GCC Code Coverage Report
Directory: . Exec Total Coverage
File: src/theory/theory_engine.h Lines: 43 43 100.0 %
Date: 2021-05-22 Branches: 101 364 27.7 %

Line Exec Source
1
/******************************************************************************
2
 * Top contributors (to current version):
3
 *   Andrew Reynolds, Dejan Jovanovic, Morgan Deters
4
 *
5
 * This file is part of the cvc5 project.
6
 *
7
 * Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
8
 * in the top-level source directory and their institutional affiliations.
9
 * All rights reserved.  See the file COPYING in the top-level source
10
 * directory for licensing information.
11
 * ****************************************************************************
12
 *
13
 * The theory engine.
14
 */
15
16
#include "cvc5_private.h"
17
18
#ifndef CVC5__THEORY_ENGINE_H
19
#define CVC5__THEORY_ENGINE_H
20
21
#include <memory>
22
#include <vector>
23
24
#include "base/check.h"
25
#include "context/cdhashmap.h"
26
#include "expr/node.h"
27
#include "options/theory_options.h"
28
#include "theory/atom_requests.h"
29
#include "theory/engine_output_channel.h"
30
#include "theory/interrupted.h"
31
#include "theory/rewriter.h"
32
#include "theory/sort_inference.h"
33
#include "theory/theory.h"
34
#include "theory/theory_preprocessor.h"
35
#include "theory/trust_node.h"
36
#include "theory/trust_substitutions.h"
37
#include "theory/uf/equality_engine.h"
38
#include "theory/valuation.h"
39
#include "util/hash.h"
40
#include "util/statistics_stats.h"
41
#include "util/unsafe_interrupt_exception.h"
42
43
namespace cvc5 {
44
45
class Env;
46
class ResourceManager;
47
class OutputManager;
48
class TheoryEngineProofGenerator;
49
class ProofChecker;
50
51
/**
52
 * A pair of a theory and a node. This is used to mark the flow of
53
 * propagations between theories.
54
 */
55
392631920
struct NodeTheoryPair {
56
  Node d_node;
57
  theory::TheoryId d_theory;
58
  size_t d_timestamp;
59
56820262
  NodeTheoryPair(TNode n, theory::TheoryId t, size_t ts = 0)
60
56820262
      : d_node(n), d_theory(t), d_timestamp(ts)
61
  {
62
56820262
  }
63
38744540
  NodeTheoryPair() : d_theory(theory::THEORY_LAST), d_timestamp() {}
64
  // Comparison doesn't take into account the timestamp
65
68159710
  bool operator == (const NodeTheoryPair& pair) const {
66
68159710
    return d_node == pair.d_node && d_theory == pair.d_theory;
67
  }
68
};/* struct NodeTheoryPair */
69
70
struct NodeTheoryPairHashFunction {
71
  std::hash<Node> hashFunction;
72
  // Hash doesn't take into account the timestamp
73
126391215
  size_t operator()(const NodeTheoryPair& pair) const {
74
126391215
    uint64_t hash = fnv1a::fnv1a_64(std::hash<Node>()(pair.d_node));
75
126391215
    return static_cast<size_t>(fnv1a::fnv1a_64(pair.d_theory, hash));
76
  }
77
};/* struct NodeTheoryPairHashFunction */
78
79
80
/* Forward declarations */
81
namespace theory {
82
class TheoryModel;
83
class CombinationEngine;
84
class SharedSolver;
85
class DecisionManager;
86
class RelevanceManager;
87
88
}  // namespace theory
89
90
namespace prop {
91
class PropEngine;
92
}
93
94
/**
95
 * This is essentially an abstraction for a collection of theories.  A
96
 * TheoryEngine provides services to a PropEngine, making various
97
 * T-solvers look like a single unit to the propositional part of
98
 * cvc5.
