GCC Code Coverage Report
Directory: . Exec Total Coverage
File: src/prop/minisat/core/Solver.cc Lines: 855 1026 83.3 %
Date: 2021-08-03 Branches: 1185 2814 42.1 %

Line Exec Source
1
/***************************************************************************************[Solver.cc]
2
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
3
Copyright (c) 2007-2010, Niklas Sorensson
4
5
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
6
associated documentation files (the "Software"), to deal in the Software without restriction,
7
including without limitation the rights to use, copy, modify, merge, publish, distribute,
8
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
9
furnished to do so, subject to the following conditions:
10
11
The above copyright notice and this permission notice shall be included in all copies or
12
substantial portions of the Software.
13
14
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
15
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
16
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
17
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
18
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
**************************************************************************************************/
20
21
#include "prop/minisat/core/Solver.h"
22
23
#include <math.h>
24
25
#include <iostream>
26
#include <unordered_set>
27
28
#include "base/check.h"
29
#include "base/output.h"
30
#include "options/base_options.h"
31
#include "options/main_options.h"
32
#include "options/prop_options.h"
33
#include "options/smt_options.h"
34
#include "proof/clause_id.h"
35
#include "prop/minisat/minisat.h"
36
#include "prop/minisat/mtl/Sort.h"
37
#include "prop/theory_proxy.h"
38
39
using namespace cvc5::prop;
40
41
namespace cvc5 {
42
namespace Minisat {
43
44
namespace {
45
/*
46
 * Returns true if the solver should add all clauses at the current assertion
47
 * level.
48
 *
49
 * FIXME: This is a workaround. Currently, our resolution proofs do not
50
 * handle clauses with a lower-than-assertion-level correctly because the
51
 * resolution proofs get removed when popping the context but the SAT solver
52
 * keeps using them.
53
 */
54
12647254
bool assertionLevelOnly()
55
{
56
30580416
  return (options::produceProofs() || options::unsatCores())
57
20402271
         && options::incrementalSolving();
58
}
59
60
//=================================================================================================
61
// Helper functions for decision tree tracing
62
63
// Writes to Trace macro for decision tree tracing
64
static inline void dtviewDecisionHelper(size_t level,
65
                                        const Node& node,
66
                                        const char* decisiontype)
67
{
68
  Trace("dtview") << std::string(level - (options::incrementalSolving() ? 1 : 0), '*')
69
                  << " " << node << " :" << decisiontype << "-DECISION:" << std::endl;
70
}
71
72
// Writes to Trace macro for propagation tracing
73
static inline void dtviewPropagationHeaderHelper(size_t level)
74
{
75
  Trace("dtview::prop") << std::string(level + 1 - (options::incrementalSolving() ? 1 : 0),
76
                                       '*')
77
                        << " /Propagations/" << std::endl;
78
}
79
80
// Writes to Trace macro for propagation tracing
81
static inline void dtviewBoolPropagationHelper(size_t level,
82
                                               Lit& l,
83
                                               cvc5::prop::TheoryProxy* proxy)
84
{
85
  Trace("dtview::prop") << std::string(
86
      level + 1 - (options::incrementalSolving() ? 1 : 0), ' ')
87
                        << ":BOOL-PROP: "
88
                        << proxy->getNode(MinisatSatSolver::toSatLiteral(l))
89
                        << std::endl;
90
}
91
92
// Writes to Trace macro for conflict tracing
93
static inline void dtviewPropConflictHelper(size_t level,
94
                                            Clause& confl,
95
                                            cvc5::prop::TheoryProxy* proxy)
96
{
97
  Trace("dtview::conflict")
98
      << std::string(level + 1 - (options::incrementalSolving() ? 1 : 0), ' ')
99
      << ":PROP-CONFLICT: (or";
100
  for (int i = 0; i < confl.size(); i++)
101
  {
102
    Trace("dtview::conflict")
103
        << " " << proxy->getNode(MinisatSatSolver::toSatLiteral(confl[i]));
104
  }
105
  Trace("dtview::conflict") << ")" << std::endl;
106
}
107
108
}  // namespace
109
110
//=================================================================================================
111
// Options:
112
113
static const char* _cat = "CORE";
114
115
9762
static DoubleOption  opt_var_decay         (_cat, "var-decay",   "The variable activity decay factor",            0.95,     DoubleRange(0, false, 1, false));
116
9762
static DoubleOption  opt_clause_decay      (_cat, "cla-decay",   "The clause activity decay factor",              0.999,    DoubleRange(0, false, 1, false));
117
9762
static DoubleOption  opt_random_var_freq   (_cat, "rnd-freq",    "The frequency with which the decision heuristic tries to choose a random variable", 0, DoubleRange(0, true, 1, true));
118
9762
static DoubleOption  opt_random_seed       (_cat, "rnd-seed",    "Used by the random variable selection",         91648253, DoubleRange(0, false, HUGE_VAL, false));
119
9762
static IntOption     opt_ccmin_mode        (_cat, "ccmin-mode",  "Controls conflict clause minimization (0=none, 1=basic, 2=deep)", 2, IntRange(0, 2));
120
9762
static IntOption     opt_phase_saving      (_cat, "phase-saving", "Controls the level of phase saving (0=none, 1=limited, 2=full)", 2, IntRange(0, 2));
121
9762
static BoolOption    opt_rnd_init_act      (_cat, "rnd-init",    "Randomize the initial activity", false);
122
9762
static BoolOption    opt_luby_restart      (_cat, "luby",        "Use the Luby restart sequence", true);
123
9762
static IntOption     opt_restart_first     (_cat, "rfirst",      "The base restart interval", 25, IntRange(1, INT32_MAX));
124
9762
static DoubleOption  opt_restart_inc       (_cat, "rinc",        "Restart interval increase factor", 3, DoubleRange(1, false, HUGE_VAL, false));
125
9762
static DoubleOption  opt_garbage_frac      (_cat, "gc-frac",     "The fraction of wasted memory allowed before a garbage collection is triggered",  0.20, DoubleRange(0, false, HUGE_VAL, false));
