
Efficient Term-ITE Conversion for Satisfiability Modulo
Theories?

Hyondeuk Kim1, Fabio Somenzi1, and HoonSang Jin2

1 University of Colorado at Boulder
2 Cadence Design Systems

{Hyondeuk.Kim,Fabio}@Colorado.EDU
{hsjin}@cadence.com

Abstract. This paper describes how term-if-then-else (Term-ITE) is handled in
Linear Arithmetic Logic (LA) problem. In LA problem, Term-ITE is used to ex-
press a set of atomic formulae with the same relational operator type (<,≤, >,≥)
and a different set of terms. To handle LA problem with (Term-ITE) in SMT
solver, term-if-then-else (Term-ITE) to Boolean if-then-else (ITE) conversion is
required. The conversion induces an exponential blow-up in worst case. We show
how effectively Term-ITE is handled in LA problems.

1 Introduction

Satisfiability Modulo Theories (SMT) solvers find increasing applications in areas like
formal verification in which one needs to reason about complex Boolean combinations
of numerical constraints. The most common approach to this problem leverages the
efficiency of modern propositional satisfiability solvers that work on a propositional
abstraction of the given formula. At the same time, they interact with theory solvers,
which check conjunctions of literals for consistency and learn consequences (new lem-
mas) from them. This approach has come to be known as DPLL(T) [11].

Among the logics for which theory solvers have been developed in recent times,
linear arithmetic is one of the most useful and well-researched. Many current solvers
adopt some variant of the simplex algorithm. In particular, the backtrackable version of
[2] fits well in the DPLL(T) scheme and has shown good results in practice for both
integer and real-valued variables.

The Boolean dimension of many SMT instances, however, continues to pose a chal-
lenge to solvers. In this paper we address this problem. In particular, we focus on those
instances that make extensive use of the term if-then-else (ITE) operator. This operator
facilitates the analysis of problems in which paths through control-flow graphs must be
translated into SMT formulae. It is not surprising, therefore, that many of the available
benchmark instances for linear arithmetic are rich in term ITEs. Given a code fragment
that contains if statements, a verification condition can be naturally formulated with
ITEs as shown in Fig. 1.

Two major approaches can be envisioned to deal with term ITEs. On the one hand,
one can modify the theory solver to deal with conditional expressions. Without ITEs,
? This work was supported in part by SRC contract 1859-TJ-2008.

2

main(void){

y = 1;

}

}

if(x = 0){

.

.

.

y = 2;

y = 3;

y = 4;

assert(y ≤ 2);

t-ite

t-ite

y

=

t-ite

y ≥ 3

1

x = 1

x = 0

x = 2

2

3

∧

}else if(x = 1){

}else if(x = 2){

}else {

F

4

Fig. 1. Verification condition F with Term-Ites

every assignment to an atom of the SMT formula adds to a conjunction of literals that
is analyzed by the theory solver. With ITEs, this is no longer the case. In order to an-
alyze the atom, the conditional expressions of the ITEs need to be assigned. On the
other hand, one can eliminate all the ITEs from the formula by rewriting. The prob-
lem here is that the rewritten formula may retain a lot of redundancies depending on
how one rewrites it. We address this problem by a procedure based on cofactoring and
theory simplification. Although our approach may cause a blow-up, it often simplifies
the formula in practice. Our approach is applied to linear arithmetic logic in this paper;
however, it can be easily applied to other logics like the logic of equality and uninter-
preted function symbols (EUF), the logic of bit-vector, the logic of array, etc. Only the
terminal cases are different in each logic. Our experiments show that our approach is
promising and often speeds up a solver by a few orders of magnitude. The experiments
also demonstrate the effectiveness of theory simplification.

The rest of this paper is organized as follows. Section 2 defines notation and sum-
marizes the main concepts. Section 3 discusses motivation and outlines our approach to
the problem. Section 4 presents the simplifications applied before invoking the Term-Ite
conversion. Section 5 presents an algorithm of Term-Ite conversion with theory reason-
ing. After a survey of related work in Sect. 6, experiments are presented in Sect. 7, and
conclusions are offered in Sect. 8.