99
 */
100
class TheoryEngine {
101
102
  /** Shared terms database can use the internals notify the theories */
103
  friend class SharedTermsDatabase;
104
  friend class theory::EngineOutputChannel;
105
  friend class theory::CombinationEngine;
106
  friend class theory::SharedSolver;
107
108
  /** Associated PropEngine engine */
109
  prop::PropEngine* d_propEngine;
110
111
  /**
112
   * Reference to the environment.
113
   */
114
  Env& d_env;
115
116
  /**
117
   * A table of from theory IDs to theory pointers. Never use this table
118
   * directly, use theoryOf() instead.
119
   */
120
  theory::Theory* d_theoryTable[theory::THEORY_LAST];
121
122
  /**
123
   * A collection of theories that are "active" for the current run.
124
   * This set is provided by the user (as a logic string, say, in SMT-LIBv2
125
   * format input), or else by default it's all-inclusive.  This is important
126
   * because we can optimize for single-theory runs (no sharing), can reduce
127
   * the cost of walking the DAG on registration, etc.
128
   */
129
  const LogicInfo& d_logicInfo;
130
131
  /** The separation logic location and data types */
132
  TypeNode d_sepLocType;
133
  TypeNode d_sepDataType;
134
135
  /** Reference to the output manager of the smt engine */
136
  OutputManager& d_outMgr;
137
138
  //--------------------------------- new proofs
139
  /** Proof node manager used by this theory engine, if proofs are enabled */
140
  ProofNodeManager* d_pnm;
141
  /** The lazy proof object
142
   *
143
   * This stores instructions for how to construct proofs for all theory lemmas.
144
   */
145
  std::shared_ptr<LazyCDProof> d_lazyProof;
146
  /** The proof generator */
147
  std::shared_ptr<TheoryEngineProofGenerator> d_tepg;
148
  //--------------------------------- end new proofs
149
  /** The combination manager we are using */
150
  std::unique_ptr<theory::CombinationEngine> d_tc;
151
  /** The shared solver of the above combination engine. */
152
  theory::SharedSolver* d_sharedSolver;
153
  /** The quantifiers engine, which is owned by the quantifiers theory */
154
  theory::QuantifiersEngine* d_quantEngine;
155
  /**
156
   * The decision manager
157
   */
158
  std::unique_ptr<theory::DecisionManager> d_decManager;
159
  /** The relevance manager */
160
  std::unique_ptr<theory::RelevanceManager> d_relManager;
161
  /**
162
   * An empty set of relevant assertions, which is returned as a dummy value for
163
   * getRelevantAssertions when relevance is disabled.
164
   */
165
  std::unordered_set<TNode> d_emptyRelevantSet;
166
167
  /** are we in eager model building mode? (see setEagerModelBuilding). */
168
  bool d_eager_model_building;
169
170
  /**
171
   * Output channels for individual theories.
172
   */
173
  theory::EngineOutputChannel* d_theoryOut[theory::THEORY_LAST];
174
175
  /**
176
   * Are we in conflict.
177
   */
178
  context::CDO<bool> d_inConflict;
179
180
  /**
181
   * Are we in "SAT mode"? In this state, the user can query for the model.
182
   * This corresponds to the state in Figure 4.1, page 52 of the SMT-LIB
183
   * standard, version 2.6.
184
   */
185
  bool d_inSatMode;
186
187
  /**
188
   * Called by the theories to notify of a conflict.
189
   *
190
   * @param conflict The trust node containing the conflict and its proof
191
   * generator (if it exists),
192
   * @param theoryId The theory that sent the conflict
193
   */
194
  void conflict(theory::TrustNode conflict, theory::TheoryId theoryId);
195
196
  /**
197
   * Debugging flag to ensure that shutdown() is called before the
198
   * destructor.
199
   */
200
  bool d_hasShutDown;
201
202
  /**
203
   * True if a theory has notified us of incompleteness (at this
204
   * context level or below).