126
127
//=================================================================================================
128
// Proof declarations
129
CRef Solver::TCRef_Undef = CRef_Undef;
130
CRef Solver::TCRef_Lazy = CRef_Lazy;
131
132
class ScopedBool
133
{
134
  bool& d_watch;
135
  bool d_oldValue;
136
137
 public:
138
3532402
  ScopedBool(bool& watch, bool newValue) : d_watch(watch), d_oldValue(watch)
139
  {
140
3532402
    watch = newValue;
141
3532402
  }
142
3532402
  ~ScopedBool() { d_watch = d_oldValue; }
143
};
144
145
//=================================================================================================
146
// Constructor/Destructor:
147
148
9908
Solver::Solver(cvc5::prop::TheoryProxy* proxy,
149
               cvc5::context::Context* context,
150
               cvc5::context::UserContext* userContext,
151
               ProofNodeManager* pnm,
152
9908
               bool enableIncremental)
153
    : d_proxy(proxy),
154
      d_context(context),
155
      assertionLevel(0),
156
      d_pfManager(nullptr),
157
      d_enable_incremental(enableIncremental),
158
      minisat_busy(false)
159
      // Parameters (user settable):
160
      //
161
      ,
162
      verbosity(0),
163
      var_decay(opt_var_decay),
164
      clause_decay(opt_clause_decay),
165
      random_var_freq(opt_random_var_freq),
166
      random_seed(opt_random_seed),
167
      luby_restart(opt_luby_restart),
168
      ccmin_mode(opt_ccmin_mode),
169
      phase_saving(opt_phase_saving),
170
      rnd_pol(false),
171
      rnd_init_act(opt_rnd_init_act),
172
      garbage_frac(opt_garbage_frac),
173
      restart_first(opt_restart_first),
174
      restart_inc(opt_restart_inc)
175
176
      // Parameters (the rest):
177
      //
178
      ,
179
      learntsize_factor(1),
180
      learntsize_inc(1.5)
181
182
      // Parameters (experimental):
183
      //
184
      ,
185
      learntsize_adjust_start_confl(100),
186
      learntsize_adjust_inc(1.5)
187
188
      // Statistics: (formerly in 'SolverStats')
189
      //
190
      ,
191
      solves(0),
192
      starts(0),
193
      decisions(0),
194
      rnd_decisions(0),
195
      propagations(0),
196
      conflicts(0),
197
      resources_consumed(0),
198
      dec_vars(0),
199
      clauses_literals(0),
200
      learnts_literals(0),
201
      max_literals(0),
202
      tot_literals(0)
203
204
      ,
205
      ok(true),
206
      cla_inc(1),
207
      var_inc(1),
208
19816
      watches(WatcherDeleted(ca)),
209
      qhead(0),
210
      simpDB_assigns(-1),
211
      simpDB_props(0),
212
19816
      order_heap(VarOrderLt(activity)),
213
      progress_estimate(0),
214
9908
      remove_satisfied(!enableIncremental)
215
216
      // Resource constraints:
217
      //
218
      ,
219
      conflict_budget(-1),
220
      propagation_budget(-1),
221
59448
      asynch_interrupt(false)
222
{
223
9908
  if (pnm)
224
  {
225
2498
    d_pfManager.reset(
226
1249
        new SatProofManager(this, proxy->getCnfStream(), userContext, pnm));
227
  }
228
229
  // Create the constant variables
230
9908
  varTrue = newVar(true, false, false);
231
9908
  varFalse = newVar(false, false, false);
232
233
  // Assert the constants
234
9908
  uncheckedEnqueue(mkLit(varTrue, false));
235
9908
  uncheckedEnqueue(mkLit(varFalse, true));
236
9908
}
237
238
239
9908
Solver::~Solver()
240
{
241
9908
}
242
243
244
//=================================================================================================
245
// Minor methods:
246
247
248
// Creates a new SAT variable in the solver. If 'decision_var' is cleared, variable will not be
249
// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
250
//
251
1292356
Var Solver::newVar(bool sign, bool dvar, bool isTheoryAtom, bool preRegister, bool canErase)
252
{
253
1292356
    int v = nVars();
254
255
1292356
    watches  .init(mkLit(v, false));
256
1292356
    watches  .init(mkLit(v, true ));
257
1292356
    assigns  .push(l_Undef);
258
1292356
    vardata  .push(VarData(CRef_Undef, -1, -1, assertionLevel, -1));
259
1292356
    activity .push(rnd_init_act ? drand(random_seed) * 0.00001 : 0);
260
1292356
    seen     .push(0);
261
1292356
    polarity .push(sign);
262
1292356
    decision .push();
263
1292356
    trail    .capacity(v+1);
264
    // push whether it corresponds to a theory atom
265
1292356
    theory.push(isTheoryAtom);
266
267
1292356
    setDecisionVar(v, dvar);
268
269
1292356
    Debug("minisat") << "new var " << v << std::endl;
270
271
    // If the variable is introduced at non-zero level, we need to reintroduce it on backtracks
272
1292356
    if (preRegister)
273
    {
274
1185610
      Debug("minisat") << "  To register at level " << decisionLevel()
275
592805
                       << std::endl;
276
592805
      variables_to_register.push(VarIntroInfo(v, decisionLevel()));
277
    }
278
279
1292356
    return v;
280
}
281
282
4869
void Solver::resizeVars(int newSize) {
283
4869
  Assert(d_enable_incremental);
284
4869
  Assert(decisionLevel() == 0);
285
4869
  Assert(newSize >= 2) << "always keep true/false";
286
4869
  if (newSize < nVars()) {
287
3069
    int shrinkSize = nVars() - newSize;
288
289
    // Resize watches up to the negated last literal
290
3069
    watches.resizeTo(mkLit(newSize-1, true));
291
292
    // Resize all info arrays
293
3069
    assigns.shrink(shrinkSize);
294
3069
    vardata.shrink(shrinkSize);
295
3069
    activity.shrink(shrinkSize);
296
3069
    seen.shrink(shrinkSize);
297
3069
    polarity.shrink(shrinkSize);
298
3069
    decision.shrink(shrinkSize);
299
3069
    theory.shrink(shrinkSize);
300
  }
301
302
4869
  if (Debug.isOn("minisat::pop")) {
303
    for (int i = 0; i < trail.size(); ++ i) {
304
      Assert(var(trail[i]) < nVars());
305
    }
306
  }
307
4869
}
308
309
175647632
CRef Solver::reason(Var x) {
310
175647632
  Trace("pf::sat") << "Solver::reason(" << x << ")" << std::endl;
311
312
  // If we already have a reason, just return it
313
175647632
  if (vardata[x].d_reason != CRef_Lazy)
314
  {
315
175609680
    if (Trace.isOn("pf::sat"))
316
    {
317
      Trace("pf::sat") << "  Solver::reason: " << vardata[x].d_reason << ", ";
318
      if (vardata[x].d_reason == CRef_Undef)
319
      {
320
        Trace("pf::sat") << "CRef_Undef";
321
      }
322
      else
323
      {
324
