIABLE && mk != kind::metakind::NULLARY_OPERATOR) { |
354 |
32128328 |
poolRemove(nv); |
355 |
|
} |
356 |
|
|
357 |
|
// whether exit is normal or exceptional, the NVReclaim dtor is |
358 |
|
// called and ensures that d_nodeUnderDeletion is set back to |
359 |
|
// NULL. |
360 |
66853564 |
NVReclaim rc(d_nodeUnderDeletion); |
361 |
33426782 |
d_nodeUnderDeletion = nv; |
362 |
|
|
363 |
|
// remove attributes |
364 |
|
{ // notify listeners of deleted node |
365 |
66853564 |
TNode n; |
366 |
33426782 |
n.d_nv = nv; |
367 |
33426782 |
nv->d_rc = 1; // so that TNode doesn't assert-fail |
368 |
|
// this would mean that one of the listeners stowed away |
369 |
|
// a reference to this node! |
370 |
33426782 |
Assert(nv->d_rc == 1); |
371 |
|
} |
372 |
33426782 |
nv->d_rc = 0; |
373 |
33426782 |
d_attrManager->deleteAllAttributes(nv); |
374 |
|
|
375 |
|
// decr ref counts of children |
376 |
33426782 |
nv->decrRefCounts(); |
377 |
33426782 |
if(mk == kind::metakind::CONSTANT) { |
378 |
|
// Destroy (call the destructor for) the C++ type representing |
379 |
|
// the constant in this NodeValue. This is needed for |
380 |
|
// e.g. cvc5::Rational, since it has a gmp internal |
381 |
|
// representation that mallocs memory and should be cleaned |
382 |
|
// up. (This won't delete a pointer value if used as a |
383 |
|
// constant, but then, you should probably use a smart-pointer |
384 |
|
// type for a constant payload.) |
385 |
3369708 |
kind::metakind::deleteNodeValueConstant(nv); |
386 |
|
} |
387 |
33426782 |
free(nv); |
388 |
|
} |
389 |
|
} |
390 |
230280 |
}/* NodeManager::reclaimZombies() */ |
391 |
|
|
392 |
10383 |
std::vector<NodeValue*> NodeManager::TopologicalSort( |
393 |
|
const std::vector<NodeValue*>& roots) { |
394 |
10383 |
std::vector<NodeValue*> order; |
395 |
|
// The stack of nodes to visit. The Boolean value is false when visiting the |
396 |
|
// node in preorder and true when visiting it in postorder. |
397 |
20766 |
std::vector<std::pair<bool, NodeValue*> > stack; |
398 |
|
// Nodes that have been visited in both pre- and postorder |
399 |
20766 |
NodeValueIDSet visited; |
400 |
20766 |
const NodeValueIDSet root_set(roots.begin(), roots.end()); |
401 |
|
|
402 |
10396 |
for (size_t index = 0; index < roots.size(); index++) { |
403 |
13 |
NodeValue* root = roots[index]; |
404 |
13 |
if (visited.find(root) == visited.end()) { |
405 |
42 |
stack.push_back(std::make_pair(false, root)); |
406 |
|
} |
407 |
117 |
while (!stack.empty()) { |
408 |
52 |
NodeValue* current = stack.back().second; |
409 |
52 |
const bool visited_children = stack.back().first; |
410 |
104 |
Debug("gc") << "Topological sort " << current << " " << visited_children |
411 |
52 |
<< std::endl; |
412 |
52 |
if (visited_children) { |
413 |
21 |
if (root_set.find(current) != root_set.end()) { |
414 |
13 |
order.push_back(current); |
415 |
|
} |
416 |
21 |
stack.pop_back(); |
417 |
|
} |
418 |
31 |
else if (visited.find(current) == visited.end()) |
419 |
|
{ |
420 |
21 |
stack.back().first = true; |
421 |
21 |
visited.insert(current); |
422 |
41 |
for (unsigned i = 0; i < current->getNumChildren(); ++i) { |
423 |
20 |
expr::NodeValue* child = current->getChild(i); |
424 |
20 |
stack.push_back(std::make_pair(false, child)); |
425 |
|
} |
426 |
|
} |
427 |
|
else |
428 |
|
{ |
429 |
10 |
stack.pop_back(); |
430 |
|
} |
431 |
|
} |
432 |
|
} |
433 |
10383 |
Assert(order.size() == roots.size()); |
434 |
20766 |
return order; |
435 |
|
} /* NodeManager::TopologicalSort() */ |
436 |
|
|
437 |
838707480 |
TypeNode NodeManager::getType(TNode n, bool check) |
438 |
|
{ |
439 |
838707480 |
TypeNode typeNode; |
440 |
838707480 |
bool hasType = getAttribute(n, TypeAttr(), typeNode); |
441 |
838707480 |
bool needsCheck = check && !getAttribute(n, TypeCheckedAttr()); |
442 |
|
|
443 |
|
|
444 |
838707480 |
