
Documentation for Merge of CVC4 Quantifiers2
Branch

Andrew Reynolds

1 Summary

The quantifiers2 branch of CVC4 contains support for various approaches quanti-
fiers in SMT, including matching-based quantifier instantiation, counterexample-
based quantifier instantiation, finite model finding and rewrite-based instantia-
tion and propagation. This document contains information about the modifica-
tions made to CVC4 in the quantifiers2 branch to support these features. Here
is a summary of the changes:

1. The theories TheoryQuantifiers and TheoryRewriteRules were added.
2. A QuantifiersEngine was added as a module within TheoryEngine.
3. The Theory class was updated to communicate with QuantifiersEngine,

in particular through use of an Instantiator class contained in each theory.
4. The SAT solver interface was updated to support some specific commands

required by the algorithms for handling quantifiers. Various functions were
added to the OutputChannel and Valutation classes to allow Theory ob-
jects to issue these commands.

5. The TheoryUF was updated to contain and communicate with the finite
model finding module StrongSolverTheoryUF.

6. A few other parts of the core were modified to handle the case of quantifiers,
including parsing, printing, preregistration and ITE lifting.

7. Other generic utilities to support triggers and matching were added.

1.1 Notes

Most modifications made to existing files in trunk are contained between the
comment tags //AJR-hack and //AJR-hack-end. Any modifications made be-
tween tags //AJR-hack-temp and //AJR-hack-temp-end can be ignored.

I have highlighted possible improvements in Section 8.

2 Quantifiers

2.1 TheoryQuantifiers

The directory src/theory/quantifiers contains definitions for the quantifiers
theory.

2.2 TheoryRewriteRules

The directory src/theory/rewriterules contains definitions for the rewrite
rules theory.

2.3 QuantifiersEngine

Included in src/theory/quantifiers engine.h/cpp are definitions for the fol-
lowing classes:

1. Instantiator class, a base class for deciding instantiations. This class con-
tains a collection of instantiation strategies InstStrategy. Each theory will
contain an instantiator object.

2. TermDb, a database for storing all known ground terms that are relevant to
quantifiers.

3. QuantifiersEngine, the central point of reference for quantifiers.

The QuantifiersEngine class is the central point of reference for handling
quantifiers in CVC4. Included is a collection of modules it consults for managing
quantifiers, utilities for generating instantiation lemmas, and ways of registering
pattern terms for matching.

The QuantifiersEngine contains a vector of QuantifiersModule objects,
which it consults when quantifiers are registered, check calls are issued etc. The
only such module within QuantifiersEngine at the moment is InstantiationEngine,
which is defined at src/theory/quantifiers/instantiation engine.h/cpp.
This module consults all Instantiator objects stored in theories for all quan-
tifiers for deciding which instantiations to generate.

3 Modifications to Theory Interface

The following section contains changes made to support the communication be-
tween Theory objects and the quantifiers module QuantifiersEngine.

3.1 src/theory/theory.h/cpp

The Theory class contains the following new members:

1. QuantifiersEngine* d quantEngine, a reference to the quantifiers engine.
2. Instantiator* d inst, the instantiator object for this theory.

The arguments to the constructor for Theory has been updated to include a
reference the quantifiers engine. I have found this to be the best way to initialize
everything, since at construction time the theories will construct instantiators
that will need references to the quantifiers engine.

The effort level EFFORT LAST CALL has been added to support quantifiers,
which requires doing work after theory combination takes place.

2

3.2 src/theory/theory engine.h/cpp

The TheoryEngine class contains the following new members:

1. theory::QuantifiersEngine* d quantEngine, the quantifiers engine, which is cre-
ated within the theory engine constructor.

2. theory::Theory* getTheory(int id), an access function for individual theories
directly by id. This has been necessary in various places, for example, I may
need to reference TheoryUF to access equivalence class information internal
to the theory for matching modulo equality.