        for (unsigned i = 0, size = ca[vardata[x].d_reason].size(); i < size;
325
             ++i)
326
        {
327
          Trace("pf::sat") << ca[vardata[x].d_reason][i] << " ";
328
        }
329
      }
330
      Trace("pf::sat") << "\n";
331
    }
332
175609680
    return vardata[x].d_reason;
333
  }
334
  // What's the literal we are trying to explain
335
37952
  Lit l = mkLit(x, value(x) != l_True);
336
337
  // Get the explanation from the theory
338
75904
  SatClause explanation_cl;
339
  // FIXME: at some point return a tag with the theory that spawned you
340
37952
  d_proxy->explainPropagation(MinisatSatSolver::toSatLiteral(l),
341
                              explanation_cl);
342
75904
  vec<Lit> explanation;
343
37952
  MinisatSatSolver::toMinisatClause(explanation_cl, explanation);
344
345
75904
  Trace("pf::sat") << "Solver::reason: explanation_cl = " << explanation_cl
346
37952
                   << std::endl;
347
348
  // Sort the literals by trail index level
349
37952
  lemma_lt lt(*this);
350
37952
  sort(explanation, lt);
351
37952
  Assert(explanation[0] == l);
352
353
  // Compute the assertion level for this clause
354
37952
  int explLevel = 0;
355
37952
  if (assertionLevelOnly())
356
  {
357
1553
    explLevel = assertionLevel;
358
    }
359
    else
360
    {
361
      int i, j;
362
36399
      Lit prev = lit_Undef;
363
273695
      for (i = 0, j = 0; i < explanation.size(); ++i)
364
      {
365
        // This clause is valid theory propagation, so its level is the level of
366
        // the top literal
367
237296
        explLevel = std::max(explLevel, intro_level(var(explanation[i])));
368
369
237296
        Assert(value(explanation[i]) != l_Undef);
370
237296
        Assert(i == 0
371
               || trail_index(var(explanation[0]))
372
                      > trail_index(var(explanation[i])));
373
374
        // Always keep the first literal
375
273695
        if (i == 0)
376
        {
377
36399
          prev = explanation[j++] = explanation[i];
378
36399
          continue;
379
        }
380
        // Ignore duplicate literals
381
200897
        if (explanation[i] == prev)
382
        {
383
          continue;
384
        }
385
        // Ignore zero level literals
386
401794
        if (level(var(explanation[i])) == 0
387
200897
            && user_level(var(explanation[i]) == 0))
388
        {
389
          continue;
390
        }
391
        // Keep this literal
392
200897
        prev = explanation[j++] = explanation[i];
393
      }
394
36399
      explanation.shrink(i - j);
395
396
36399
      Trace("pf::sat") << "Solver::reason: explanation = ";
397
273695
      for (int k = 0; k < explanation.size(); ++k)
398
      {
399
237296
        Trace("pf::sat") << explanation[k] << " ";
400
      }
401
36399
      Trace("pf::sat") << std::endl;
402
403
      // We need an explanation clause so we add a fake literal
404
36399
      if (j == 1)
405
      {
406
        // Add not TRUE to the clause
407
        explanation.push(mkLit(varTrue, true));
408
      }
409
    }
410
411
    // Construct the reason
412
37952
    CRef real_reason = ca.alloc(explLevel, explanation, true);
413
37952
    vardata[x] = VarData(real_reason, level(x), user_level(x), intro_level(x), trail_index(x));
414
37952
    clauses_removable.push(real_reason);
415
37952
    attachClause(real_reason);
416
417
37952
    return real_reason;
418
}
419
420
3971709
bool Solver::addClause_(vec<Lit>& ps, bool removable, ClauseId& id)
421
{
422
3971709
    if (!ok) return false;
423
424
    // Check if clause is satisfied and remove false/duplicate literals:
425
3971709
    sort(ps);
426
    Lit p; int i, j;
427
428
    // Which user-level to assert this clause at
429
3971709
    int clauseLevel = (removable && !assertionLevelOnly()) ? 0 : assertionLevel;
430
431
    // Check the clause for tautologies and similar
432
3971709
    int falseLiteralsCount = 0;
433
15702282
    for (i = j = 0, p = lit_Undef; i < ps.size(); i++) {
434
      // Update the level
435
23870062
      clauseLevel = assertionLevelOnly()
436
23251885
                        ? assertionLevel
437
23251885
                        : std::max(clauseLevel, intro_level(var(ps[i])));
438
      // Tautologies are ignored
439
11935031
      if (ps[i] == ~p) {
440
42282
        id = ClauseIdUndef;
441
        // Clause can be ignored
442
42282
        return true;
443
      }
444
      // Clauses with 0-level true literals are also ignored
445
11892749
      if (value(ps[i]) == l_True && level(var(ps[i])) == 0 && user_level(var(ps[i])) == 0) {
446
162176
        id = ClauseIdUndef;
447
162176
        return true;
448
      }
449
      // Ignore repeated literals
450
11730573
      if (ps[i] == p) {
451
19112
        continue;
452
      }
453
      // If a literal is false at 0 level (both sat and user level) we also
454
      // ignore it, unless we are tracking the SAT solver's reasoning
455
11711461
      if (value(ps[i]) == l_False) {
456
6968102
        if (!options::unsatCores() && !needProof() && level(var(ps[i])) == 0
457
3458715
            && user_level(var(ps[i])) == 0)
458
        {
459
749505
          continue;
460
        }
461
        else
462
        {
463
          // If we decide to keep it, we count it into the false literals
464
1938978
          falseLiteralsCount++;
465
        }
466
      }
467
      // This literal is a keeper
468
10961956
      ps[j++] = p = ps[i];
469
    }
470
471
    // Fit to size
472
3767251
    ps.shrink(i - j);
473
474
    // If we are in solve_ or propagate
475
3767251
    if (minisat_busy)
476
    {
477
2115460
      Trace("pf::sat") << "Add clause adding a new lemma: ";
478
8633244
      for (int k = 0; k < ps.size(); ++k) {
479
6517784
        Trace("pf::sat") << ps[k] << " ";
480
      }
481
2115460
      Trace("pf::sat") << std::endl;
482
483
2115460
      lemmas.push();
484
2115460
      ps.copyTo(lemmas.last());
485
2115460
      lemmas_removable.push(removable);
486
    } else {
487
1651791
      Assert(decisionLevel() == 0);
488
489
      // If all false, we're in conflict
490
1651791
      if (ps.size() == falseLiteralsCount) {
491
1315
        if (options::unsatCores() || needProof())
492
        {
493
          // Take care of false units here; otherwise, we need to
494
          // construct the clause below to give to the proof manager
495
          // as the final conflict.