205
   */
206
  context::CDO<bool> d_incomplete;
207
  /** The theory and identifier that (most recently) set incomplete */
208
  context::CDO<theory::TheoryId> d_incompleteTheory;
209
  context::CDO<theory::IncompleteId> d_incompleteId;
210
211
  /**
212
   * Called by the theories to notify that the current branch is incomplete.
213
   */
214
  void setIncomplete(theory::TheoryId theory, theory::IncompleteId id);
215
216
  /**
217
   * Mapping of propagations from recievers to senders.
218
   */
219
  typedef context::CDHashMap<NodeTheoryPair, NodeTheoryPair, NodeTheoryPairHashFunction> PropagationMap;
220
  PropagationMap d_propagationMap;
221
222
  /**
223
   * Timestamp of propagations
224
   */
225
  context::CDO<size_t> d_propagationMapTimestamp;
226
227
  /**
228
   * Literals that are propagated by the theory. Note that these are TNodes.
229
   * The theory can only propagate nodes that have an assigned literal in the
230
   * SAT solver and are hence referenced in the SAT solver.
231
   */
232
  context::CDList<TNode> d_propagatedLiterals;
233
234
  /**
235
   * The index of the next literal to be propagated by a theory.
236
   */
237
  context::CDO<unsigned> d_propagatedLiteralsIndex;
238
239
  /**
240
   * Called by the output channel to propagate literals and facts
241
   * @return false if immediate conflict
242
   */
243
  bool propagate(TNode literal, theory::TheoryId theory);
244
245
  /**
246
   * Internal method to call the propagation routines and collect the
247
   * propagated literals.
248
   */
249
  void propagate(theory::Theory::Effort effort);
250
251
  /**
252
   * A variable to mark if we added any lemmas.
253
   */
254
  bool d_lemmasAdded;
255
256
  /**
257
   * A variable to mark if the OutputChannel was "used" by any theory
258
   * since the start of the last check.  If it has been, we require
259
   * a FULL_EFFORT check before exiting and reporting SAT.
260
   *
261
   * See the documentation for the needCheck() function, below.
262
   */
263
  bool d_outputChannelUsed;
264
265
  /** Atom requests from lemmas */
266
  AtomRequests d_atomRequests;
267
268
  /**
269
   * Adds a new lemma, returning its status.
270
   * @param node the lemma
271
   * @param p the properties of the lemma.
272
   * @param atomsTo the theory that atoms of the lemma should be sent to
273
   * @param from the theory that sent the lemma
274
   */
275
  void lemma(theory::TrustNode node,
276
             theory::LemmaProperty p,
277
             theory::TheoryId atomsTo = theory::THEORY_LAST,
278
             theory::TheoryId from = theory::THEORY_LAST);
279
280
  /** Enusre that the given atoms are send to the given theory */
281
  void ensureLemmaAtoms(const std::vector<TNode>& atoms, theory::TheoryId theory);
282
283
  /** sort inference module */
284
  std::unique_ptr<theory::SortInference> d_sortInfer;
285
286
  /** Time spent in theory combination */
287
  TimerStat d_combineTheoriesTime;
288
289
  Node d_true;
290
  Node d_false;
291
292
  /** Whether we were just interrupted (or not) */
293
  bool d_interrupted;
294
295
 public:
296
  /** Constructs a theory engine */
297
  TheoryEngine(Env& env, OutputManager& outMgr, ProofNodeManager* pnm);
298
299
  /** Destroys a theory engine */
300
  ~TheoryEngine();
301
302
  void interrupt();
303
304
  /** "Spend" a resource during a search or preprocessing.*/
305
  void spendResource(Resource r);
306
307
  /**
308
   * Adds a theory. Only one theory per TheoryId can be present, so if
309
   * there is another theory it will be deleted.