Debug("getType") << this << " getting type for " << &n << " " << n << ", check=" << check << ", needsCheck = " << needsCheck << ", hasType = " << hasType << endl; |
445 |
|
|
446 |
|
#ifdef CVC5_DEBUG |
447 |
|
// already did type check eagerly upon creation in node builder |
448 |
838707480 |
bool doTypeCheck = false; |
449 |
|
#else |
450 |
|
bool doTypeCheck = true; |
451 |
|
#endif |
452 |
838707480 |
if (needsCheck && doTypeCheck) |
453 |
|
{ |
454 |
|
/* Iterate and compute the children bottom up. This avoids stack |
455 |
|
overflows in computeType() when the Node graph is really deep, |
456 |
|
which should only affect us when we're type checking lazily. */ |
457 |
|
stack<TNode> worklist; |
458 |
|
worklist.push(n); |
459 |
|
|
460 |
|
while( !worklist.empty() ) { |
461 |
|
TNode m = worklist.top(); |
462 |
|
|
463 |
|
bool readyToCompute = true; |
464 |
|
|
465 |
|
for( TNode::iterator it = m.begin(), end = m.end(); |
466 |
|
it != end; |
467 |
|
++it ) { |
468 |
|
if( !hasAttribute(*it, TypeAttr()) |
469 |
|
|| (check && !getAttribute(*it, TypeCheckedAttr())) ) { |
470 |
|
readyToCompute = false; |
471 |
|
worklist.push(*it); |
472 |
|
} |
473 |
|
} |
474 |
|
|
475 |
|
if( readyToCompute ) { |
476 |
|
Assert(check || m.getMetaKind() != kind::metakind::NULLARY_OPERATOR); |
477 |
|
/* All the children have types, time to compute */ |
478 |
|
typeNode = TypeChecker::computeType(this, m, check); |
479 |
|
worklist.pop(); |
480 |
|
} |
481 |
|
} // end while |
482 |
|
|
483 |
|
/* Last type computed in loop should be the type of n */ |
484 |
|
Assert(typeNode == getAttribute(n, TypeAttr())); |
485 |
838707480 |
} else if( !hasType || needsCheck ) { |
486 |
|
/* We can compute the type top-down, without worrying about |
487 |
|
deep recursion. */ |
488 |
29144197 |
Assert(check || n.getMetaKind() != kind::metakind::NULLARY_OPERATOR); |
489 |
29144197 |
typeNode = TypeChecker::computeType(this, n, check); |
490 |
|
} |
491 |
|
|
492 |
|
/* The type should be have been computed and stored. */ |
493 |
838707018 |
Assert(hasAttribute(n, TypeAttr())); |
494 |
|
/* The check should have happened, if we asked for it. */ |
495 |
838707018 |
Assert(!check || getAttribute(n, TypeCheckedAttr())); |
496 |
|
|
497 |
838707018 |
Debug("getType") << "type of " << &n << " " << n << " is " << typeNode << endl; |
498 |
838707018 |
return typeNode; |
499 |
|
} |
500 |
|
|
501 |
530 |
TypeNode NodeManager::mkBagType(TypeNode elementType) |
502 |
|
{ |
503 |
530 |
CheckArgument( |
504 |
530 |
!elementType.isNull(), elementType, "unexpected NULL element type"); |
505 |
530 |
Debug("bags") << "making bags type " << elementType << std::endl; |
506 |
530 |
return mkTypeNode(kind::BAG_TYPE, elementType); |
507 |
|
} |
508 |
|
|
509 |
973 |
TypeNode NodeManager::mkSequenceType(TypeNode elementType) |
510 |
|
{ |
511 |
973 |
CheckArgument( |
512 |
973 |
!elementType.isNull(), elementType, "unexpected NULL element type"); |
513 |
973 |
return mkTypeNode(kind::SEQUENCE_TYPE, elementType); |
514 |
|
} |
515 |
|
|
516 |
3149 |
TypeNode NodeManager::mkDatatypeType(DType& datatype, uint32_t flags) |
517 |
|
{ |
518 |
|
// Not worth a special implementation; this doesn't need to be fast |
519 |
|
// code anyway. |
520 |
6298 |
std::vector<DType> datatypes; |
521 |
3149 |
datatypes.push_back(datatype); |
522 |
6298 |
std::vector<TypeNode> result = mkMutualDatatypeTypes(datatypes, flags); |
523 |
3149 |
Assert(result.size() == 1); |
524 |
6298 |
return result.front(); |
525 |
|
} |
526 |
|
|
527 |
3149 |
std::vector<TypeNode> NodeManager::mkMutualDatatypeTypes( |
528 |
|
const std::vector<DType>& datatypes, uint32_t flags) |
529 |
|
{ |
530 |
6298 |
std::set<TypeNode> unresolvedTypes; |
531 |
6298 |
return mkMutualDatatypeTypes(datatypes, unresolvedTypes, flags); |
532 |
|
} |
533 |
|
|
534 |
5725 |
std::vector<TypeNode> NodeManager::mkMutualDatatypeTypes( |
535 |
|
const std::vector<DType>& datatypes, |
536 |
|
const std::set<TypeNode>& unresolvedTypes, |