496
486
          if(falseLiteralsCount == 1) {
497
467
            if (needProof())
498
            {
499
467
              d_pfManager->finalizeProof(ps[0], true);
500
            }
501
84374
            return ok = false;
502
          }
503
        }
504
        else
505
        {
506
829
          return ok = false;
507
        }
508
      }
509
510
1650495
      CRef cr = CRef_Undef;
511
512
      // If not unit, add the clause
513
1650495
      if (ps.size() > 1) {
514
515
1571534
        lemma_lt lt(*this);
516
1571534
        sort(ps, lt);
517
518
1571534
        cr = ca.alloc(clauseLevel, ps, false);
519
1571534
        clauses_persistent.push(cr);
520
1571534
        attachClause(cr);
521
522
1571534
        if (options::unsatCores() || needProof())
523
        {
524
828706
          if (ps.size() == falseLiteralsCount)
525
          {
526
19
            if (needProof())
527
            {
528
19
              d_pfManager->finalizeProof(ca[cr], true);
529
            }
530
19
            return ok = false;
531
          }
532
        }
533
      }
534
535
      // Check if it propagates
536
1650476
      if (ps.size() == falseLiteralsCount + 1) {
537
82592
        if(assigns[var(ps[0])] == l_Undef) {
538
80250
          Assert(assigns[var(ps[0])] != l_False);
539
80250
          uncheckedEnqueue(ps[0], cr);
540
160500
          Debug("cores") << "i'm registering a unit clause, maybe input"
541
80250
                         << std::endl;
542
80250
          if (ps.size() == 1)
543
          {
544
            // We need to do this so that the closedness check, if being done,
545
            // goes through when we have unit assumptions whose literal has
546
            // already been registered, as the ProofCnfStream will not register
547
            // them and as they are not the result of propagation will be left
548
            // hanging in assumptions accumulator
549
77445
            if (needProof())
550
            {
551
23799
              d_pfManager->registerSatLitAssumption(ps[0]);
552
            }
553
          }
554
80250
          CRef confl = propagate(CHECK_WITHOUT_THEORY);
555
80250
          if(! (ok = (confl == CRef_Undef)) ) {
556
38
            if (needProof())
557
            {
558
13
              if (ca[confl].size() == 1)
559
              {
560
                d_pfManager->finalizeProof(ca[confl][0]);
561
              }
562
              else
563
              {
564
13
                d_pfManager->finalizeProof(ca[confl]);
565
              }
566
            }
567
          }
568
80250
          return ok;
569
        } else {
570
2342
          return ok;
571
        }
572
      }
573
    }
574
575
3683344
    return true;
576
}
577
578
579
4057123
void Solver::attachClause(CRef cr) {
580
4057123
    const Clause& c = ca[cr];
581
4057123
    if (Debug.isOn("minisat"))
582
    {
583
      Debug("minisat") << "Solver::attachClause(" << c << "): ";
584
      for (unsigned i = 0, size = c.size(); i < size; ++i)
585
      {
586
        Debug("minisat") << c[i] << " ";
587
      }
588
      Debug("minisat") << ", level " << c.level() << "\n";
589
    }
590
4057123
    Assert(c.size() > 1);
591
4057123
    watches[~c[0]].push(Watcher(cr, c[1]));
592
4057123
    watches[~c[1]].push(Watcher(cr, c[0]));
593
4057123
    if (c.removable()) learnts_literals += c.size();
594
3532259
    else            clauses_literals += c.size();
595
4057123
}
596
597
598
826410
void Solver::detachClause(CRef cr, bool strict) {
599
826410
    const Clause& c = ca[cr];
600
826410
    Debug("minisat") << "Solver::detachClause(" << c << ")" << std::endl;
601
826410
    if (Debug.isOn("minisat"))
602
    {
603
      Debug("minisat") << "Solver::detachClause(" << c << "), CRef " << cr
604
                       << ", clause ";
605
      for (unsigned i = 0, size = c.size(); i < size; ++i)
606
      {
607
        Debug("minisat") << c[i] << " ";
608
      }
609
610
      Debug("minisat") << "\n";
611
    }
612
826410
    Assert(c.size() > 1);
613
614
826410
    if (strict){
615
89052
        remove(watches[~c[0]], Watcher(cr, c[1]));
616
89052
        remove(watches[~c[1]], Watcher(cr, c[0]));
617
    }else{
618
        // Lazy detaching: (NOTE! Must clean all watcher lists before garbage collecting this clause)
619
737358
        watches.smudge(~c[0]);
620
737358
        watches.smudge(~c[1]);
621
    }
622
623
826410
    if (c.removable()) learnts_literals -= c.size();
624
581905
    else            clauses_literals -= c.size(); }
625
626
627
737358
void Solver::removeClause(CRef cr) {
628
737358
    Clause& c = ca[cr];
629
737358
    if (Debug.isOn("minisat"))
630
    {
631
      Debug("minisat") << "Solver::removeClause(" << c << "), CRef " << cr
632
                       << ", clause ";
633
      for (unsigned i = 0, size = c.size(); i < size; ++i)
634
      {
635
        Debug("minisat") << c[i] << " ";
636
      }
637
      Debug("minisat") << "\n";
638
    }
639
737358
    detachClause(cr);
640
    // Don't leave pointers to free'd memory!
641
737358
    if (locked(c))
642
    {
643
      // a locked clause c is one whose first literal c[0] is true and is
644
      // propagated by c itself, i.e. vardata[var(c[0])].d_reason == c. Because
645
      // of this if we need to justify the propagation of c[0], via
646
      // Solver::reason, if it appears in a resolution chain built lazily we
647
      // will be unable to do so after the step below. Thus we eagerly justify
648
      // this propagation here.
649
10803
      if (needProof())
650
      {
651
2052
        Trace("pf::sat")
652
1026
            << "Solver::removeClause: eagerly compute propagation of " << c[0]
653
1026
            << "\n";
654
1026
        d_pfManager->startResChain(c);
655
4090
        for (unsigned i = 1, size = c.size(); i < size; ++i)
656
        {
657
3064
          d_pfManager->addResolutionStep(c[i]);
658
        }
659
1026
        d_pfManager->endResChain(c[0]);
660
      }
661
10803
      vardata[var(c[0])].d_reason = CRef_Undef;
662
    }
663
737358
    c.mark(1);
664
737358
    ca.free(cr);
665
737358
}
666
667
668
457159
bool Solver::satisfied(const Clause& c) const {
669
21650900
    for (int i = 0; i < c.size(); i++)
670
21243461
        if (value(c[i]) == l_True)
671
49720
            return true;
672
407439
    return false; }
673
674
675
// Revert to the state at given level (keeping all assignment at 'level' but not beyond).
