1 |
|
/****************************************************************************** |
2 |
|
* Top contributors (to current version): |
3 |
|
* Andrew Reynolds, Aina Niemetz |
4 |
|
* |
5 |
|
* This file is part of the cvc5 project. |
6 |
|
* |
7 |
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS |
8 |
|
* in the top-level source directory and their institutional affiliations. |
9 |
|
* All rights reserved. See the file COPYING in the top-level source |
10 |
|
* directory for licensing information. |
11 |
|
* **************************************************************************** |
12 |
|
* |
13 |
|
* Implementation of relevance manager. |
14 |
|
*/ |
15 |
|
|
16 |
|
#include "theory/relevance_manager.h" |
17 |
|
|
18 |
|
#include <sstream> |
19 |
|
|
20 |
|
#include "options/smt_options.h" |
21 |
|
#include "smt/env.h" |
22 |
|
|
23 |
|
using namespace cvc5::kind; |
24 |
|
|
25 |
|
namespace cvc5 { |
26 |
|
namespace theory { |
27 |
|
|
28 |
23 |
RelevanceManager::RelevanceManager(context::Context* lemContext, Valuation val) |
29 |
|
: d_val(val), |
30 |
|
d_input(lemContext), |
31 |
|
d_computed(false), |
32 |
|
d_success(false), |
33 |
|
d_trackRSetExp(false), |
34 |
23 |
d_miniscopeTopLevel(true) |
35 |
|
{ |
36 |
23 |
if (options::produceDifficulty()) |
37 |
|
{ |
38 |
4 |
d_dman.reset(new DifficultyManager(lemContext, val)); |
39 |
4 |
d_trackRSetExp = true; |
40 |
|
// we cannot miniscope AND at the top level, since we need to |
41 |
|
// preserve the exact form of preprocessed assertions so the dependencies |
42 |
|
// are tracked. |
43 |
4 |
d_miniscopeTopLevel = false; |
44 |
|
} |
45 |
23 |
} |
46 |
|
|
47 |
19 |
void RelevanceManager::notifyPreprocessedAssertions( |
48 |
|
const std::vector<Node>& assertions) |
49 |
|
{ |
50 |
|
// add to input list, which is user-context dependent |
51 |
38 |
std::vector<Node> toProcess; |
52 |
126 |
for (const Node& a : assertions) |
53 |
|
{ |
54 |
107 |
if (d_miniscopeTopLevel && a.getKind() == AND) |
55 |
|
{ |
56 |
|
// split top-level AND |
57 |
3 |
for (const Node& ac : a) |
58 |
|
{ |
59 |
2 |
toProcess.push_back(ac); |
60 |
|
} |
61 |
|
} |
62 |
|
else |
63 |
|
{ |
64 |
106 |
d_input.push_back(a); |
65 |
|
} |
66 |
|
} |
67 |
19 |
addAssertionsInternal(toProcess); |
68 |
19 |
} |
69 |
|
|
70 |
|
void RelevanceManager::notifyPreprocessedAssertion(Node n) |
71 |
|
{ |
72 |
|
std::vector<Node> toProcess; |
73 |
|
toProcess.push_back(n); |
74 |
|
addAssertionsInternal(toProcess); |
75 |
|
} |
76 |
|
|
77 |
19 |
void RelevanceManager::addAssertionsInternal(std::vector<Node>& toProcess) |
78 |
|
{ |
79 |
19 |
size_t i = 0; |
80 |
23 |
while (i < toProcess.size()) |
81 |
|
{ |
82 |
4 |
Node a = toProcess[i]; |
83 |
2 |
if (d_miniscopeTopLevel && a.getKind() == AND) |
84 |
|
{ |
85 |
|
// difficulty tracking disables miniscoping of AND |
86 |
|
Assert(d_dman == nullptr); |
87 |
|
// split AND |
88 |
|
for (const Node& ac : a) |
89 |
|
{ |
90 |
|
toProcess.push_back(ac); |
91 |
|
} |
92 |
|
} |
93 |
|
else |
94 |
|
{ |
95 |
|