537 |
|
uint32_t flags) |
538 |
|
{ |
539 |
11450 |
std::map<std::string, TypeNode> nameResolutions; |
540 |
5725 |
std::vector<TypeNode> dtts; |
541 |
|
|
542 |
|
// First do some sanity checks, set up the final Type to be used for |
543 |
|
// each datatype, and set up the "named resolutions" used to handle |
544 |
|
// simple self- and mutual-recursion, for example in the definition |
545 |
|
// "nat = succ(pred:nat) | zero", a named resolution can handle the |
546 |
|
// pred selector. |
547 |
13411 |
for (const DType& dt : datatypes) |
548 |
|
{ |
549 |
7686 |
uint32_t index = d_dtypes.size(); |
550 |
7686 |
d_dtypes.push_back(std::unique_ptr<DType>(new DType(dt))); |
551 |
7686 |
DType* dtp = d_dtypes.back().get(); |
552 |
15372 |
TypeNode typeNode; |
553 |
7686 |
if (dtp->getNumParameters() == 0) |
554 |
|
{ |
555 |
7609 |
typeNode = mkTypeConst(DatatypeIndexConstant(index)); |
556 |
|
} |
557 |
|
else |
558 |
|
{ |
559 |
154 |
TypeNode cons = mkTypeConst(DatatypeIndexConstant(index)); |
560 |
154 |
std::vector<TypeNode> params; |
561 |
77 |
params.push_back(cons); |
562 |
176 |
for (uint32_t ip = 0; ip < dtp->getNumParameters(); ++ip) |
563 |
|
{ |
564 |
99 |
params.push_back(dtp->getParameter(ip)); |
565 |
|
} |
566 |
|
|
567 |
77 |
typeNode = mkTypeNode(kind::PARAMETRIC_DATATYPE, params); |
568 |
|
} |
569 |
7686 |
if (nameResolutions.find(dtp->getName()) != nameResolutions.end()) |
570 |
|
{ |
571 |
|
throw Exception( |
572 |
|
"cannot construct two datatypes at the same time with the same name"); |
573 |
|
} |
574 |
7686 |
nameResolutions.insert(std::make_pair(dtp->getName(), typeNode)); |
575 |
7686 |
dtts.push_back(typeNode); |
576 |
|
} |
577 |
|
|
578 |
|
// Second, set up the type substitution map for complex type |
579 |
|
// resolution (e.g. if "list" is the type we're defining, and it has |
580 |
|
// a selector of type "ARRAY INT OF list", this can't be taken care |
581 |
|
// of using the named resolutions that we set up above. A |
582 |
|
// preliminary array type was set up, and now needs to have "list" |
583 |
|
// substituted in it for the correct type. |
584 |
|
// |
585 |
|
// @TODO get rid of named resolutions altogether and handle |
586 |
|
// everything with these resolutions? |
587 |
11450 |
std::vector<TypeNode> paramTypes; |
588 |
11450 |
std::vector<TypeNode> paramReplacements; |
589 |
11450 |
std::vector<TypeNode> placeholders; // to hold the "unresolved placeholders" |
590 |
11450 |
std::vector<TypeNode> replacements; // to hold our final, resolved types |
591 |
10258 |
for (const TypeNode& ut : unresolvedTypes) |
592 |
|
{ |
593 |
9066 |
std::string name = ut.getAttribute(expr::VarNameAttr()); |
594 |
|
std::map<std::string, TypeNode>::const_iterator resolver = |
595 |
4533 |
nameResolutions.find(name); |
596 |
4533 |
if (resolver == nameResolutions.end()) |
597 |
|
{ |
598 |
|
throw Exception("cannot resolve type " + name |
599 |
|
+ "; it's not among the datatypes being defined"); |
600 |
|
} |
601 |
|
// We will instruct the Datatype to substitute "ut" (the |
602 |
|
// unresolved SortType used as a placeholder in complex types) |
603 |
|
// with "(*resolver).second" (the TypeNode we created in the |
604 |
|
// first step, above). |
605 |
4533 |
if (ut.isSort()) |
606 |
|
{ |
607 |
4472 |
placeholders.push_back(ut); |
608 |
4472 |
replacements.push_back((*resolver).second); |
609 |
|
} |
610 |
|
else |
611 |
|
{ |
612 |
61 |
Assert(ut.isSortConstructor()); |
613 |
61 |
paramTypes.push_back(ut); |
614 |
61 |
paramReplacements.push_back((*resolver).second); |
615 |
|
} |
616 |
|
} |
617 |
|
|
618 |
|
// Lastly, perform the final resolutions and checks. |
619 |
13411 |
for (const TypeNode& ut : dtts) |
620 |
|
{ |
621 |
7686 |
const DType& dt = ut.getDType(); |
622 |
7686 |
if (!dt.isResolved()) |
623 |
|
{ |
624 |
7686 |
const_cast<DType&>(dt).resolve(nameResolutions, |
625 |
|
placeholders, |