2 Preliminaries

We consider the satisfiability problem for linear arithmetic logic, which is the quantifier-
free fragment of first-order logic that deals with linear arithmetic constraints. Let VB

3

be a set of propositional variables and VR be a set of real-valued variables. The formu-
lae in linear arithmetic logic are inductively defined as the largest set that satisfies the
following rules.

– A propositional variable a ∈ VB is a formula.
– A real number c ∈ R is a (constant) term.
– The product cx of a real number c ∈ R and a real-valued variable x ∈ VR is a term.
– If t1 and t2 are terms, then t1 + t2 is a term.
– If t1 and t2 are terms, and f is a formula, then term-ite(f, t1, t2) is a term.
– if t is a term, r ∈ R is a real number, and ∼∈ {=, 6=, <,≤} is a relational operator,

then t ∼ r is a formula.
– If f1, f2 and f3 are formulae, then ¬f1, f1 ∧ f2 and ite(f1, f2, f3) are formulae.

Further types of formulae can be defined as abbreviations. For instance, t 6= c is defined
as ¬(t = c) and a ∨ b as ¬(¬a ∧ ¬b). An atomic formula is one of the form t ∼ c,
where t is a term and c is a constant. A positive literal is either a propositional variable
or an atomic formula; a negative literal is the negation of a positive literal. A clause
is the disjunction of a set of literals such that no two literals in the set are identical or
complementary. A formula is in conjunctive normal form (CNF) if it is the conjunction
of a set of clauses.

A model for a formula f is an assignment of values to the variables in the formula
that is consistent with the type of each variable and that makes the formula true. A
formula that has at least one model is satisfiable. In recent years, decision procedure
for LA, and other fragments of quantifier-free first-order logic, have been based on the
DPLL procedure. formula F, a propositional abstraction Fb of F is built by substituting
each atomic formula with a new propositional variable. As the DPLL procedure pro-
vides a model for Fb, a theory solver for LA is invoked with the set of atomic formulae
that are assigned. The theory solver checks the feasibility of the set. If the set is feasible,
then the model is also a model in theory. If the set is infeasible, then the explanation
of the infeasibility is returned to the DPLL procedure. The procedure continues until it
finds a complete model, or decides that F is unsatisfiable in the given theory.

3 Term-ITE Conversion

3.1 Term-ITE

An LA formula can often be expressed more concisely by using term-ites. For exam-
ple, Fig. 2 shows that the formula f in (a) is equivalent to the formula f ′ in (b), but
is more concise. Despite the conciseness of term-ite representation, LA formula with
term-ites are often converted into a formula without these term-ites, so that the formula
may be solved by an SMT solver based on the propositional abstraction. A common
way to eliminate these term-ites is to introduce a fresh constant that replaces the term-
ite. In particular, an LA formula f(term-ite(g, t1, t2)) is converted to f(c)∧ if-then-
else(g, t1 = c, t2 = c) where c is a constant that does not appear in the given formula.
The advantage of this conversion is that it does not blow up; however, it often retains
redundancies in the converted formula. For example, the formula term-ite(g, 1, 2) =

4

term-ite(h, 3, 4) can be reduced to ⊥, whereas the conversion generates a rather com-
plex formula if-then-else(g, c = 1, c = 2)∧ if-then-else(h, c = 3, c = 4) that contains a
redundancy. To remove the redundancy, additional theory reasoning is required. A naive
approach to the Term-ite conversion will be to combine every term in the left-hand side
of the relational operator with the terms in the right-hand side depending on the condi-
tional terms of term-ites. In particular, an LA formula f(term-ite(g, t1, t2)) is converted
according to following conversion rule.

f(term-ite(g, t1, t2)) ⇐⇒ (g ∧ f(t1)) ∨ (¬g ∧ f(t2))

This approach removes the redundancy in the above example on the fly; however,
as Fig. 2 shows, the converted formula may grow exponentially large in the worst case.

