
1 Relevancy Propagation

Problem. We are given a set of clauses C = {C1, . . . , Cn} and we are build-
ing an incremental partial model M of C. Given such a partial interpretation,
determine which clauses and variables can we safely ignore while keeping satis-
fiability.

Example 1. Consider the following formula

φ ≡ (x ∨ (y ↔ z)) ∧ (¬x ∨ ¬y ∨ z) . (1)

Now, assume the partial model has an assignment for x, i.e. xM = >. This
assignment alone is enough to satisfy the first conjunct, and so it becomes ir-
relevant in further reasoning. Choosing values for y and z, we can now safely
ignore the first conjunct. If we now choose yM = ⊥, we will also satisfy the
second conjunct, making the choice of z completely irrelevant.

Previous example shows that partial models can help us eliminate from con-
sideration variables and sub-formulas of the formula we are trying to satisfy.
This can be very important when applied in the SMT context, where every ab-
stract boolean assertion corresponds to a theory literal. Each asserted literal
this adds to the computational weight of the decision procedure used to decide
the underlying theory. Being able to ignore such ”irrelevant” literals could thus
be of significant value.

Previous work. This idea has already been explored in the literature [14, 18,
11]. While [14] proves complexity results, [18] shows how to use relevancy to
empower a non-clausal SAT solver to an advantage. In the SMT context, [11]
the relevancy of literals in the definitional CNF encoding [19] is determined by
keeping the original non-clausal representation available. This is reported to be
useful in expensive theories (bit-vectors and quantified theories).

1.1 Preliminaries

We call a variable x irrelevant for φ, in a partial modelM, if for each extension
of M′ ⊇M we have that

M′ ∪ {x} � φ⇐⇒M′{¬x} � φ ,

otherwise the variable x is relevant.
When transforming a formula φ to CNF, the transformation algorithm might

introduce new variables that represent nodes in original formula. The algorithm
will produce a set of clause, and we will identify two different types of clauses:
regural clauses, which we denote with C, and definitinoal clauses Dx, where
x ∈ Dx in the subscript denotes that the clause is used to define the fresh
variable x. Given a formula φ, we denote with CNF(φ) the result of such a
transformation to conjunctive normal form, i.e.

CNF(φ) = {C1, . . . , Cm, D
x1
1 , . . . , Dxn

n } .
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Example 2. Consider the formula (1) again, and consider a Tseitin-style CNF
transformation

CNF(φ) ={
C1︷ ︸︸ ︷

(x ∨ w),

C2︷ ︸︸ ︷
(¬x ∨ ¬y ∨ ¬z),

Dw
1︷ ︸︸ ︷

(¬y ∨ z ∨ ¬w)}∪ (2)

{(y ∨ ¬z ∨ ¬w)︸ ︷︷ ︸
Dw

2

, (¬y ∨ ¬z ∨ w)︸ ︷︷ ︸
Dw

3

, (y ∨ z ∨ w)︸ ︷︷ ︸
Dw

4

} (3)

In the clauses above, the fresh variables w is used to define the subterm (x↔ y),
i.e. w ↔ (x↔ y).

For a variable x, we will keep relφ(x,M) as the number of relevant clauses
C, that don’t define x, such that x appears in C. As we are building the partial
model we note the following rules for updating the relevancy of clauses:

1. in empty model all the clauses and variables are relevant;

2. if a clause C is satisfied in M, then C becomes irelevant;

3. if relφ(w,M) = 0 then all the clauses Dw ∈ CNF(φ) become irellevant.

Lemma 1. If all the rules above are applied and relφ(x,M) = 0, then x is
irellevant.

Example 3. The following table shows which clauses become irellevant during
the construction of the model M for φ.

rule M C1 C2 Dw
1 Dw

2 Dw
3 Dw

4 x y z w

rel1 ∅ > > > > > > 2 5 5 1
decide {x} > > > > > > 2 5 5 1
rel2 {x} ⊥ > > > > > 1 5 5 0
rel3 {x} ⊥ > ⊥ ⊥ ⊥ ⊥ 1 1 1 0
decide {x,¬y} ⊥ > ⊥ ⊥ ⊥ ⊥ 1 1 1 0
rel2 {x,¬y} ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 0 0 0 0

Note that when we decided the variable y, it was only appearing in one relevant
clauses, so the choice of ¬y was obvious. In general, we can keep separate rel+φ
and rel−φ for a variable and, if a variable only apears in one polarity, we choose

that one first.1

1.2 Implementation

In order to implement the above relevancy scheme into a modern SAT solver,
we must have

• keep a list of definition clauses Dx for each variable x;

• have a mechanizm for detecting satisfied clauses;

• keep up-to-date relφ information on the variables;

• have all of the above backtrackable.

We then use this information to only branch on relevant variables and propagate
only on relevant clauses. Notice that all of the above could be an approximation.

1If the varibale is not a theory atom, this decision is sufficient but, in general, it is only a
heuristic
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