626 |
|
replacements, |
627 |
|
paramTypes, |
628 |
|
paramReplacements); |
629 |
|
} |
630 |
|
// Check the datatype has been resolved properly. |
631 |
31747 |
for (size_t i = 0, ncons = dt.getNumConstructors(); i < ncons; i++) |
632 |
|
{ |
633 |
24061 |
const DTypeConstructor& c = dt[i]; |
634 |
48122 |
TypeNode testerType CVC5_UNUSED = c.getTester().getType(); |
635 |
24061 |
Assert(c.isResolved() && testerType.isTester() && testerType[0] == ut) |
636 |
|
<< "malformed tester in datatype post-resolution"; |
637 |
48122 |
TypeNode ctorType CVC5_UNUSED = c.getConstructor().getType(); |
638 |
24061 |
Assert(ctorType.isConstructor() |
639 |
|
&& ctorType.getNumChildren() == c.getNumArgs() + 1 |
640 |
|
&& ctorType.getRangeType() == ut) |
641 |
|
<< "malformed constructor in datatype post-resolution"; |
642 |
|
// for all selectors... |
643 |
47149 |
for (size_t j = 0, nargs = c.getNumArgs(); j < nargs; j++) |
644 |
|
{ |
645 |
23088 |
const DTypeSelector& a = c[j]; |
646 |
46176 |
TypeNode selectorType = a.getType(); |
647 |
23088 |
Assert(a.isResolved() && selectorType.isSelector() |
648 |
|
&& selectorType[0] == ut) |
649 |
|
<< "malformed selector in datatype post-resolution"; |
650 |
|
// This next one's a "hard" check, performed in non-debug builds |
651 |
|
// as well; the other ones should all be guaranteed by the |
652 |
|
// cvc5::DType class, but this actually needs to be checked. |
653 |
23088 |
if (selectorType.getRangeType().isFunctionLike()) |
654 |
|
{ |
655 |
|
throw Exception("cannot put function-like things in datatypes"); |
656 |
|
} |
657 |
|
} |
658 |
|
} |
659 |
|
} |
660 |
|
|
661 |
11450 |
return dtts; |
662 |
|
} |
663 |
|
|
664 |
24061 |
TypeNode NodeManager::mkConstructorType(const std::vector<TypeNode>& args, |
665 |
|
TypeNode range) |
666 |
|
{ |
667 |
48122 |
std::vector<TypeNode> sorts = args; |
668 |
24061 |
sorts.push_back(range); |
669 |
48122 |
return mkTypeNode(kind::CONSTRUCTOR_TYPE, sorts); |
670 |
|
} |
671 |
|
|
672 |
24445 |
TypeNode NodeManager::mkSelectorType(TypeNode domain, TypeNode range) |
673 |
|
{ |
674 |
24445 |
CheckArgument( |
675 |
24445 |
domain.isDatatype(), domain, "cannot create non-datatype selector type"); |
676 |
24445 |
return mkTypeNode(kind::SELECTOR_TYPE, domain, range); |
677 |
|
} |
678 |
|
|
679 |
24061 |
TypeNode NodeManager::mkTesterType(TypeNode domain) |
680 |
|
{ |
681 |
24061 |
CheckArgument( |
682 |
24061 |
domain.isDatatype(), domain, "cannot create non-datatype tester"); |
683 |
24061 |
return mkTypeNode(kind::TESTER_TYPE, domain); |
684 |
|
} |
685 |
|
|
686 |
23088 |
TypeNode NodeManager::mkDatatypeUpdateType(TypeNode domain, TypeNode range) |
687 |
|
{ |
688 |
23088 |
CheckArgument( |
689 |
23088 |
domain.isDatatype(), domain, "cannot create non-datatype upater type"); |
690 |
|
// It is a function type domain x range -> domain, we store only the |
691 |
|
// arguments |
692 |
23088 |
return mkTypeNode(kind::UPDATER_TYPE, domain, range); |
693 |
|
} |
694 |
|
|
695 |
43312 |
TypeNode NodeManager::TupleTypeCache::getTupleType( NodeManager * nm, std::vector< TypeNode >& types, unsigned index ) { |
696 |
43312 |
if( index==types.size() ){ |
697 |
16182 |
if( d_data.isNull() ){ |
698 |
6102 |
std::stringstream sst; |
699 |
3051 |
sst << "__cvc5_tuple"; |
700 |
4050 |
for (unsigned i = 0; i < types.size(); ++ i) { |
701 |
999 |
sst << "_" << types[i]; |
702 |
|
} |
703 |
6102 |
DType dt(sst.str()); |
704 |
3051 |
dt.setTuple(); |
705 |
6102 |
std::stringstream ssc; |
706 |
3051 |
ssc << sst.str() << "_ctor"; |
707 |
|
std::shared_ptr<DTypeConstructor> c = |
708 |
6102 |
std::make_shared<DTypeConstructor>(ssc.str()); |
709 |
4050 |
for (unsigned i = 0; i < types.size(); ++ i) { |
710 |
1998 |
std::stringstream ss; |
711 |
999 |
ss << sst.str() << "_stor_" << i; |
712 |
999 |
c->addArg(ss.str().c_str(), types[i]); |
713 |
|
} |
714 |
3051 |
dt.addConstructor(c); |