A x y B u v

ite

ite

ite

= = = =

t-ite t-ite

x u x v y u y v

A

B B

(a) (b)

f ′f

=

Fig. 2. Term-Ite conversion

3.2 Term-ITE Conversion with Cofactors

As an alternative to the naive approaches described in Sect. 3.1, Term-ite conversion
can be done by computing cofactors.

Definition 1. Let f(x1, ..., xn) be an LA formula, where each xi is an atomic predicate.
Then,

fxi
= f(x1, ..., xi−1,>, xi+1, ..., xn)

f¬xi
= f(x1, ..., xi−1,⊥, xi+1, ..., xn)

are the positive and negative cofactors of f with respect to xi.

Theorem 1 (Boole). Let f(x1, ..., xn) be a Boolean function. Then f(x1, ..., xn) =
(xi ∧ fxi

) ∨ (¬xi ∧ f¬xi
).

5

According to Theorem 1, an LA formula f(term-ite(g, t1, t2)) can be rewritten as

(g ∧ fg(t1)) ∨ (¬g ∧ f¬g(t2)). (1)

By computing the cofactors for f , the conversion gets a great benefit of simplifying the
converted formula. In Fig. 3, f is simplified to ⊥ using the conversion rule. In particu-
lar, the cofactors fA ⇐⇒ (term-ite(B, 3, 5) = 4) and f¬A ⇐⇒ (5 = 4) ⇐⇒ ⊥
are first computed for the conversion f ⇐⇒ (A ∧ fA) ∨ (¬A ∧ f¬A). Then f is
simplified to (A∧fA), and finally reduced to ⊥ by cofactoring fA with respect to B. In
practice, this kind of simplification can be often done in LA problems of SMT-LIB [13].
As the conversion shows, the simplification for equality is easily done by comparing
two constants. On the other hand, if we use the conversion that introduces a fresh con-
stant, the redundancy still resides in the converted formula. Following the conventional
conversion rule, term-ite(ite(A, B,⊥), term-ite(¬A, x, 3), 5) in f is replace with a
fresh constant c. Then f is converted to

(c = 4) ∧ ite(ite(A, B,⊥), c = term-ite(¬A, x, 3), c = 5) ⇐⇒

(c = 4) ∧ ite(ite(A, B,⊥), ite(¬A, c = x, c = 3), c = 5).

To remove the redundancy in the converted formula, a rather complicated theory rea-
soning is required. Although the cofactoring method gives a huge reduction, it may still
blow up if there is no simplification. Compared to the approach that introduces a fresh
constant, our approach is more aggressive.

Definition 2. Let x1 and x2 be atomic formulae. We write x1 |=T x2 if x2 is a conse-
quence of x1 in theory T , and we call x2 a theory consequence of x1.

In LA, the cofactoring method can be further extended with theory reasoning. Using
the theory propagation method [11], an assignment to an atomic predicate may entail
the assignments to other atomic predicates. For example, if we make an assignment to
(x < 0) = >, then (x < 3) = > and (x > 1) = ⊥. Following rules give how theory
propagation helps to simplify the converted formula.

g |=T h

fg(term-ite(h, t1, t2)) ⇐⇒ fg(t1)
(2)

g |=T ¬h

fg(term-ite(h, t1, t2)) ⇐⇒ fg(t2)
(3)

As we compute the cofactors in Term-ite conversion, we make an assignment to a
cofactoring variable. If the cofactoring variable is an atomic predicate and the computed
cofactor is also an atomic predicate, then the theory reasoning can be invoked to check
the relation between these two atoms. The following theorem gives an idea of how this
simplification can be done, and it will be used in Sect. 5.