// note that a could be a literal, in which case we could add it to |
96 |
|
// an "always relevant" set here. |
97 |
2 |
d_input.push_back(a); |
98 |
|
} |
99 |
2 |
i++; |
100 |
|
} |
101 |
19 |
} |
102 |
|
|
103 |
141 |
void RelevanceManager::resetRound() |
104 |
|
{ |
105 |
141 |
d_computed = false; |
106 |
141 |
} |
107 |
|
|
108 |
86 |
void RelevanceManager::computeRelevance() |
109 |
|
{ |
110 |
86 |
d_computed = true; |
111 |
86 |
d_rset.clear(); |
112 |
86 |
d_rsetExp.clear(); |
113 |
86 |
Trace("rel-manager") << "RelevanceManager::computeRelevance..." << std::endl; |
114 |
172 |
std::unordered_map<TNode, int> cache; |
115 |
470 |
for (const Node& node: d_input) |
116 |
|
{ |
117 |
768 |
TNode n = node; |
118 |
384 |
int val = justify(n, cache); |
119 |
384 |
if (val != 1) |
120 |
|
{ |
121 |
|
std::stringstream serr; |
122 |
|
serr << "RelevanceManager::computeRelevance: WARNING: failed to justify " |
123 |
|
<< n; |
124 |
|
Trace("rel-manager") << serr.str() << std::endl; |
125 |
|
Assert(false) << serr.str(); |
126 |
|
d_success = false; |
127 |
|
d_rset.clear(); |
128 |
|
return; |
129 |
|
} |
130 |
|
} |
131 |
86 |
Trace("rel-manager") << "...success, size = " << d_rset.size() << std::endl; |
132 |
86 |
d_success = true; |
133 |
|
} |
134 |
|
|
135 |
902 |
bool RelevanceManager::isBooleanConnective(TNode cur) |
136 |
|
{ |
137 |
902 |
Kind k = cur.getKind(); |
138 |
452 |
return k == NOT || k == IMPLIES || k == AND || k == OR || k == ITE || k == XOR |
139 |
1298 |
|| (k == EQUAL && cur[0].getType().isBoolean()); |
140 |
|
} |
141 |
|
|
142 |
259 |
bool RelevanceManager::updateJustifyLastChild( |
143 |
|
TNode cur, |
144 |
|
std::vector<int>& childrenJustify, |
145 |
|
std::unordered_map<TNode, int>& cache) |
146 |
|
{ |
147 |
|
// This method is run when we are informed that child index of cur |
148 |
|
// has justify status lastChildJustify. We return true if we would like to |
149 |
|
// compute the next child, in this case we push the status of the current |
150 |
|
// child to childrenJustify. |
151 |
259 |
size_t nchildren = cur.getNumChildren(); |
152 |
259 |
Assert(isBooleanConnective(cur)); |
153 |
259 |
size_t index = childrenJustify.size(); |
154 |
259 |
Assert(index < nchildren); |
155 |
259 |
Assert(cache.find(cur[index]) != cache.end()); |
156 |
259 |
Kind k = cur.getKind(); |
157 |
|
// Lookup the last child's value in the overall cache, we may choose to |
158 |
|
// add this to childrenJustify if we return true. |
159 |
259 |
int lastChildJustify = cache[cur[index]]; |
160 |
259 |
if (k == NOT) |
161 |
|
{ |
162 |
225 |
cache[cur] = -lastChildJustify; |
163 |
|
} |
164 |
34 |
else if (k == IMPLIES || k == AND || k == OR) |
165 |
|
{ |
166 |
34 |
if (lastChildJustify != 0) |
167 |
|
{ |
168 |
|
// See if we short circuited? The value for short circuiting is false if |
169 |
|
// we are AND or the first child of IMPLIES. |
170 |
34 |
if (lastChildJustify |
171 |
34 |
== ((k == AND || (k == IMPLIES && index == 0)) ? -1 : 1)) |
172 |
|
{ |
173 |
21 |
cache[cur] = k == AND ? -1 : 1; |
174 |