715 |
3051 |
d_data = nm->mkDatatypeType(dt); |
716 |
3051 |
Debug("tuprec-debug") << "Return type : " << d_data << std::endl; |
717 |
|
} |
718 |
16182 |
return d_data; |
719 |
|
}else{ |
720 |
27130 |
return d_children[types[index]].getTupleType( nm, types, index+1 ); |
721 |
|
} |
722 |
|
} |
723 |
|
|
724 |
28 |
TypeNode NodeManager::RecTypeCache::getRecordType( NodeManager * nm, const Record& rec, unsigned index ) { |
725 |
28 |
if (index == rec.size()) |
726 |
|
{ |
727 |
10 |
if( d_data.isNull() ){ |
728 |
16 |
std::stringstream sst; |
729 |
8 |
sst << "__cvc5_record"; |
730 |
20 |
for (const std::pair<std::string, TypeNode>& i : rec) |
731 |
|
{ |
732 |
12 |
sst << "_" << i.first << "_" << i.second; |
733 |
|
} |
734 |
16 |
DType dt(sst.str()); |
735 |
8 |
dt.setRecord(); |
736 |
16 |
std::stringstream ssc; |
737 |
8 |
ssc << sst.str() << "_ctor"; |
738 |
|
std::shared_ptr<DTypeConstructor> c = |
739 |
16 |
std::make_shared<DTypeConstructor>(ssc.str()); |
740 |
20 |
for (const std::pair<std::string, TypeNode>& i : rec) |
741 |
|
{ |
742 |
12 |
c->addArg(i.first, i.second); |
743 |
|
} |
744 |
8 |
dt.addConstructor(c); |
745 |
8 |
d_data = nm->mkDatatypeType(dt); |
746 |
8 |
Debug("tuprec-debug") << "Return type : " << d_data << std::endl; |
747 |
|
} |
748 |
10 |
return d_data; |
749 |
|
} |
750 |
18 |
return d_children[rec[index].second][rec[index].first].getRecordType( |
751 |
18 |
nm, rec, index + 1); |
752 |
|
} |
753 |
|
|
754 |
60236 |
TypeNode NodeManager::mkFunctionType(const std::vector<TypeNode>& sorts) |
755 |
|
{ |
756 |
60236 |
Assert(sorts.size() >= 2); |
757 |
60236 |
return mkTypeNode(kind::FUNCTION_TYPE, sorts); |
758 |
|
} |
759 |
|
|
760 |
62 |
TypeNode NodeManager::mkPredicateType(const std::vector<TypeNode>& sorts) |
761 |
|
{ |
762 |
62 |
Assert(sorts.size() >= 1); |
763 |
124 |
std::vector<TypeNode> sortNodes; |
764 |
62 |
sortNodes.insert(sortNodes.end(), sorts.begin(), sorts.end()); |
765 |
62 |
sortNodes.push_back(booleanType()); |
766 |
124 |
return mkFunctionType(sortNodes); |
767 |
|
} |
768 |
|
|
769 |
6262 |
TypeNode NodeManager::mkFunctionType(const TypeNode& domain, |
770 |
|
const TypeNode& range) |
771 |
|
{ |
772 |
12524 |
std::vector<TypeNode> sorts; |
773 |
6262 |
sorts.push_back(domain); |
774 |
6262 |
sorts.push_back(range); |
775 |
12524 |
return mkFunctionType(sorts); |
776 |
|
} |
777 |
|
|
778 |
46695 |
TypeNode NodeManager::mkFunctionType(const std::vector<TypeNode>& argTypes, |
779 |
|
const TypeNode& range) |
780 |
|
{ |
781 |
46695 |
Assert(argTypes.size() >= 1); |
782 |
93390 |
std::vector<TypeNode> sorts(argTypes); |
783 |
46695 |
sorts.push_back(range); |
784 |
93390 |
return mkFunctionType(sorts); |
785 |
|
} |
786 |
|
|
787 |
16182 |
TypeNode NodeManager::mkTupleType(const std::vector<TypeNode>& types) { |
788 |
32364 |
std::vector< TypeNode > ts; |
789 |
16182 |
Debug("tuprec-debug") << "Make tuple type : "; |
790 |
43312 |
for (unsigned i = 0; i < types.size(); ++ i) { |
791 |
27130 |
CheckArgument(!types[i].isFunctionLike(), types, "cannot put function-like types in tuples"); |
792 |
27130 |
ts.push_back( types[i] ); |
793 |
27130 |
Debug("tuprec-debug") << types[i] << " "; |
794 |
|
} |
795 |
16182 |
Debug("tuprec-debug") << std::endl; |
796 |
32364 |
return d_tt_cache.getTupleType( this, ts ); |
797 |
|
} |
798 |
|
|
799 |
10 |
TypeNode NodeManager::mkRecordType(const Record& rec) { |
800 |
10 |
return d_rt_cache.getRecordType( this, rec ); |
801 |
|
} |
802 |
|
|
803 |
|
void NodeManager::reclaimAllZombies(){ |
804 |
|
reclaimZombiesUntil(0u); |
805 |
|
} |
806 |
|
|
807 |
|
/** Reclaim zombies while there are more than k nodes in the pool (if possible).*/ |
808 |
|
void NodeManager::reclaimZombiesUntil(uint32_t k){ |
809 |
|
if(safeToReclaimZombies()){ |
810 |
|
while(poolSize() >= k && !d_zombies.empty()){ |
811 |
|
reclaimZombies(); |
812 |
|
} |
813 |
|
} |
814 |
|
} |
815 |