Theorem 2. Given an LA formula f and an atomic predicate xi, if xi |=T fxi
, then

f = xi ∨ f¬xi
. If xi |=T ¬fxi

, then f = ¬xi ∧ f¬xi
.

Proof. By Theorem 1. ut

6

=

t-ite

t-ite

¬A

A B

x 3

5

4

ite

⊥

=

B 3 5

4t-ite

=

5 4

= =

3 5 4

f = ⊥

f fA f¬A

fA¬BfAB

4

Fig. 3. Term-ITE conversion with cofactor

4 Simple Preprocessing

Before we execute Term-Ite conversion for an LA formula F, terminal cases for term-ite
are detected and basic simplification is done for the formula. Let a ∈ VB ; let t1, t2,
and t3 be terms and each c1, c2, c3 ∈ R. In the LA formula, we detect terminal cases
like term-ite(>, t1, t2) = t1, term-ite(⊥, t1, t2) = t2, term-ite(a, t1, t1) = t1. We also
simplify nested term-ites such as term-ite(a, term-ite(a, t1, t3), t2) = term-ite(a, t1, t2),
term-ite(a, term-ite(¬a, t3, t2), t1) = term-ite(a, t2, t1). For arithmetic terms, (0+t1) =
t1, (0 ∗ t1) = 0, (1 ∗ t1) = t1, (−(−t1)) = t1, (c1 + c2) = c3.

Furthermore, if a formula f has a root node that is a relational operator with term-
ites and has leaves that are all constants, then it can be simplified. Example 1 shows
such a case.

Example 1. Let f be a formula shown in Fig. 4. The formula f is an equality with term-
ites. As Fig. 4 shows, the terms on the left-hand side of the root node are all constants
and the one on the right-hand side is also a constant. In such a case, we compare all the
constants in the left hand side for equality with the constant on the right, 204. Clearly,
(202 = 204) ⇐⇒ ⊥, (201 = 204) ⇐⇒ ⊥ and (201 = 203) ⇐⇒ ⊥; hence
f = ⊥.

7

204

B
202

201

203A

t-ite

t-ite

f

=

⊥

Fig. 4. Term-Ite conversion with simple check

5 Algorithm

We assume that an SMT solver adopts the rewriting procedure. Given an LA formula
F with term-ites, an SMT solver converts F into F

′ by removing all term-ites in F.
After the conversion, the SMT solver decides the satisfiability of F

′. In this section, we
describe how F is converted into F

′.
As the pseudocode shows in Fig. 5, the main function of Term-Ite conversion is

called with an LA formula F. The formula F is represented as a DAG (directed acyclic
graph), where each node is a Boolean operator, a relational operator, an arithmetic
operator, a term-ite or an atom. The conversion is applied to each relational operator
in the DAG, and the procedure ends if F no longer has term-ites. The main function
starts by selecting the candidates for the conversion in the DAG. Each candidate is a
relational operator that has a term-ite as a descendant, and the candidates are gathered
in F . As line 4 in Fig. 5 shows, the Term-Ite conversion is invoked with f ∈ F , and
all the term-ites are removed from f . After the conversion of f , the converted formula
f ′ is either a Boolean ite or an atom. The procedure is continued until all f ∈ F are
considered. When the Term-Ite conversion finishes, F has been converted into F

′, and
F
′ does not contain any term-ites.

As Term-Ite conversion is invoked with f ∈ F , a cofactoring variable v is searched
for in f in line 10. We select an atom as a cofactoring variable that resides in the condi-
tional term of the term-ite. With v, we recursively compute the cofactor of f . In general,
the cofactors are computed for the children of f with respect to v, and a new formula fv

is created with new children. As shown in line 38 of Fig. 6, if f is a relational operator,
we compute the cofactors lv and rv for the children of f . After computing the cofactors,
we check for simple case with lv and rv . The simple check detects a terminal case for
the terms lv and rv with respect to the type (=, <,≤, >,≥) of f . Figure 4 shows an ex-
ample of simplification. If the terminal case is not found, a new formula fv is generated
with type(f), lv and rv . The newly generated formula, fv is either an atom or a relation
operator with term-ites. In the latter case, Term-Ite conversion is called with fv , again.