676
//
677
577893
void Solver::cancelUntil(int level) {
678
577893
    Debug("minisat") << "minisat::cancelUntil(" << level << ")" << std::endl;
679
680
577893
    if (decisionLevel() > level){
681
        // Pop the SMT context
682
3415245
        for (int l = trail_lim.size() - level; l > 0; --l) {
683
2954971
          d_context->pop();
684
        }
685
116732498
        for (int c = trail.size()-1; c >= trail_lim[level]; c--){
686
116272224
            Var      x  = var(trail[c]);
687
116272224
            assigns [x] = l_Undef;
688
116272224
            vardata[x].d_trail_index = -1;
689
232544448
            if ((phase_saving > 1 ||
690
                 ((phase_saving == 1) && c > trail_lim.last())
691
232544448
                 ) && ((polarity[x] & 0x2) == 0)) {
692
115448671
              polarity[x] = sign(trail[c]);
693
            }
694
116272224
            insertVarOrder(x);
695
        }
696
460274
        qhead = trail_lim[level];
697
460274
        trail.shrink(trail.size() - trail_lim[level]);
698
460274
        trail_lim.shrink(trail_lim.size() - level);
699
460274
        flipped.shrink(flipped.size() - level);
700
701
        // Register variables that have not been registered yet
702
460274
        int currentLevel = decisionLevel();
703
891746
        for (int i = variables_to_register.size() - 1;
704
891746
             i >= 0 && variables_to_register[i].d_level > currentLevel;
705
             --i)
706
        {
707
431472
          variables_to_register[i].d_level = currentLevel;
708
862944
          d_proxy->variableNotify(
709
431472
              MinisatSatSolver::toSatVariable(variables_to_register[i].d_var));
710
        }
711
    }
712
577893
}
713
714
15176
void Solver::resetTrail() { cancelUntil(0); }
715
716
//=================================================================================================
717
// Major methods:
718
719
720
2678147
Lit Solver::pickBranchLit()
721
{
722
    Lit nextLit;
723
724
    // Theory requests
725
2678145
    nextLit =
726
2678147
        MinisatSatSolver::toMinisatLit(d_proxy->getNextTheoryDecisionRequest());
727
2698869
    while (nextLit != lit_Undef) {
728
60355
      if(value(var(nextLit)) == l_Undef) {
729
99986
        Debug("theoryDecision")
730
49993
            << "getNextTheoryDecisionRequest(): now deciding on " << nextLit
731
49993
            << std::endl;
732
49993
        decisions++;
733
734
        // org-mode tracing -- theory decision
735
49993
        if (Trace.isOn("dtview"))
736
        {
737
          dtviewDecisionHelper(
738
              d_context->getLevel(),
739
              d_proxy->getNode(MinisatSatSolver::toSatLiteral(nextLit)),
740
              "THEORY");
741
        }
742
743
49993
        if (Trace.isOn("dtview::prop"))
744
        {
745
          dtviewPropagationHeaderHelper(d_context->getLevel());
746
        }
747
748
49993
        return nextLit;
749
      } else {
750
20724
        Debug("theoryDecision")
751
10362
            << "getNextTheoryDecisionRequest(): would decide on " << nextLit
752
10362
            << " but it already has an assignment" << std::endl;
753
      }
754
10362
      nextLit = MinisatSatSolver::toMinisatLit(
755
10362
          d_proxy->getNextTheoryDecisionRequest());
756
    }
757
5256304
    Debug("theoryDecision")
758
2628152
        << "getNextTheoryDecisionRequest(): decide on another literal"
759
2628152
        << std::endl;
760
761
    // DE requests
762
2628152
    bool stopSearch = false;
763
2628152
    nextLit = MinisatSatSolver::toMinisatLit(
764
2628152
        d_proxy->getNextDecisionEngineRequest(stopSearch));
765
2628152
    if(stopSearch) {
766
50392
      return lit_Undef;
767
    }
768
2577760
    if(nextLit != lit_Undef) {
769
1130736
      Assert(value(var(nextLit)) == l_Undef)
770
          << "literal to decide already has value";
771
1130736
      decisions++;
772
1130736
      Var next = var(nextLit);
773
1130736
      if(polarity[next] & 0x2) {
774
194319
        nextLit = mkLit(next, polarity[next] & 0x1);
775
      }
776
777
      // org-mode tracing -- decision engine decision
778
1130736
      if (Trace.isOn("dtview"))
779
      {
780
        dtviewDecisionHelper(
781
            d_context->getLevel(),
782
            d_proxy->getNode(MinisatSatSolver::toSatLiteral(nextLit)),
783
            "DE");
784
      }
785
786
1130736
      if (Trace.isOn("dtview::prop"))
787
      {
788
        dtviewPropagationHeaderHelper(d_context->getLevel());
789
      }
790
791
1130736
      return nextLit;
792
    }
793
794
1447024
    Var next = var_Undef;
795
796
    // Random decision:
797
1447024
    if (drand(random_seed) < random_var_freq && !order_heap.empty()){
798
        next = order_heap[irand(random_seed,order_heap.size())];
799
        if (value(next) == l_Undef && decision[next])
800
            rnd_decisions++; }
801
802
    // Activity based decision:
803
10729162
    while (next >= nVars() || next == var_Undef || value(next) != l_Undef || !decision[next]) {
804
4659368
        if (order_heap.empty()){
805
18299
            next = var_Undef;
806
18299
            break;
807
        }else {
808
4641069
            next = order_heap.removeMin();
809
        }
810
811
4641069
        if(!decision[next]) continue;
812
        // Check with decision engine about relevancy
813
9256834
        if (d_proxy->isDecisionRelevant(MinisatSatSolver::toSatVariable(next))
814
4628417
            == false)
815
        {
816
          next = var_Undef;
817
        }
818
    }
819
820
1447024
    if(next == var_Undef) {
821
18299
      return lit_Undef;
822
    } else {
823
1428725
      decisions++;
824
      // Check with decision engine if it can tell polarity
825
      lbool dec_pol = MinisatSatSolver::toMinisatlbool(
826
1428725
          d_proxy->getDecisionPolarity(MinisatSatSolver::toSatVariable(next)));
827
      Lit decisionLit;
828
1428725
      if(dec_pol != l_Undef) {
829
        Assert(dec_pol == l_True || dec_pol == l_False);
830
        decisionLit = mkLit(next, (dec_pol == l_True));
831
      }
832
      else
833
      {
834
        // If it can't use internal heuristic to do that
835
1428725
        decisionLit = mkLit(
836
1428725
            next, rnd_pol ? drand(random_seed) < 0.5 : (polarity[next] & 0x1));
837
      }
838
839
      // org-mode tracing -- decision engine decision
840
1428725
      if (Trace.isOn("dtview"))
841
      {
842
        dtviewDecisionHelper(
843
            d_context->getLevel(),
844
            d_proxy->getNode(MinisatSatSolver::toSatLiteral(decisionLit)),
845
            "DE");
846
      }
847
848
1428725
      if (Trace.isOn("dtview::prop"))
849
      {
850
        dtviewPropagationHeaderHelper(d_context->getLevel());
851
      }
852
853
1428725
      return decisionLit;
854
    }
855
}
856
857
858
/*_________________________________________________________________________________________________
859
|
860
|  analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&)  ->  [void]
861
|
862
|  Description:
863
|    Analyze conflict and produce a reason clause.