21 |
return false; |
175 |
|
} |
176 |
|
} |
177 |
13 |
if (index + 1 == nchildren) |
178 |
|
{ |
179 |
|
// finished all children, compute the overall value |
180 |
1 |
int ret = k == AND ? 1 : -1; |
181 |
2 |
for (int cv : childrenJustify) |
182 |
|
{ |
183 |
1 |
if (cv == 0) |
184 |
|
{ |
185 |
|
ret = 0; |
186 |
|
break; |
187 |
|
} |
188 |
|
} |
189 |
1 |
cache[cur] = ret; |
190 |
|
} |
191 |
|
else |
192 |
|
{ |
193 |
|
// continue |
194 |
12 |
childrenJustify.push_back(lastChildJustify); |
195 |
12 |
return true; |
196 |
1 |
} |
197 |
|
} |
198 |
|
else if (lastChildJustify == 0) |
199 |
|
{ |
200 |
|
// all other cases, an unknown child implies we are unknown |
201 |
|
cache[cur] = 0; |
202 |
|
} |
203 |
|
else if (k == ITE) |
204 |
|
{ |
205 |
|
if (index == 0) |
206 |
|
{ |
207 |
|
Assert(lastChildJustify != 0); |
208 |
|
// continue with branch |
209 |
|
childrenJustify.push_back(lastChildJustify); |
210 |
|
if (lastChildJustify == -1) |
211 |
|
{ |
212 |
|
// also mark first branch as don't care |
213 |
|
childrenJustify.push_back(0); |
214 |
|
} |
215 |
|
return true; |
216 |
|
} |
217 |
|
else |
218 |
|
{ |
219 |
|
// should be in proper branch |
220 |
|
Assert(childrenJustify[0] == (index == 1 ? 1 : -1)); |
221 |
|
// we are the value of the branch |
222 |
|
cache[cur] = lastChildJustify; |
223 |
|
} |
224 |
|
} |
225 |
|
else |
226 |
|
{ |
227 |
|
Assert(k == XOR || k == EQUAL); |
228 |
|
Assert(nchildren == 2); |
229 |
|
Assert(lastChildJustify != 0); |
230 |
|
if (index == 0) |
231 |
|
{ |
232 |
|
// must compute the other child |
233 |
|
childrenJustify.push_back(lastChildJustify); |
234 |
|
return true; |
235 |
|
} |
236 |
|
else |
237 |
|
{ |
238 |
|
// both children known, compute value |
239 |
|
Assert(childrenJustify.size() == 1 && childrenJustify[0] != 0); |
240 |
|
cache[cur] = |
241 |
|
((k == XOR ? -1 : 1) * lastChildJustify == childrenJustify[0]) ? 1 |
242 |
|
: -1; |
243 |
|
} |
244 |
|
} |
245 |
226 |
return false; |
246 |
|
} |
247 |
|
|
248 |
384 |
int RelevanceManager::justify(TNode n, std::unordered_map<TNode, int>& cache) |
249 |
|
{ |
250 |
|
// the vector of values of children |
251 |
768 |
std::unordered_map<TNode, std::vector<int>> childJustify; |
252 |
384 |
std::unordered_map<TNode, int>::iterator it; |
253 |
384 |
std::unordered_map<TNode, std::vector<int>>::iterator itc; |
254 |
768 |
std::vector<TNode> visit; |
255 |
768 |
TNode cur; |
256 |
384 |
visit.push_back(n); |
257 |
518 |
do |
258 |
|
{ |
259 |
902 |
cur = visit.back(); |
260 |
|
// should always have Boolean type |
261 |
902 |
Assert(cur.getType().isBoolean()); |
262 |
902 |
it = cache.find(cur); |
263 |
902 |
if (it != cache.end()) |
264 |
|
{ |
265 |
|
visit.pop_back(); |
266 |
|
// already computed value |
267 |
|
continue; |
268 |
|
} |
269 |
902 |
itc = childJustify.find(cur); |
270 |
|
// have we traversed to children yet? |
271 |
902 |
if (itc == childJustify.end()) |
272 |
|
{ |
273 |
|
// are we not a Boolean connective (including NOT)? |
274 |
643 |
if (isBooleanConnective(cur)) |
275 |