8

1 TermIteConversionMain (F) {
2 F := GatherCandidateForTermIteConversion (F);
3 For each f ∈ F (in topological order) {
4 f ′ := TermIteConversion (f);
5 F

′ := UpdateFormula (F, f ′);
6 }
7 return F

′

8 }

9 TermIteConversion (f) {
10 while (v := GetCofactorVariable (f)) {
11 fv := CofactorRecur (f , v);
12 f¬v := CofactorRecur (f , ¬v);
13 f := Ite (v, fv , f¬v);
14 }
15 return f ;
16 }

17 CofactorRecur (f , v) {
18 if (f = v) {
19 fv := >;
20 } else if (f = ¬v) {
21 fv := ⊥;
22 } else if (is relation(f)) {
23 fv := CofactorRelRecur (f , v);
24 } else if (is term ite(f)) {
25 fv := CofactorTiteRecur (f , v);
26 } else { /* +,−,× */
27 C := children(f);
28 For each c ∈ C {
29 d := CofactorRecur (c, v);
30 Add(D, d);
31 }
32 fv := NewFormula (type(f), D); /* type(f) is either +,−,×. */
33 SimplifyArithFormula(fv);
34 }
35 return fv;
36 }

Fig. 5. Term-Ite conversion algorithm

In line 47 of Fig. 6, if fv is an atom, theory reasoning is done with v. As Theorem 2
shows, if v |=T fv, then f in line 13 of Fig. 5 is simplified to v ∨ f¬v. Likewise, if
v |=T ¬fv , then f is simplified to ¬v ∧ f¬v. When f is either a term-ite or a Boolean
ite, the cofactor for each term of f is computed as shown in line 58 of Fig. 6. As in

9

37 CofactorRelRecur (f , v) {
38 lv := CofactorRelRecur (f → left, v);
39 rv := CofactorRelRecur (f → right, v);
40 fv := SimpleCheckWithTerms (type(f), lv , rv);
41 if (fv = 0) { /* fv is either an atom or 0 */
42 fv := NewFormula (type(f), lv , rv);
43 if (is term ite(lv) or is term ite(rv)) {
44 fv = TermIteConversion (fv);
45 }
46 }
47 if (is pred(fv)) {
48 if (v |=T fv) { /* theory reasoning */
49 fv := >
50 } else if (v |=T ¬fv) { /* theory reasoning */
51 fv := ⊥
52 }
53 }
54 return fv;
55 }

56 CofactorTiteRecur (f , v) {
57 fc := CondTerm(f); ft := ThenTerm(f); fe := ElseTerm(f);
58 if (fc = >) {
59 return CofactorRecur (ft, v);
60 } else if (fc = ⊥) {
61 return CofactorRecur (fe, v);
62 } else if (is pred(fc)) {
63 if (v |=T fc) { /* theory reasoning */
64 return CofactorRecur (ft, v);
65 } else if (v |=T ¬fc)) { /* theory reasoning */
66 return CofactorRecur (fe, v);
67 }
68 }
69 cv := CofactorRecur (fc, v);
70 tv := CofactorRecur (ft, v);
71 ev := CofactorRecur (fe, v);
72 fv := Ite (cv , tv , ev);
73 return fv;
74 }

Fig. 6. Term-Ite conversion algorithm

the cofactoring on the relational operator, a terminal case is checked for the conditional
term fc. If fc is an atomic predicate, theory reasoning is done with v and fc using the
Rules 2–3 in Sect. 3.2. If the terminal case is not found, then the cofactors for the terms
of f are computed to obtain fv.