310
   */
311
  template <class TheoryClass>
312
123003
  inline void addTheory(theory::TheoryId theoryId)
313
  {
314
123003
    Assert(d_theoryTable[theoryId] == NULL && d_theoryOut[theoryId] == NULL);
315
123003
    d_theoryOut[theoryId] = new theory::EngineOutputChannel(this, theoryId);
316
369009
    d_theoryTable[theoryId] = new TheoryClass(getSatContext(),
317
123003
                                              getUserContext(),
318
123003
                                              *d_theoryOut[theoryId],
319
                                              theory::Valuation(this),
320
                                              d_logicInfo,
321
                                              d_pnm);
322
369009
    theory::Rewriter::registerTheoryRewriter(
323
369009
        theoryId, d_theoryTable[theoryId]->getTheoryRewriter());
324
123003
  }
325
326
  /** Register theory proof rule checkers to the given proof checker */
327
  void initializeProofChecker(ProofChecker* pc);
328
329
9494
  void setPropEngine(prop::PropEngine* propEngine)
330
  {
331
9494
    d_propEngine = propEngine;
332
9494
  }
333
334
  /**
335
   * Called when all initialization of options/logic is done, after theory
336
   * objects have been created.
337
   *
338
   * This initializes the quantifiers engine, the "official" equality engines
339
   * of each theory as required, and the model and model builder utilities.
340
   */
341
  void finishInit();
342
343
  /**
344
   * Get a pointer to the underlying propositional engine.
345
   */
346
3090550
  inline prop::PropEngine* getPropEngine() const {
347
3090550
    return d_propEngine;
348
  }
349
350
  /** Get the proof node manager */
351
  ProofNodeManager* getProofNodeManager() const;
352
353
  /**
354
   * Get a pointer to the underlying sat context.
355
   */
356
  context::Context* getSatContext() const;
357
358
  /**
359
   * Get a pointer to the underlying user context.
360
   */
361
  context::UserContext* getUserContext() const;
362
363
  /**
364
   * Get a pointer to the underlying quantifiers engine.
365
   */
366
13226
  theory::QuantifiersEngine* getQuantifiersEngine() const {
367
13226
    return d_quantEngine;
368
  }
369
  /**
370
   * Get a pointer to the underlying decision manager.
371
   */
372
  theory::DecisionManager* getDecisionManager() const
373
  {
374
    return d_decManager.get();
375
  }
376
377
 private:
378
  /**
379
   * Queue of nodes for pre-registration.
380
   */
381
  std::queue<TNode> d_preregisterQueue;
382
383
  /**
384
   * Boolean flag denoting we are in pre-registration.
385
   */
386
  bool d_inPreregister;
387
388
  /**
389
   * Did the theories get any new facts since the last time we called
390
   * check()
391
   */
392
  context::CDO<bool> d_factsAsserted;
393
394
  /**
395
   * Assert the formula to the given theory.
396
   * @param assertion the assertion to send (not necesserily normalized)
397
   * @param original the assertion as it was sent in from the propagating theory
398
   * @param toTheoryId the theory to assert to
399
   * @param fromTheoryId the theory that sent it
400
   */
401
  void assertToTheory(TNode assertion, TNode originalAssertion, theory::TheoryId toTheoryId, theory::TheoryId fromTheoryId);
402
403
  /**
404
   * Marks a theory propagation from a theory to a theory where a
405
   * theory could be the THEORY_SAT_SOLVER for literals coming from
406
   * or being propagated to the SAT solver. If the receiving theory
407
   * already recieved the literal, the method returns false, otherwise
408
   * it returns true.
409
   *
410
   * @param assertion the normalized assertion being sent
411
   * @param originalAssertion the actual assertion that was sent
412
   * @param toTheoryId the theory that is on the receiving end
413
   * @param fromTheoryId the theory that sent the assertion
414
   * @return true if a new assertion, false if theory already got it
415
   */
416
  bool markPropagation(TNode assertion, TNode originalAssertions, theory::TheoryId toTheoryId, theory::TheoryId fromTheoryId);
417
418
  /**
419
   * Computes the explanation by traversing the propagation graph and
420
   * asking relevant theories to explain the propagations. Initially
421
   * the explanation vector should contain only the element (node, theory)
422
   * where the node is the one to be explained, and the theory is the
423
   * theory that sent the literal.