|
|
816 |
1 |
size_t NodeManager::poolSize() const{ |
817 |
1 |
return d_nodeValuePool.size(); |
818 |
|
} |
819 |
|
|
820 |
14 |
TypeNode NodeManager::mkSort(uint32_t flags) { |
821 |
28 |
NodeBuilder nb(this, kind::SORT_TYPE); |
822 |
28 |
Node sortTag = NodeBuilder(this, kind::SORT_TAG); |
823 |
14 |
nb << sortTag; |
824 |
28 |
return nb.constructTypeNode(); |
825 |
|
} |
826 |
|
|
827 |
9211 |
TypeNode NodeManager::mkSort(const std::string& name, uint32_t flags) { |
828 |
18422 |
NodeBuilder nb(this, kind::SORT_TYPE); |
829 |
18422 |
Node sortTag = NodeBuilder(this, kind::SORT_TAG); |
830 |
9211 |
nb << sortTag; |
831 |
9211 |
TypeNode tn = nb.constructTypeNode(); |
832 |
9211 |
setAttribute(tn, expr::VarNameAttr(), name); |
833 |
18422 |
return tn; |
834 |
|
} |
835 |
|
|
836 |
478 |
TypeNode NodeManager::mkSort(TypeNode constructor, |
837 |
|
const std::vector<TypeNode>& children, |
838 |
|
uint32_t flags) { |
839 |
478 |
Assert(constructor.getKind() == kind::SORT_TYPE |
840 |
|
&& constructor.getNumChildren() == 0) |
841 |
|
<< "expected a sort constructor"; |
842 |
478 |
Assert(children.size() > 0) << "expected non-zero # of children"; |
843 |
478 |
Assert(hasAttribute(constructor.d_nv, expr::SortArityAttr()) |
844 |
|
&& hasAttribute(constructor.d_nv, expr::VarNameAttr())) |
845 |
|
<< "expected a sort constructor"; |
846 |
956 |
std::string name = getAttribute(constructor.d_nv, expr::VarNameAttr()); |
847 |
478 |
Assert(getAttribute(constructor.d_nv, expr::SortArityAttr()) |
848 |
|
== children.size()) |
849 |
|
<< "arity mismatch in application of sort constructor"; |
850 |
956 |
NodeBuilder nb(this, kind::SORT_TYPE); |
851 |
956 |
Node sortTag = Node(constructor.d_nv->d_children[0]); |
852 |
478 |
nb << sortTag; |
853 |
478 |
nb.append(children); |
854 |
478 |
TypeNode type = nb.constructTypeNode(); |
855 |
478 |
setAttribute(type, expr::VarNameAttr(), name); |
856 |
956 |
return type; |
857 |
|
} |
858 |
|
|
859 |
103 |
TypeNode NodeManager::mkSortConstructor(const std::string& name, |
860 |
|
size_t arity, |
861 |
|
uint32_t flags) |
862 |
|
{ |
863 |
103 |
Assert(arity > 0); |
864 |
206 |
NodeBuilder nb(this, kind::SORT_TYPE); |
865 |
206 |
Node sortTag = NodeBuilder(this, kind::SORT_TAG); |
866 |
103 |
nb << sortTag; |
867 |
103 |
TypeNode type = nb.constructTypeNode(); |
868 |
103 |
setAttribute(type, expr::VarNameAttr(), name); |
869 |
103 |
setAttribute(type, expr::SortArityAttr(), arity); |
870 |
206 |
return type; |
871 |
|
} |
872 |
|
|
873 |
116182 |
Node NodeManager::mkVar(const std::string& name, const TypeNode& type) |
874 |
|
{ |
875 |
116182 |
Node n = NodeBuilder(this, kind::VARIABLE); |
876 |
116182 |
setAttribute(n, TypeAttr(), type); |
877 |
116182 |
setAttribute(n, TypeCheckedAttr(), true); |
878 |
116182 |
setAttribute(n, expr::VarNameAttr(), name); |
879 |
116182 |
return n; |
880 |
|
} |
881 |
|
|
882 |
861379 |
Node NodeManager::mkBoundVar(const std::string& name, const TypeNode& type) { |
883 |
861379 |
Node n = mkBoundVar(type); |
884 |
861379 |
setAttribute(n, expr::VarNameAttr(), name); |
885 |
861379 |
return n; |
886 |
|
} |
887 |
|
|
888 |
2013 |
Node NodeManager::getBoundVarListForFunctionType( TypeNode tn ) { |
889 |
2013 |
Assert(tn.isFunction()); |
890 |
2013 |
Node bvl = tn.getAttribute(LambdaBoundVarListAttr()); |
891 |
2013 |
if( bvl.isNull() ){ |
892 |
516 |
std::vector< Node > vars; |
893 |
635 |
for( unsigned i=0; i<tn.getNumChildren()-1; i++ ){ |
894 |
377 |
vars.push_back(mkBoundVar(tn[i])); |
895 |
|
} |
896 |
258 |
bvl = mkNode(kind::BOUND_VAR_LIST, vars); |
897 |
258 |
Trace("functions") << "Make standard bound var list " << bvl << " for " << tn << std::endl; |
898 |
258 |
tn.setAttribute(LambdaBoundVarListAttr(),bvl); |
899 |
|
} |
900 |
2013 |
return bvl; |
901 |
|
} |
902 |
|
|
903 |
688871 |
Node NodeManager::mkAssociative(Kind kind, const std::vector<Node>& children) |
904 |
|
{ |