10

f

55t-ite

x

36

t-ite

y¬A⊥A B

≤

5536

fA = >

55t-ite

f¬A

B x y

x 55 y 55A > B

≤≤

f¬AB = > f¬A¬B = ⊥

≤≤

f ′

A ⇐⇒ (x ≥ 50), B ⇐⇒ (y ≤ 58)

ite

ite

Fig. 7. Term-Ite conversion

Example 2. Let f is a relational operator such that D(f) contains term-ites. We convert
f into f ′ such that there is no term-ite in D(f ′). In Fig. 7, let A ↔ (x ≥ 50) and
B ↔ (y ≤ 58). We first traverse D(f) to find a cofactoring variable. We pick an atomic
formula A as a cofactoring variable and compute cofactors for f with respect to A. As
we proceed, fA = (36 ≤ 55) = > and f¬A is constructed with a new term-ite. Since
there still exists a term-ite in D(f¬A), we look for another cofactoring variable in f¬A.
We select B and compute the cofactors for f¬A. As a result, we get f¬AB = (x ≤ 55)
and f¬A¬B = (y ≤ 55). Since A |=T f¬AB and ¬B |=T ¬f¬A¬B, f¬AB = > and
f¬A¬B = ⊥. Finally, the converted formula f ′ gets reduced to ite(A,>, B) as the
Fig. 7 shows.

6 Related Work

In recent years, a number of decision procedures for LA have been proposed. Yices [2]
presented a new Simplex-based linear arithmetic solver that enables fast backtracking
and efficient integration with DPLL(T) framework. MathSAT [1] introduced a lazy and
layered approach, and BarcelogicTools [11] presented DPLL(T) with exhaustive theory
propagation.

For SMT preprocessing, HTP [12] introduces several preprocessing techniques such
as unate predicate detection, variable substitution and symmetry breaking. Yices [2]
uses a Gaussian elimination to reduce the size of initial tableau of equality constraints.
In [15], Yu et al. describes a static learning technique that analyzes the relationship of

11

the linear constraints. In Karplus’s technical report [6], a new canonical form for ITE
DAGs is introduced using two-cuts, and ITE normalization using recursive transforma-
tion is shown in [10].

7 Experimental Results

We have implemented the algorithm presented in Sect. 5 in Sateen [9, 8, 7], a theorem
prover for quantifier-free first-order logic that combines the propositional reasoning en-
gine of [4, 5] with theory-specific procedures. Experiments are done with the full set of
QF LIA (Quantifier free linear integer arithmetic logic) benchmarks from SMT-COMP
(Satisfiability Modulo Theories Competition) [13]. The experiments were performed on
a Intel 2.4 GHz Quad Core with 4 GB of RAM running Linux. Time out was set at 1000
seconds. Sateen was compared with Z3.2 [13], MathSAT-4.2[13] and Yices-1.0.16 [14].
Z3.2 and MathSAT-4.2 are the ones that were submitted to SMT-COMP in 2008. We
used most recent version of Yices that is available.

In QF LIA benchmarks, there are two benchmark sets, nec-smt and rings, that are
rich in term-ite operators. More than 90 percent of QF LIA benchmarks belong to these
two sets. The benchmarks in nec-smt set are generated by the SMT-based BMC en-
gine inside F-Soft [3], and the benchmarks in rings encode associativity properties on
modulo arithmetic.

Figures 8–10 show scatterplots comparing Z3, MathSAT and Yices to Sateen. Points
below the diagonal represent wins for Sateen. Each scatterplot shows two lines: The
main diagonal, and y = κ · xη , where κ and η are obtained by least-square fitting.
Figure 8 shows that Sateen is often an order of magnitude faster than Z3. In Fig. 9
and 10, Sateen is often a few orders of magnitude faster than MathSAT and Yices.

For the evaluation of our preprocessor, we generated a set of simplified benchmarks
out of the nec-smt benchmarks and ran the experiments on them. All solvers took less
than a second on each simplified problem. Figures 11–13 show scatterplots comparing
Z3, MathSAT and Yices with preprocessor and without preprocessor. The times for
the solvers with preprocessor include preprocessing time. As Figures 11–13 show, our
preprocessor is also effective for other solvers.