424
   */
425
  theory::TrustNode getExplanation(
426
      std::vector<NodeTheoryPair>& explanationVector);
427
428
  /** Are proofs enabled? */
429
  bool isProofEnabled() const;
430
431
 public:
432
  /**
433
   * Preprocess rewrite equality, called by the preprocessor to rewrite
434
   * equalities appearing in the input.
435
   */
436
  theory::TrustNode ppRewriteEquality(TNode eq);
437
  /** Notify (preprocessed) assertions. */
438
  void notifyPreprocessedAssertions(const std::vector<Node>& assertions);
439
440
  /** Return whether or not we are incomplete (in the current context). */
441
6993
  inline bool isIncomplete() const { return d_incomplete; }
442
443
  /**
444
   * Returns true if we need another round of checking.  If this
445
   * returns true, check(FULL_EFFORT) _must_ be called by the
446
   * propositional layer before reporting SAT.
447
   *
448
   * This is especially necessary for incomplete theories that lazily
449
   * output some lemmas on FULL_EFFORT check (e.g. quantifier reasoning
450
   * outputing quantifier instantiations).  In such a case, a lemma can
451
   * be asserted that is simplified away (perhaps it's already true).
452
   * However, we must maintain the invariant that, if a theory uses the
453
   * OutputChannel, it implicitly requests that another check(FULL_EFFORT)
454
   * be performed before exit, even if no new facts are on its fact queue,
455
   * as it might decide to further instantiate some lemmas, precluding
456
   * a SAT response.
457
   */
458
3537589
  inline bool needCheck() const {
459
3537589
    return d_outputChannelUsed || d_lemmasAdded;
460
  }
461
  /**
462
   * Is the literal lit (possibly) critical for satisfying the input formula in
463
   * the current context? This call is applicable only during collectModelInfo
464
   * or during LAST_CALL effort.
465
   */
466
  bool isRelevant(Node lit) const;
467
  /**
468
   * This is called at shutdown time by the SmtEngine, just before
469
   * destruction.  It is important because there are destruction
470
   * ordering issues between PropEngine and Theory.
471
   */
472
  void shutdown();
473
474
  /**
475
   * Solve the given literal with a theory that owns it. The proof of tliteral
476
   * is carried in the trust node. The proof added to substitutionOut should
477
   * take this proof into account (when proofs are enabled).
478
   */
479
  theory::Theory::PPAssertStatus solve(
480
      theory::TrustNode tliteral,
481
      theory::TrustSubstitutionMap& substitutionOut);
482
483
  /**
484
   * Preregister a Theory atom with the responsible theory (or
485
   * theories).
486
   */
487
  void preRegister(TNode preprocessed);
488
489
  /**
490
   * Assert the formula to the appropriate theory.
491
   * @param node the assertion
492
   */
493
  void assertFact(TNode node);
494
495
  /**
496
   * Check all (currently-active) theories for conflicts.
497
   * @param effort the effort level to use
498
   */
499
  void check(theory::Theory::Effort effort);
500
501
  /**
502
   * Calls ppStaticLearn() on all theories, accumulating their
503
   * combined contributions in the "learned" builder.
504
   */
505
  void ppStaticLearn(TNode in, NodeBuilder& learned);
506
507
  /**
508
   * Calls presolve() on all theories and returns true
509
   * if one of the theories discovers a conflict.
510
   */
511
  bool presolve();
512
513
   /**
514
   * Calls postsolve() on all theories.
515
   */
516
  void postsolve();
517
518
  /**
519
   * Calls notifyRestart() on all active theories.