In src/theory/theory engine.cpp line 235, additional work is done when
the theory engine passes a full effort check with no lemmas and no conflicts. The
check method is called in the quantifiers theory with effort level EFFORT LAST CALL.
This level is necessary since it has been shown the quantifiers theory needs to
perform work after theory combination has taken place. The quantifiers theory
will either add a lemma, return with the incompleteness flag set, or simply return
after which CVC4 should answer “sat”. If no lemmas are added and incomplete-
ness is set, and the “flipDecision” option is active (see Section 5), we consult
the quantifiers theory for performing this operation. This may cause CVC4 to
continue the search, instead of answering “unknown”.

3.3 src/theory/output channel.h

The output channel has been updated to include these new members:

1. void requirePhase(TNode n, bool phase, ...), requires that literal n be chosen
as a decision only with given phase.

2. void dependentDecision(TNode depends, TNode decision, ...), requires that
literal decision can only be decided once literal depends has a value.

3. bool flipDecision(), backtrack the search to the most recent eligible decision
literal, flip its polarity, and re-assert it.

4. void flipDecision(Node lit), backtracks and flips the polarity of the decision
literal lit.

5. void flipDecision(unsigned level), backtracks and flips the polarity of the de-
cision literal at given level.

More information can be found in comments within src/theory/output channel.h.

3.4 src/theory/valuation.h/cpp

The valuation class has been updated to include these new members:

1. void ensureLiteral(TNode n), ensures that a SAT literal is assigned to the
formula n.

2. int getDecisionLevel(), gets the current decision level.
3. Node getDecision(unsigned level), gets the decision made at a particular level.
4. bool isDecision(Node lit), returns true if literal lit is currently asserted as a

decision.

More information can be found in comments within src/theory/valuation.h.

3

4 Modifications to Individual Theories

4.1 TheoryArrays

Added instantiator class src/theory/arrays/theory arrays instantiator.h/cpp.
This class forwards terms in the arrays theory to the quantifier engine for use in
matching.

4.2 TheoryArith

Added instantiator class src/theory/arith/theory arith instantiator.h/cpp.
If the counterexample-based quantifier instantiation option is active, this class
contains a strategy for quantifier instantiation. This strategy produces instantia-
tions based on information stored in the simplex tableaux for relevant variables.

4.3 TheoryDatatypes

Added instantiator class src/theory/datatypes/theory datatypes instantiator.h/cpp.
If the counterexample-based quantifier instantiation option is active, this classes
produces instantiations based on information stored in the datatypes theory
concerning the current model.

4.4 TheoryUF

Added instantiator class src/theory/uf/theory uf instantiator.h/cpp. This
class stores additional information that is needed for quantifiers, including prop-
erties of equivalence classes, information needed for efficient E-matching, among
other things. The instantiator class also contains strategies for matching-based
instantiation (defined in files src/theory/uf/inst strategy.h/cpp), and for-
wards relevant terms to the quantifiers engine for use in matching.

I have also added the CARDINALITY CONSTRAINT kind to the kinds file
for UF. I do not require cardinality constraints to be handled by any parser. In-
stead, they are internally created and processed by the StrongSolverTheoryUF
module, and are ignored by TheoryUF. In finite model finding mode, the strong
solver for theory UF will introduce lemmas and make propagations containing
cardinality constraints for the purposes of finding minimal models.

src/theory/uf/equality engine impl.h: I have required that the templated
class NotifyClass gives additional notifications in four additional places:

1. NotifyClass::notifyEqClass(...), called when a new equivalence class is cre-
ated.

2. NotifyClass::notifyDisequal(...), called just before a disequality between two
terms is added.

3. NotifyClass::preNotifyMerge(...), called just before two equivalence classes
are merged.

4

4. NotifyClass::postNotifyMerge(...), called just after two equivalence classes
are merged.

The third feature is required by efficient E-matching, which generates new
candidate terms for matching incrementally based on which merges take place.
The remaining three features are needed for finite model finding, which maintains
a disequality graph for solving UF+cardinality constraints. This requires that all
notifications are given in terms of representatives. All representatives are notified
before they are used, using notifyEqClass(...). The call postNotifyMerge(a, b)
has the meaning that a is now the representative of the equivalence class of b.