Table 1 shows the number of Term-Ite reductions with the simple preprocessing on
randomly selected benchmarks. The first column gives the name of the benchmarks, the
second one is the initial number of Term-Ite, and the third one is the number of Term-
Ite after the simple preprocessing. The last column gives the rate of the reduction. On
average, we achieved 15 percent of Term-Ite reduction with the simple preprocessing of
Section 4.

To assess the effectiveness of our approach, we compared our approach with the
naive approach of Eq. 3.1. As Fig. 15 shows, our approach is significantly better than
the naive approach. In addition, we disabled theory simplification in the algorithm and
ran the experiment on the problems where the simplifications play a significant role.
Figure 14 shows that Sateen with theory simplification is consistently better than the
one without simplification.

12

10-1

100

101

102

103

10-1 100 101 102 103

Sa
te

en
 :

tim
e

(s
)

Z3 : time (s)

Scatter plot for SMT QF-LIA benchmark

Fig. 8. Z3 vs. Sateen on QF LIA

10-1

100

101

102

103

10-1 100 101 102 103

Sa
te

en
 :

tim
e

(s
)

MATHSAT : time (s)

Scatter plot for SMT QF-LIA benchmark

Fig. 9. MATHSAT vs. Sateen on QF LIA

10-1

100

101

102

103

10-1 100 101 102 103

Sa
te

en
 :

tim
e

(s
)

YICES : time (s)

Scatter plot for SMT QF-LIA benchmark

Fig. 10. YICES vs. Sateen on QF LIA

10-1

100

101

102

103

10-1 100 101 102 103

Z3
 w

ith
 p

re
pr

oc
es

s :
 ti

m
e

(s
)

Z3 : time (s)

Scatter plot for SMT QF-LIA nec benchmark

Fig. 11. Z3 WITH PREPROCESS vs. Z3 on
QF LIA

10-1

100

101

102

103

10-1 100 101 102 103

M
A

TH
SA

T
w

ith
 p

re
pr

oc
es

s :
 ti

m
e

(s
)

MATHSAT : time (s)

Scatter plot for SMT QF-LIA nec benchmark

Fig. 12. MATHSAT WITH PREPROCESS vs.
MATHSAT on QF LIA

10-1

100

101

102

103

10-1 100 101 102 103

Y
IC

ES
 w

ith
 p

re
pr

oc
es

s :
 ti

m
e

(s
)

YICES : time (s)

Scatter plot for SMT QF-LIA nec benchmark

Fig. 13. YICES WITH PREPROCESS vs. YICES
on QF LIA

13

10-1

100

101

102

103

10-1 100 101 102 103

Sa
te

en
 :

tim
e

(s
)

Sateen without Theory-Simp: time (s)

Scatter plot for SMT QF-LIA benchmark

Fig. 14. SATEEN vs. Sateen without Theory-
Simp on QF LIA

10-1

100

101

102

103

10-1 100 101 102 103

Sa
te

en
 :

tim
e

(s
)

Sateen with naive approach: time (s)

Scatter plot for SMT QF-LIA benchmark

Fig. 15. SATEEN vs. Sateen with naive ap-
proach on QF LIA

Table 1. Number of Term-ITE Reduction with Simple Preprocessing

Benchmark Before S.P. After S.P. rate(%)
bftpd login/prp-74-50.smt 38773 34085 12
checkpass/prp-10-46.smt 17240 14949 13
checkpass/prp-63-50.smt 25376 21893 14

checkpass pwd/prp-38-42.smt 12196 10354 15
getoption/prp-2-200.smt 11269 9791 13

getoption directories/prp-0-110.smt 72892 62457 14
getoption group/prp-72-49.smt 15021 12094 20
handler sigchld/prp-20-46.smt 7800 6824 13

int from list/prp-34-41.smt 7184 5888 18
user is in group/prp-23-48.smt 22549 17939 20

8 Conclusions

We have presented an algorithm for the Term-Ite conversion in LA. The approach is
based on the computation of cofactors and theory simplification. The simplification is
done by detecting terminal cases on the formula or using theory propagation on the
atomic predicates. Experiments show that this approach is very effective in most of
QF LIA benchmarks compared to the other SMT solvers. On the other hand, since our
approach may still blow up in general, it will be a good future work to find out how to
combine it with the approach that does not blow up.