520
   */
521
  void notifyRestart();
522
523
9447136
  void getPropagatedLiterals(std::vector<TNode>& literals) {
524
15818528
    for (; d_propagatedLiteralsIndex < d_propagatedLiterals.size(); d_propagatedLiteralsIndex = d_propagatedLiteralsIndex + 1) {
525
6371392
      Debug("getPropagatedLiterals") << "TheoryEngine::getPropagatedLiterals: propagating: " << d_propagatedLiterals[d_propagatedLiteralsIndex] << std::endl;
526
6371392
      literals.push_back(d_propagatedLiterals[d_propagatedLiteralsIndex]);
527
    }
528
3075744
  }
529
530
  /**
531
   * Returns the next decision request, or null if none exist. The next
532
   * decision request is a literal that this theory engine prefers the SAT
533
   * solver to make as its next decision. Decision requests are managed by
534
   * the decision manager d_decManager.
535
   */
536
  Node getNextDecisionRequest();
537
538
  bool properConflict(TNode conflict) const;
539
540
  /**
541
   * Returns an explanation of the node propagated to the SAT solver.
542
   */
543
  theory::TrustNode getExplanation(TNode node);
544
545
  /**
546
   * Get the pointer to the model object used by this theory engine.
547
   */
548
  theory::TheoryModel* getModel();
549
  /**
550
   * Get the current model for the current set of assertions. This method
551
   * should only be called immediately after a satisfiable or unknown
552
   * response to a check-sat call, and only if produceModels is true.
553
   *
554
   * If the model is not already built, this will cause this theory engine
555
   * to build the model.
556
   *
557
   * If the model is not available (for instance, if the last call to check-sat
558
   * was interrupted), then this returns the null pointer.
559
   */
560
  theory::TheoryModel* getBuiltModel();
561
  /**
562
   * This forces the model maintained by the combination engine to be built
563
   * if it has not been done so already. This should be called only during a
564
   * last call effort check after theory combination is run.
565
   *
566
   * @return true if the model was successfully built (possibly prior to this
567
   * call).
568
   */
569
  bool buildModel();
570
  /** set eager model building
571
   *
572
   * If this method is called, then this TheoryEngine will henceforth build
573
   * its model immediately after every satisfiability check that results
574
   * in a satisfiable or unknown result. The motivation for this mode is to
575
   * accomodate API users that get the model object from the TheoryEngine,
576
   * where we want to ensure that this model is always valid.
577
   * TODO (#2648): revisit this.
578
   */
579
25
  void setEagerModelBuilding() { d_eager_model_building = true; }
580
581
  /**
582
   * Get the theory associated to a given Node.
583
   *
584
   * @returns the theory, or NULL if the TNode is
585
   * of built-in type.
586
   */
587
2222266
  inline theory::Theory* theoryOf(TNode node) const {
588
2222266
    return d_theoryTable[theory::Theory::theoryOf(node)];
589
  }
590
591
  /**
592
   * Get the theory associated to a the given theory id.
593
   *
594
   * @returns the theory
595
   */
596
32652802
  inline theory::Theory* theoryOf(theory::TheoryId theoryId) const {
597
32652802
    Assert(theoryId < theory::THEORY_LAST);
598
32652802
    return d_theoryTable[theoryId];
599
  }
600
601
1703569
  inline bool isTheoryEnabled(theory::TheoryId theoryId) const {
602
1703569
    return d_logicInfo.isTheoryEnabled(theoryId);
603
  }
604
  /** get the logic info used by this theory engine */
605
  const LogicInfo& getLogicInfo() const;
606
  /** get the separation logic heap types */
607
  bool getSepHeapTypes(TypeNode& locType, TypeNode& dataType) const;
608
609
  /**
610
   * Declare heap. This is used for separation logics to set the location
611
   * and data types. It should be called only once, and before any separation
612
   * logic constraints are asserted to this theory engine.