These functions have been added to all notify classes used in conjunction with
the equality engine class. This includes SharedTermDatabase, TheoryArrays,
DifferenceManager, TheoryBV and TheoryUF. In all cases apart from UF, these
functions have no effect.

Additionally on line 899, I have made the modification to areDisequal(...),
which had been causing assertion failures when checking disequality between
boolean terms.

src/theory/uf/theory uf.h/cpp: The TheoryUF class contains the following
new members:

1. StrongSolverTheoryUf* d thss, a strong solver for UF+cardinality constraints.
This class also handles some of the control decisions of the finite model
finding algorithm. This class is activated only when the finite model finding
option is turned on.

2. notifyEqClass(...), notifyDisequal(...), preNotifyMerge(...), postNotifyMerge(
...), these functions forward the notifications from the equality engine to the
instantiator and strong solver objects.

3. EqualityEngine < NotifyClass>* getEqualityEngine(), access function to equal-
ity engine.

Various parts of TheoryUF have been updated to send notifications and re-
quests to the quantifiers engine, the instantiator, and the strong solver.

src/theory/uf/theory uf strong solver.h/cpp: These files define the strong
solver for UF+cardinality constraints.

src/theory/uf/inst strategy model find.h/cpp: These files define the in-
stantiation strategy used for finite model finding.

5 Modifications to SAT Solver Interface

The SAT solver interface has been updated to include a variety of features re-
garding when/how a literal should be decided upon. The interface also has added
queries for various information.

The following has been added to DPLLSatSolverInterface (in src/prop/sat solver.h):

5

1. unsigned getDecisionLevel(), returns the current decision level.
2. bool isDecision(SatVariable decn), returns true if the given variable is asserted

as a decision.
3. SatLiteral getDecision(unsigned level), return the literal decided at the given

decision level.
4. void requirePhasedDecision(SatLiteral lit), requests that a literal only be cho-

sen in the polarity given.
5. void dependentDecision(SatVariable dep, SatVariable dec), requests that literal

with variable dep be decided before literal with variable dec.
6. bool flipDecision(), requests a backtrack to occur. In particular, we find the

most recent decision literal, backtrack the search to this literal, and assert
it with the opposite polarity.

7. void flipDecision(SatVariable decn), requests the literal with variable decn to
be “flipped”.

For more information about these features, see the comments above their
declaration in src/theory/output channel.h.

5.1 MiniSat

The minisat interface in src/prop/minisat/minisat.h/cpp implements these
functions by calling the appropriate functions in Minisat::SimpSolver. The
base class of minisat Solver in src/prop/minisat/core/Solver.h/cpp has
been updated in a few places to support these features, including the following
new members:

1. void freezePolarity (Var v, bool b), declare which polarity the decision heuristic
must always use for a variable.

2. void dependentDecision(Var dep, Var dec), declare that deciding on “dec”
depends on “dep” having an assignment.

3. void setFlipVar(Var v, bool b), declare if a variable is eligible for flipping.
4. bool flipDecision(), backtrack and flip most recent decision.
5. void flipDecision(Var v), backtrack and flip the given decision.
6. vec<char> flippable, declares if a variable is eligible for flipping with flipDe-

cision().
7. vec<Var> depends, the variable (if any) that a decision on this variable

depends on
8. vec<Var> dependsOn, variables whose decision depends on this variable.
9. vec<int> flipped, which decisions have been flipped in this context.

A few minor changes were made to the implementation to maintain the new
data members. I also made the access functions int decisionLevel(), bool isDeci-
sion(Var x) and Lit getDecision(unsigned lvl) public.

6

6 Other Modifications

6.1 Parser

The SMT2 parser has been updated to support quantifiers (including user-
defined patterns) and rewrite rules, and supports the setting of various quantified
SMT logics.