905 |
688871 |
AlwaysAssert(kind::isAssociative(kind)) << "Illegal kind in mkAssociative"; |
906 |
|
|
907 |
688871 |
const unsigned int max = kind::metakind::getMaxArityForKind(kind); |
908 |
688871 |
size_t numChildren = children.size(); |
909 |
|
|
910 |
|
/* If the number of children is within bounds, then there's nothing to do. */ |
911 |
688871 |
if (numChildren <= max) |
912 |
|
{ |
913 |
688871 |
return mkNode(kind, children); |
914 |
|
} |
915 |
|
const unsigned int min = kind::metakind::getMinArityForKind(kind); |
916 |
|
|
917 |
|
std::vector<Node>::const_iterator it = children.begin(); |
918 |
|
std::vector<Node>::const_iterator end = children.end(); |
919 |
|
|
920 |
|
/* The new top-level children and the children of each sub node */ |
921 |
|
std::vector<Node> newChildren; |
922 |
|
std::vector<Node> subChildren; |
923 |
|
|
924 |
|
while (it != end && numChildren > max) |
925 |
|
{ |
926 |
|
/* Grab the next max children and make a node for them. */ |
927 |
|
for (std::vector<Node>::const_iterator next = it + max; it != next; |
928 |
|
++it, --numChildren) |
929 |
|
{ |
930 |
|
subChildren.push_back(*it); |
931 |
|
} |
932 |
|
Node subNode = mkNode(kind, subChildren); |
933 |
|
newChildren.push_back(subNode); |
934 |
|
|
935 |
|
subChildren.clear(); |
936 |
|
} |
937 |
|
|
938 |
|
// add the leftover children |
939 |
|
if (numChildren > 0) |
940 |
|
{ |
941 |
|
for (; it != end; ++it) |
942 |
|
{ |
943 |
|
newChildren.push_back(*it); |
944 |
|
} |
945 |
|
} |
946 |
|
|
947 |
|
/* It would be really weird if this happened (it would require |
948 |
|
* min > 2, for one thing), but let's make sure. */ |
949 |
|
AlwaysAssert(newChildren.size() >= min) |
950 |
|
<< "Too few new children in mkAssociative"; |
951 |
|
|
952 |
|
// recurse |
953 |
|
return mkAssociative(kind, newChildren); |
954 |
|
} |
955 |
|
|
956 |
735 |
Node NodeManager::mkLeftAssociative(Kind kind, |
957 |
|
const std::vector<Node>& children) |
958 |
|
{ |
959 |
735 |
Node n = children[0]; |
960 |
5269 |
for (size_t i = 1, size = children.size(); i < size; i++) |
961 |
|
{ |
962 |
4534 |
n = mkNode(kind, n, children[i]); |
963 |
|
} |
964 |
735 |
return n; |
965 |
|
} |
966 |
|
|
967 |
6 |
Node NodeManager::mkRightAssociative(Kind kind, |
968 |
|
const std::vector<Node>& children) |
969 |
|
{ |
970 |
6 |
Node n = children[children.size() - 1]; |
971 |
18 |
for (size_t i = children.size() - 1; i > 0;) |
972 |
|
{ |
973 |
12 |
n = mkNode(kind, children[--i], n); |
974 |
|
} |
975 |
6 |
return n; |
976 |
|
} |
977 |
|
|
978 |
799 |
Node NodeManager::mkChain(Kind kind, const std::vector<Node>& children) |
979 |
|
{ |
980 |
799 |
if (children.size() == 2) |
981 |
|
{ |
982 |
|
// if this is the case exactly 1 pair will be generated so the |
983 |
|
// AND is not required |
984 |
|
return mkNode(kind, children[0], children[1]); |
985 |
|
} |
986 |
1598 |
std::vector<Node> cchildren; |
987 |
4044 |
for (size_t i = 0, nargsmo = children.size() - 1; i < nargsmo; i++) |
988 |
|
{ |
989 |
3245 |
cchildren.push_back(mkNode(kind, children[i], children[i + 1])); |
990 |
|
} |
991 |
799 |
return mkNode(kind::AND, cchildren); |
992 |
|
} |
993 |
|
|
994 |
128 |
Node NodeManager::mkVar(const TypeNode& type) |
995 |
|
{ |
996 |
128 |
Node n = NodeBuilder(this, kind::VARIABLE); |
997 |
128 |
setAttribute(n, TypeAttr(), type); |
998 |
128 |
setAttribute(n, TypeCheckedAttr(), true); |
999 |
128 |
return n; |
1000 |
|
} |
1001 |
|
|
1002 |
885997 |
Node NodeManager::mkBoundVar(const TypeNode& type) { |
1003 |
885997 |
Node n = NodeBuilder(this, kind::BOUND_VARIABLE); |
1004 |
885997 |
setAttribute(n, TypeAttr(), type); |
1005 |
885997 |
setAttribute(n, TypeCheckedAttr(), true); |
1006 |
885997 |
return n; |
1007 |
|
} |
1008 |
|
|
1009 |
61549 |
Node NodeManager::mkInstConstant(const TypeNode& type) { |
1010 |
61549 |
Node n = NodeBuilder(this, kind::INST_CONSTANT); |
1011 |
61549 |