864
|
865
|    Pre-conditions:
866
|      * 'out_learnt' is assumed to be cleared.
867
|      * Current decision level must be greater than root level.
868
|
869
|    Post-conditions:
870
|      * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
871
|      * If out_learnt.size() > 1 then 'out_learnt[1]' has the greatest decision level of the
872
|        rest of literals. There may be others from the same level though.
873
|      * returns the maximal level of the resolved clauses
874
|
875
|________________________________________________________________________________________________@*/
876
311170
int Solver::analyze(CRef confl, vec<Lit>& out_learnt, int& out_btlevel)
877
{
878
622340
  Trace("pf::sat") << "Solver::analyze: starting with " << confl
879
311170
                   << " with decision level " << decisionLevel() << "\n";
880
881
311170
  int pathC = 0;
882
311170
  Lit p = lit_Undef;
883
884
  // Generate conflict clause:
885
  //
886
311170
  out_learnt.push();  // (leave room for the asserting literal)
887
311170
  int index = trail.size() - 1;
888
889
311170
  int max_resolution_level = 0;  // Maximal level of the resolved clauses
890
891
311170
    if (needProof())
892
    {
893
32174
      d_pfManager->startResChain(ca[confl]);
894
    }
895
33634486
    do{
896
33945656
      Assert(confl != CRef_Undef);  // (otherwise should be UIP)
897
898
      {
899
        // ! IMPORTANT !
900
        // It is not safe to use c after this block of code because
901
        // resolveOutUnit() below may lead to clauses being allocated, which
902
        // in turn may lead to reallocations that invalidate c.
903
33945656
        Clause& c = ca[confl];
904
33945656
        max_resolution_level = std::max(max_resolution_level, c.level());
905
906
33945656
        if (c.removable()) claBumpActivity(c);
907
      }
908
909
33945656
        if (Trace.isOn("pf::sat"))
910
        {
911
          Trace("pf::sat") << "Solver::analyze: conflict clause ";
912
          for (unsigned i = 0, size = ca[confl].size(); i < size; ++i)
913
          {
914
            Trace("pf::sat") << ca[confl][i] << " ";
915
          }
916
          Trace("pf::sat") << "\n";
917
        }
918
919
33945656
        Trace("pf::sat") << cvc5::push;
920
232736699
        for (int j = (p == lit_Undef) ? 0 : 1, size = ca[confl].size();
921
232736699
             j < size;
922
             j++)
923
        {
924
198791043
          Lit q = ca[confl][j];
925
926
397582086
          Trace("pf::sat") << "Lit " << q
927
397582086
                           << " seen/level: " << (seen[var(q)] ? 1 : 0) << " / "
928
198791043
                           << level(var(q)) << "\n";
929
198791043
          if (!seen[var(q)] && level(var(q)) > 0)
930
          {
931
61378282
            varBumpActivity(var(q));
932
61378282
            seen[var(q)] = 1;
933
61378282
            if (level(var(q)) >= decisionLevel())
934
33945656
              pathC++;
935
            else
936
27432626
              out_learnt.push(q);
937
          }
938
          else
939
          {
940
            // We could be resolving a literal propagated by a clause/theory
941
            // using information from a higher level
942
137412761
            if (!seen[var(q)] && level(var(q)) == 0)
943
            {
944
393293
              max_resolution_level =
945
786586
                  std::max(max_resolution_level, user_level(var(q)));
946
            }
947
948
            // FIXME: can we do it lazily if we actually need the proof?
949
137412761
            if (level(var(q)) == 0 && needProof())
950
            {
951
141263
              d_pfManager->addResolutionStep(q);
952
            }
953
          }
954
        }
955
33945656
        Trace("pf::sat") << cvc5::pop;
956
957
        // Select next clause to look at:
958
94365583
        while (!seen[var(trail[index--])]);
959
33945656
        p     = trail[index+1];
960
33945656
        confl = reason(var(p));
961
33945656
        seen[var(p)] = 0;
962
33945656
        pathC--;
963
964
33945656
        if (pathC > 0 && confl != CRef_Undef && needProof())
965
        {
966
502574
          d_pfManager->addResolutionStep(ca[confl], p);
967
        }
968
969
33945656
    } while (pathC > 0);
970
311170
    out_learnt[0] = ~p;
971
311170
    if (Debug.isOn("newproof::sat"))
972
    {
973
      Debug("newproof::sat") << "finished with learnt clause ";
974
      for (unsigned i = 0, size = out_learnt.size(); i < size; ++i)
975
      {
976
        prop::SatLiteral satLit = toSatLiteral<Minisat::Solver>(out_learnt[i]);
977
        Debug("newproof::sat") << satLit << " ";
978
      }
979
      Debug("newproof::sat") << "\n";
980
    }
981
982
    // Simplify conflict clause:
983
    int i, j;
984
311170
    out_learnt.copyTo(analyze_toclear);
985
311170
    if (ccmin_mode == 2){
986
311170
        uint32_t abstract_level = 0;
987
27743796
        for (i = 1; i < out_learnt.size(); i++)
988
27432626
            abstract_level |= abstractLevel(var(out_learnt[i])); // (maintain an abstraction of levels involved in conflict)
989
990
27743796
        for (i = j = 1; i < out_learnt.size(); i++) {
991
27432626
            if (reason(var(out_learnt[i])) == CRef_Undef) {
992
4712233
                out_learnt[j++] = out_learnt[i];
993
            } else {
994
              // Check if the literal is redundant
995
22720393
              if (!litRedundant(out_learnt[i], abstract_level)) {
996
                // Literal is not redundant
997
20294942
                out_learnt[j++] = out_learnt[i];
998
              } else {
999
2425451
                if (needProof())
1000
                {
1001
103528
                  Debug("newproof::sat")
1002
51764
                      << "Solver::analyze: redundant lit "
1003
51764
                      << toSatLiteral<Minisat::Solver>(out_learnt[i]) << "\n";
1004
51764
                  d_pfManager->addResolutionStep(out_learnt[i], true);
1005
                }
1006
                // Literal is redundant, to be safe, mark the level as current assertion level
1007
                // TODO: maybe optimize
1008
2425451
                max_resolution_level = std::max(max_resolution_level, user_level(var(out_learnt[i])));
1009
              }
1010