613
   */
614
  void declareSepHeap(TypeNode locT, TypeNode dataT);
615
616
  /**
617
   * Returns the equality status of the two terms, from the theory
618
   * that owns the domain type.  The types of a and b must be the same.
619
   */
620
  theory::EqualityStatus getEqualityStatus(TNode a, TNode b);
621
622
  /**
623
   * Returns the value that a theory that owns the type of var currently
624
   * has (or null if none);
625
   */
626
  Node getModelValue(TNode var);
627
628
  /**
629
   * Get relevant assertions. This returns a set of assertions that are
630
   * currently asserted to this TheoryEngine that propositionally entail the
631
   * (preprocessed) input formula and all theory lemmas that have been marked
632
   * NEEDS_JUSTIFY. For more details on this, see relevance_manager.h.
633
   *
634
   * This method updates success to false if the set of relevant assertions
635
   * is not available. This may occur if we are not in SAT mode, if the
636
   * relevance manager is disabled (see option::relevanceFilter) or if the
637
   * relevance manager failed to compute relevant assertions due to an internal
638
   * error.
639
   */
640
  const std::unordered_set<TNode>& getRelevantAssertions(bool& success);
641
642
  /**
643
   * Forwards an entailment check according to the given theoryOfMode.
644
   * See theory.h for documentation on entailmentCheck().
645
   */
646
  std::pair<bool, Node> entailmentCheck(options::TheoryOfMode mode, TNode lit);
647
648
  //---------------------- information about cardinality of types
649
  /**
650
   * Is the cardinality of type tn finite? This method depends on whether
651
   * finite model finding is enabled. If finite model finding is enabled, then
652
   * we assume that all uninterpreted sorts have finite cardinality.
653
   *
654
   * Notice that if finite model finding is enabled, this method returns true
655
   * if tn is an uninterpreted sort. It also returns true for the sort
656
   * (Array Int U) where U is an uninterpreted sort. This type
657
   * is finite if and only if U has cardinality one; for cases like this,
658
   * we conservatively return that tn has finite cardinality.
659
   *
660
   * This method does *not* depend on the state of the theory engine, e.g.
661
   * if U in the above example currently is entailed to have cardinality >1
662
   * based on the assertions.
663
   */
664
  bool isFiniteType(TypeNode tn) const;
665
  //---------------------- end information about cardinality of types
666
 private:
667
668
  /** Dump the assertions to the dump */
669
  void dumpAssertions(const char* tag);
670
671
  /** For preprocessing pass lifting bit-vectors of size 1 to booleans */
672
public:
673
5241
 theory::SortInference* getSortInference() { return d_sortInfer.get(); }
674
675
 /** Prints the assertions to the debug stream */
676
 void printAssertions(const char* tag);
677
678
private:
679
680
  std::map< std::string, std::vector< theory::Theory* > > d_attr_handle;
681
682
 public:
683
  /** Set user attribute.
684
   *
685
   * This function is called when an attribute is set by a user.  In SMT-LIBv2
686
   * this is done via the syntax (! n :attr)
687
   */
688
  void setUserAttribute(const std::string& attr,
689
                        Node n,
690
                        const std::vector<Node>& node_values,
691
                        const std::string& str_value);
692
693
  /** Handle user attribute.
694
   *
695
   * Associates theory t with the attribute attr.  Theory t will be
696
   * notified whenever an attribute of name attr is set.
697
   */
698
  void handleUserAttribute(const char* attr, theory::Theory* t);
699
700
  /**
701
   * Check that the theory assertions are satisfied in the model.
702
   * This function is called from the smt engine's checkModel routine.
703
   */
704
  void checkTheoryAssertionsWithModel(bool hardFailure);
705
};/* class TheoryEngine */
706
707
}  // namespace cvc5
708
709
#endif /* CVC5__THEORY_ENGINE_H */