6.2 Printing

Various printers have been updated to include quantifiers and rewrite rules, in-
cluding src/printer/cvc/cvc printer.cpp and src/printer/smt2/smt2 printer.cpp.
This is still in progress.

6.3 ITE Lifting

To ensure bound variables do not escape due to ITE lifting, the bodies of quan-
tifiers are ignored, see src/util/ite removal.cpp line 78.

6.4 Pre-Registration

To avoid propagating literals involving bound variables, the bodies of quantifiers
are ignored during pre-registration, see src/theory/term registration visitor.cpp,
line 35.

6.5 Options

The following options have been added to CVC4:

1. –disable-miniscope-quant: disable miniscope quantifiers
2. –disable-miniscope-quant-fv: disable miniscope quantifiers for ground sub-

formulas
3. –disable-prenex-quant: disable prenexing of quantifiers
4. –var-elim-quant: enable variable elimination of quantifiers
5. –disable-smart-multi-triggers: disable smart multi-triggers
6. –finite-model-find: use finite model finding heuristic for quantifier instantia-

tion
7. –use-fmf-region-sat: use region-based SAT heuristic for fmf
8. –efficient-e-matching: use efficient E-matching
9. –literal-matching=MODE: choose literal matching mode

10. –enable-cbqi: turns on counterexample-based quantifier instantiation [on by
default only for arithmetic]

11. –disable-cbqi: turns off counterexample-based quantifier instantiation
12. –disable-flip-decision: turns off flip decision heuristic

For more details, see src/util/options.h.

7

7 Utility Classes for Quantifiers

The files src/theory/inst match.h/cpp and src/theory/inst match impl.h
contain the utilities for performing matching on terms.

The files src/theory/trigger.h/cpp contain utilities for defining and using
triggers.

The files src/theory/uf/theory uf candidate generator.h/cpp defines
an implementation of the base class CandidateGenerator. This class encapsu-
lates how ground terms are chosen for matching according to various methods.

8 Suggestions for Improvement

8.1 General Framework for Querying Equalities and Iterating on
Equivalence Classes

For matching modulo equality, I have required a way of querying whether two
terms are equal/disequal, getting representatives for equivalence classes, and
iterating over terms in equivalence classes.

Since the code seems to be changing a lot, I am currently using my own
generic interface for all queries related to equality, disequality and represen-
tatives. This is the class EqualityQuery in the file src/theory/inst match.h.
The current implementation of matching uses the EqualityQueryInstantiatorTheoryUf
class, as defined in src/theory/uf/theory uf instantiator.h. However, this
is somewhat incomplete since it may not be aware of equalities in other theo-
ries. I would like to make this more general, perhaps using some of the updated
sharing code.

I have been using an iterator EqClassIterator defined in src/theory/uf/theory uf.h
for iterating over equivalence classes. Note that this iterator looks at the equal-
ity engine stored with TheoryUF, and thus may not perform correctly for equiv-
alence classes of other theories, in particular Arrays and Datatypes. On top
of this, I am using a candidate generator CandidateGeneratorTheoryUf in
src/theory/uf/theory uf candidate generator.h/cpp for producing ground
term candidates for matching. This also ideally should be more general.

8.2 Instantiator Framework

I have added lines of code to each Theory to call its corresponding Instantiator
with ceratin functions such as check, preregister for terms, etc. Perhaps it may
be better to standardize this, in other words, make it so that the instantiators
of theories are automatically notified when certain theory functions are called.

Again, the purpose of these instantiator objects is to store any theory-specific
information that is helpful for quantifiers. Since this may add overhead, instan-
tiators should not be created when quantifiers are inactive. I’m not sure if this
is occurring currently.

8

8.3 Cardinality Constraint Nodes

Cardinality constraints currently take two arguments so you’ll have constraints
like (CARDINALITY CONSTRAINT t n), meaning the cardinality of the type of
term t is n. Ideally we’d rather just have (CARDINALITY CONSTRAINT T n),
where T is a type. I wasn’t sure how make operators over TypeNode objects.

9