            }
1011
        }
1012
1013
    }else if (ccmin_mode == 1){
1014
        Unreachable();
1015
        for (i = j = 1; i < out_learnt.size(); i++){
1016
            Var x = var(out_learnt[i]);
1017
1018
            if (reason(x) == CRef_Undef)
1019
                out_learnt[j++] = out_learnt[i];
1020
            else{
1021
                Clause& c = ca[reason(var(out_learnt[i]))];
1022
                for (int k = 1; k < c.size(); k++)
1023
                    if (!seen[var(c[k])] && level(var(c[k])) > 0){
1024
                        out_learnt[j++] = out_learnt[i];
1025
                        break; }
1026
            }
1027
        }
1028
    }else
1029
        i = j = out_learnt.size();
1030
1031
311170
    max_literals += out_learnt.size();
1032
311170
    out_learnt.shrink(i - j);
1033
311170
    tot_literals += out_learnt.size();
1034
1035
    // Find correct backtrack level:
1036
    //
1037
311170
    if (out_learnt.size() == 1)
1038
6048
        out_btlevel = 0;
1039
    else{
1040
305122
        int max_i = 1;
1041
        // Find the first literal assigned at the next-highest level:
1042
25007175
        for (int k = 2; k < out_learnt.size(); k++)
1043
24702053
          if (level(var(out_learnt[k])) > level(var(out_learnt[max_i])))
1044
709622
            max_i = k;
1045
        // Swap-in this literal at index 1:
1046
305122
        Lit p2 = out_learnt[max_i];
1047
305122
        out_learnt[max_i] = out_learnt[1];
1048
305122
        out_learnt[1] = p2;
1049
305122
        out_btlevel = level(var(p2));
1050
    }
1051
1052
30623411
    for (int k = 0; k < analyze_toclear.size(); k++)
1053
30312241
      seen[var(analyze_toclear[k])] = 0;  // ('seen[]' is now cleared)
1054
1055
    // Return the maximal resolution level
1056
311170
    return max_resolution_level;
1057
}
1058
1059
1060
// Check if 'p' can be removed. 'abstract_levels' is used to abort early if the algorithm is
1061
// visiting literals at levels that cannot be removed later.
1062
22720393
bool Solver::litRedundant(Lit p, uint32_t abstract_levels)
1063
{
1064
22720393
    analyze_stack.clear(); analyze_stack.push(p);
1065
22720393
    int top = analyze_toclear.size();
1066
62805165
    while (analyze_stack.size() > 0){
1067
40337328
        CRef c_reason = reason(var(analyze_stack.last()));
1068
40337328
        Assert(c_reason != CRef_Undef);
1069
40337328
        Clause& c = ca[c_reason];
1070
40337328
        int c_size = c.size();
1071
40337328
        analyze_stack.pop();
1072
1073
        // Since calling reason might relocate to resize, c is not necesserily the right reference, we must
1074
        // use the allocator each time
1075
156352786
        for (int i = 1; i < c_size; i++){
1076
136310400
          Lit p2 = ca[c_reason][i];
1077
136310400
          if (!seen[var(p2)] && level(var(p2)) > 0)
1078
          {
1079
147324742
            if (reason(var(p2)) != CRef_Undef
1080
73662371
                && (abstractLevel(var(p2)) & abstract_levels) != 0)
1081
            {
1082
53367429
              seen[var(p2)] = 1;
1083
53367429
              analyze_stack.push(p2);
1084
53367429
              analyze_toclear.push(p2);
1085
            }
1086
            else
1087
            {
1088
71093926
              for (int j = top; j < analyze_toclear.size(); j++)
1089
50798984
                seen[var(analyze_toclear[j])] = 0;
1090
20294942
              analyze_toclear.shrink(analyze_toclear.size() - top);
1091
20294942
              return false;
1092
            }
1093
          }
1094
        }
1095
    }
1096
1097
2425451
    return true;
1098
}
1099
1100
1101
/*_________________________________________________________________________________________________
1102
|
1103
|  analyzeFinal : (p : Lit)  ->  [void]
1104
|
1105
|  Description:
1106
|    Specialized analysis procedure to express the final conflict in terms of assumptions.
1107
|    Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
1108
|    stores the result in 'out_conflict'.
1109
|________________________________________________________________________________________________@*/
1110
2719
void Solver::analyzeFinal(Lit p, vec<Lit>& out_conflict)
1111
{
1112
2719
    out_conflict.clear();
1113
2719
    out_conflict.push(p);
1114
1115
2719
    if (decisionLevel() == 0)
1116
914
        return;
1117
1118
1805
    seen[var(p)] = 1;
1119
1120
131581
    for (int i = trail.size()-1; i >= trail_lim[0]; i--){
1121
129776
        Var x = var(trail[i]);
1122
129776
        if (seen[x]){
1123
28490
            if (reason(x) == CRef_Undef){
1124
10577
              Assert(level(x) > 0);
1125
10577
              out_conflict.push(~trail[i]);
1126
            }else{
1127
17913
                Clause& c = ca[reason(x)];
1128
57091
                for (int j = 1; j < c.size(); j++)
1129
39178
                    if (level(var(c[j])) > 0)
1130
38168
                        seen[var(c[j])] = 1;
1131
            }
1132
28490
            seen[x] = 0;
1133
        }
1134
    }
1135
1136
1805
    seen[var(p)] = 0;
1137
}
1138
1139
116609935
void Solver::uncheckedEnqueue(Lit p, CRef from)
1140
{
1141
116609935
  if (Debug.isOn("minisat"))
1142
  {
1143
    Debug("minisat") << "unchecked enqueue of " << p << " ("
1144
                     << trail_index(var(p)) << ") trail size is "
1145
                     << trail.size() << " cap is " << trail.capacity()
1146
                     << ", reason is " << from << ", ";
1147
    if (from == CRef_Lazy)
1148
    {
1149
      Debug("minisat") << "CRef_Lazy";
1150
    }
1151
    else if (from == CRef_Undef)
1152
    {
1153
      Debug("minisat") << "CRef_Undef";
1154
    }
1155
    else
1156
    {
1157
      for (unsigned i = 0, size = ca[from].size(); i < size; ++i)
1158
      {
1159
        Debug("minisat") << ca[from][i] << " ";
1160
      }
1161
    }
1162
    Debug("minisat") << "\n";
1163
  }
1164
116609935
  Assert(value(p) == l_Undef);
1165
116609935
  Assert(var(p) < nVars());
1166
116609935
  assigns[var(p)] = lbool(!sign(p));
1167
116609935
  vardata[var(p)] = VarData(
1168
      from, decisionLevel(), assertionLevel, intro_level(var(p)), trail.size());
1169
116609935
  trail.push_(p);
1170
116609935
  if (theory[var(p)])
1171
  {
1172
    // Enqueue to the theory