|
{ |
276 |
|
// initialize its children justify vector as empty |
277 |
247 |
childJustify[cur].clear(); |
278 |
|
// start with the first child |
279 |
247 |
visit.push_back(cur[0]); |
280 |
|
} |
281 |
|
else |
282 |
|
{ |
283 |
396 |
visit.pop_back(); |
284 |
|
// The atom case, lookup the value in the valuation class to |
285 |
|
// see its current value in the SAT solver, if it has one. |
286 |
396 |
int ret = 0; |
287 |
|
// otherwise we look up the value |
288 |
|
bool value; |
289 |
396 |
if (d_val.hasSatValue(cur, value)) |
290 |
|
{ |
291 |
396 |
ret = value ? 1 : -1; |
292 |
396 |
d_rset.insert(cur); |
293 |
396 |
if (d_trackRSetExp) |
294 |
|
{ |
295 |
|
d_rsetExp[cur] = n; |
296 |
|
} |
297 |
|
} |
298 |
396 |
cache[cur] = ret; |
299 |
|
} |
300 |
|
} |
301 |
|
else |
302 |
|
{ |
303 |
|
// this processes the impact of the current child on the value of cur, |
304 |
|
// and possibly requests that a new child is computed. |
305 |
259 |
if (updateJustifyLastChild(cur, itc->second, cache)) |
306 |
|
{ |
307 |
12 |
Assert(itc->second.size() < cur.getNumChildren()); |
308 |
24 |
TNode nextChild = cur[itc->second.size()]; |
309 |
12 |
visit.push_back(nextChild); |
310 |
|
} |
311 |
|
else |
312 |
|
{ |
313 |
247 |
visit.pop_back(); |
314 |
|
} |
315 |
|
} |
316 |
902 |
} while (!visit.empty()); |
317 |
384 |
Assert(cache.find(n) != cache.end()); |
318 |
768 |
return cache[n]; |
319 |
|
} |
320 |
|
|
321 |
2482 |
bool RelevanceManager::isRelevant(Node lit) |
322 |
|
{ |
323 |
2482 |
if (!d_computed) |
324 |
|
{ |
325 |
86 |
computeRelevance(); |
326 |
|
} |
327 |
2482 |
if (!d_success) |
328 |
|
{ |
329 |
|
// always relevant if we failed to compute |
330 |
|
return true; |
331 |
|
} |
332 |
|
// agnostic to negation |
333 |
4936 |
while (lit.getKind() == NOT) |
334 |
|
{ |
335 |
1227 |
lit = lit[0]; |
336 |
|
} |
337 |
2482 |
return d_rset.find(lit) != d_rset.end(); |
338 |
|
} |
339 |
|
|
340 |
|
const std::unordered_set<TNode>& RelevanceManager::getRelevantAssertions( |
341 |
|
bool& success) |
342 |
|
{ |
343 |
|
if (!d_computed) |
344 |
|
{ |
345 |
|
computeRelevance(); |
346 |
|
} |
347 |
|
// update success flag |
348 |
|
success = d_success; |
349 |
|
return d_rset; |
350 |
|
} |
351 |
|
|
352 |
567 |
void RelevanceManager::notifyLemma(Node n) |
353 |
|
{ |
354 |
567 |
if (d_dman != nullptr) |
355 |
|
{ |
356 |
|
// ensure we know which literals are relevant, and why |
357 |
|
computeRelevance(); |
358 |
|
d_dman->notifyLemma(d_rsetExp, n); |
359 |
|
} |
360 |
567 |
} |
361 |
|
|
362 |
120 |
void RelevanceManager::notifyCandidateModel(TheoryModel* m) |
363 |
|
{ |
364 |
120 |
if (d_dman != nullptr) |
365 |
|
{ |
366 |
4 |
d_dman->notifyCandidateModel(d_input, m); |
367 |
|
} |
368 |
120 |
} |
369 |
|
|
370 |
4 |
void RelevanceManager::getDifficultyMap(std::map<Node, Node>& dmap) |
371 |
|
{ |
372 |
4 |
if (d_dman != nullptr) |
373 |
|
{ |
374 |
4 |
d_dman->getDifficultyMap(dmap); |
375 |
|
} |
376 |
4 |
} |
377 |
|
|
378 |
|
} // namespace theory |
379 |
31137 |
} // namespace cvc5 |