n.setAttribute(TypeAttr(), type); |
1012 |
61549 |
n.setAttribute(TypeCheckedAttr(), true); |
1013 |
61549 |
return n; |
1014 |
|
} |
1015 |
|
|
1016 |
12816 |
Node NodeManager::mkNullaryOperator(const TypeNode& type, Kind k) { |
1017 |
12816 |
std::map< TypeNode, Node >::iterator it = d_unique_vars[k].find( type ); |
1018 |
12816 |
if( it==d_unique_vars[k].end() ){ |
1019 |
20984 |
Node n = NodeBuilder(this, k).constructNode(); |
1020 |
10492 |
setAttribute(n, TypeAttr(), type); |
1021 |
|
//setAttribute(n, TypeCheckedAttr(), true); |
1022 |
10492 |
d_unique_vars[k][type] = n; |
1023 |
10492 |
Assert(n.getMetaKind() == kind::metakind::NULLARY_OPERATOR); |
1024 |
10492 |
return n; |
1025 |
|
}else{ |
1026 |
2324 |
return it->second; |
1027 |
|
} |
1028 |
|
} |
1029 |
|
|
1030 |
22528 |
Node NodeManager::mkSingleton(const TypeNode& t, const TNode n) |
1031 |
|
{ |
1032 |
45056 |
Assert(n.getType().isSubtypeOf(t)) |
1033 |
22528 |
<< "Invalid operands for mkSingleton. The type '" << n.getType() |
1034 |
22528 |
<< "' of node '" << n << "' is not a subtype of '" << t << "'." |
1035 |
|
<< std::endl; |
1036 |
45056 |
Node op = mkConst(SingletonOp(t)); |
1037 |
22528 |
Node singleton = mkNode(kind::SINGLETON, op, n); |
1038 |
45056 |
return singleton; |
1039 |
|
} |
1040 |
|
|
1041 |
392 |
Node NodeManager::mkBag(const TypeNode& t, const TNode n, const TNode m) |
1042 |
|
{ |
1043 |
784 |
Assert(n.getType().isSubtypeOf(t)) |
1044 |
392 |
<< "Invalid operands for mkBag. The type '" << n.getType() |
1045 |
392 |
<< "' of node '" << n << "' is not a subtype of '" << t << "'." |
1046 |
|
<< std::endl; |
1047 |
784 |
Node op = mkConst(MakeBagOp(t)); |
1048 |
392 |
Node bag = mkNode(kind::MK_BAG, op, n, m); |
1049 |
784 |
return bag; |
1050 |
|
} |
1051 |
|
|
1052 |
8 |
Node NodeManager::mkAbstractValue(const TypeNode& type) { |
1053 |
8 |
Node n = mkConst(AbstractValue(++d_abstractValueCount)); |
1054 |
8 |
n.setAttribute(TypeAttr(), type); |
1055 |
8 |
n.setAttribute(TypeCheckedAttr(), true); |
1056 |
8 |
return n; |
1057 |
|
} |
1058 |
|
|
1059 |
53596327 |
bool NodeManager::safeToReclaimZombies() const{ |
1060 |
|
// FIXME multithreading |
1061 |
53596327 |
return !d_inReclaimZombies && !d_attrManager->inGarbageCollection(); |
1062 |
|
} |
1063 |
|
|
1064 |
|
void NodeManager::deleteAttributes(const std::vector<const expr::attr::AttributeUniqueId*>& ids){ |
1065 |
|
d_attrManager->deleteAttributes(ids); |
1066 |
|
} |
1067 |
|
|
1068 |
|
void NodeManager::debugHook(int debugFlag){ |
1069 |
|
// For debugging purposes only, DO NOT CHECK IN ANY CODE! |
1070 |
|
} |
1071 |
|
|
1072 |
217 |
Kind NodeManager::getKindForFunction(TNode fun) |
1073 |
|
{ |
1074 |
434 |
TypeNode tn = fun.getType(); |
1075 |
217 |
if (tn.isFunction()) |
1076 |
|
{ |
1077 |
20 |
return kind::APPLY_UF; |
1078 |
|
} |
1079 |
197 |
else if (tn.isConstructor()) |
1080 |
|
{ |
1081 |
49 |
return kind::APPLY_CONSTRUCTOR; |
1082 |
|
} |
1083 |
148 |
else if (tn.isSelector()) |
1084 |
|
{ |
1085 |
91 |
return kind::APPLY_SELECTOR; |
1086 |
|
} |
1087 |
57 |
else if (tn.isTester()) |
1088 |
|
{ |
1089 |
57 |
return kind::APPLY_TESTER; |
1090 |
|
} |
1091 |
|
return kind::UNDEFINED_KIND; |
1092 |
|
} |
1093 |
|
|
1094 |
2649 |
Node NodeManager::mkNode(Kind kind, std::initializer_list<TNode> children) |
1095 |
|
{ |
1096 |
5298 |
NodeBuilder nb(this, kind); |
1097 |
2649 |
nb.append(children.begin(), children.end()); |
1098 |
5298 |
return nb.constructNode(); |
1099 |
|
} |
1100 |
|
|
1101 |
|
Node NodeManager::mkNode(TNode opNode, std::initializer_list<TNode> children) |
1102 |
|
{ |
1103 |
|
NodeBuilder nb(this, operatorToKind(opNode)); |
1104 |
|
if (opNode.getKind() != kind::BUILTIN) |
1105 |
|
{ |
1106 |
|
nb << opNode; |
1107 |
|
} |
1108 |
|
nb.append(children.begin(), children.end()); |
1109 |
|
return nb.constructNode(); |
1110 |
|
} |
1111 |
|
|
1112 |
31137 |
} // namespace cvc5 |