Acknowledgment. The authors thank the reviewers for their detailed suggestions.

14

References

[1] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Schulz, and R. Se-
bastiani. An incremental and layered procedure for the satisfiability of linear arithmetic
logic. In International Conference on Tools and Algorithms for Construction and Analysis
of Systems (TACAS’05), pages 317–333, Edinburgh, UK, Apr. 2005. LNCS 3440.

[2] B. Duterte and L. de Moura. A fast linear-arithmetic solver for DPLL(T). In Eighteenth
Conference on Computer Aided Verification (CAV’06), pages 81–94, Seattle, WA, Aug.
2006. LNCS 4144.

[3] F. Ivancic, Z. Yang, M. K. Ganai, A. Gupta, I. Shlyakhter, and P. Ashar. F-soft: Soft-
ware verification platform. In 17th International Conference on Computer-Aided Verifica-
tion(CAV), pages 301–306, 2005.

[4] H. Jin, H. Han, and F. Somenzi. Efficient conflict analysis for finding all satisfying as-
signments of a Boolean circuit. In International Conference on Tools and Algorithms for
Construction and Analysis of Systems (TACAS’05), pages 287–300, Apr. 2005. LNCS 3440.

[5] H. Jin and F. Somenzi. Prime clauses for fast enumeration of satisfying assignments to
Boolean circuits. In Proceedings of the Design Automation Conference, pages 750–753,
Anaheim, CA, June 2005.

[6] K. Karplus. Representing boolean functions with if-then-else dags. In Technical Report
UCSC-CRL-88-28, Board of Studies in Computer Engineering, University of California at
Santa Cruz, Santa Cruz, CA 95064, Dec. 1988.

[7] H. Kim, H. Jin, K. Ravi, P. Spacek, J. Pierce, B. Kurshan, and F. Somenzi. Application
of formal word-level analysis to constrained random simulation. In 20th International
Conference on Computer Aided Verification (CAV’08), July 2008.

[8] H. Kim, H. Jin, and F. Somenzi. Disequality management in integer difference logic via
finite instantiations. Journal on Satisfiability, Boolean Modeling and Computation, 3:47–
66, 2007.

[9] H. Kim and F. Somenzi. Finite instantiations for integer difference logic. In Formal Meth-
ods in Computer Aided Design (FMCAD’06), pages 31–38, San Jose, CA, Nov. 2006.

[10] G. Nelson and D. Oppen. Simplification by cooperating decision procedures. In ACM
Transactions on Programming Languages and Systems, 1(2):245-257, Oct. 2008.

[11] R. Nieuwenhuis and A. Oliveras. DPLL(T) with exhaustive theory propagation and its
application to difference logic. In Seventeenth Conference on Computer Aided Verification
(CAV’05), pages 321–334. Springer-Verlag, Berlin, July 2005. LNCS 3576.

[12] K. Roe. The heuristic theorem prover: Yet another smt modulo theorem prover. In Com-
puter Aided Verification, 18th International Conference, CAV 2006, Seattle, WA, USA, Au-
gust 17-20, 2006, Proceedings, pages 467–470, 2006.

[13] Url: http://smtcomp.org/.
[14] Url: http://yices.csl.sri.com.
[15] Y. Yu and S. Malik. Lemma learning in SMT on linear constraints. In A. Biere and C. P.

Gomes, editors, Proceedings of Theory and Applications of Satisfiability Testing – SAT
2006, pages 142–155, Aug. 2006.