1173
16703481
    d_proxy->enqueueTheoryLiteral(MinisatSatSolver::toSatLiteral(p));
1174
  }
1175
116609935
}
1176
1177
3517432
CRef Solver::propagate(TheoryCheckType type)
1178
{
1179
3517432
    CRef confl = CRef_Undef;
1180
3517432
    recheck = false;
1181
3517432
    theoryConflict = false;
1182
1183
7034864
    ScopedBool scoped_bool(minisat_busy, true);
1184
1185
    // Add lemmas that we're left behind
1186
3517432
    if (lemmas.size() > 0) {
1187
145
      confl = updateLemmas();
1188
145
      if (confl != CRef_Undef) {
1189
        return confl;
1190
      }
1191
    }
1192
1193
    // If this is the final check, no need for Boolean propagation and
1194
    // theory propagation
1195
3517432
    if (type == CHECK_FINAL) {
1196
      // Do the theory check
1197
78609
      theoryCheck(cvc5::theory::Theory::EFFORT_FULL);
1198
      // Pick up the theory propagated literals (there could be some,
1199
      // if new lemmas are added)
1200
78598
      propagateTheory();
1201
      // If there are lemmas (or conflicts) update them
1202
78598
      if (lemmas.size() > 0) {
1203
57113
        recheck = true;
1204
57113
        confl = updateLemmas();
1205
57113
        return confl;
1206
      } else {
1207
21485
        recheck = d_proxy->theoryNeedCheck();
1208
21485
        return confl;
1209
      }
1210
    }
1211
1212
    // Keep running until we have checked everything, we
1213
    // have no conflict and no new literals have been asserted
1214
857914
    do {
1215
        // Propagate on the clauses
1216
4296737
        confl = propagateBool();
1217
        // If no conflict, do the theory check
1218
4296737
        if (confl == CRef_Undef && type != CHECK_WITHOUT_THEORY) {
1219
            // Do the theory check
1220
3902710
            if (type == CHECK_FINAL_FAKE) {
1221
              theoryCheck(cvc5::theory::Theory::EFFORT_FULL);
1222
            } else {
1223
3902710
              theoryCheck(cvc5::theory::Theory::EFFORT_STANDARD);
1224
            }
1225
            // Pick up the theory propagated literals
1226
3902707
            propagateTheory();
1227
            // If there are lemmas (or conflicts) update them
1228
7805414
            if (lemmas.size() > 0) {
1229
191484
              confl = updateLemmas();
1230
            }
1231
        } else {
1232
          // if dumping decision tree, print the conflict
1233
394027
          if (Trace.isOn("dtview::conflict"))
1234
          {
1235
            if (confl != CRef_Undef)
1236
            {
1237
              dtviewPropConflictHelper(decisionLevel(), ca[confl], d_proxy);
1238
            }
1239
          }
1240
          // Even though in conflict, we still need to discharge the lemmas
1241
394027
          if (lemmas.size() > 0) {
1242
            // Remember the trail size
1243
            int oldLevel = decisionLevel();
1244
            // Update the lemmas
1245
            CRef lemmaConflict = updateLemmas();
1246
            // If we get a conflict, we prefer it since it's earlier in the trail
1247
            if (lemmaConflict != CRef_Undef) {
1248
              // Lemma conflict takes precedence, since it's earlier in the trail
1249
              confl = lemmaConflict;
1250
            } else {
1251
              // Otherwise, the Boolean conflict is canceled in the case we popped the trail
1252
              if (oldLevel > decisionLevel()) {
1253
                confl = CRef_Undef;
1254
              }
1255
            }
1256
          }
1257
        }
1258
4296734
    } while (confl == CRef_Undef && qhead < trail.size());
1259
3438820
    return confl;
1260
}
1261
1262
3981305
void Solver::propagateTheory() {
1263
7962610
  SatClause propagatedLiteralsClause;
1264
  // Doesn't actually call propagate(); that's done in theoryCheck() now that combination
1265
  // is online.  This just incorporates those propagations previously discovered.
1266
3981305
  d_proxy->theoryPropagate(propagatedLiteralsClause);
1267
1268
7962610
  vec<Lit> propagatedLiterals;
1269
3981305
  MinisatSatSolver::toMinisatClause(propagatedLiteralsClause, propagatedLiterals);
1270
1271
3981305
  int oldTrailSize = trail.size();
1272
3981305
  Debug("minisat") << "old trail size is " << oldTrailSize << ", propagating " << propagatedLiterals.size() << " lits..." << std::endl;
1273
10245905
  for (unsigned i = 0, i_end = propagatedLiterals.size(); i < i_end; ++ i) {
1274
6264600
    Debug("minisat") << "Theory propagated: " << propagatedLiterals[i] << std::endl;
1275
    // multiple theories can propagate the same literal
1276
6264600
    Lit p = propagatedLiterals[i];
1277
6264600
    if (value(p) == l_Undef) {
1278
2997752
      uncheckedEnqueue(p, CRef_Lazy);
1279
    } else {
1280
3266848
      if (value(p) == l_False) {
1281
72041
        Debug("minisat") << "Conflict in theory propagation" << std::endl;
1282
144082
        SatClause explanation_cl;
1283
72041
        d_proxy->explainPropagation(MinisatSatSolver::toSatLiteral(p),
1284
                                    explanation_cl);
1285
144082
        vec<Lit> explanation;
1286
72041
        MinisatSatSolver::toMinisatClause(explanation_cl, explanation);
1287
        ClauseId id; // FIXME: mark it as explanation here somehow?
1288
72041
        addClause(explanation, true, id);
1289
      }
1290
    }
1291
  }
1292
3981305
}
1293
1294
/*_________________________________________________________________________________________________
1295
|
1296
|  theoryCheck: [void]  ->  [Clause*]
1297
|
1298
|  Description:
1299
|    Checks all enqueued theory facts for satisfiability. If a conflict arises, the conflicting
1300
|    clause is returned, otherwise NULL.
1301
|
1302
|    Note: the propagation queue might be NOT empty
1303
|________________________________________________________________________________________________@*/
1304
3981319
void Solver::theoryCheck(cvc5::theory::Theory::Effort effort)
1305
{
1306
3981319
  d_proxy->theoryCheck(effort);
1307
3981305
}
1308
1309
/*_________________________________________________________________________________________________
1310
|
1311
|  propagateBool : [void]  ->  [Clause*]
1312
|
1313
|  Description:
1314
|    Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
1315
|    otherwise CRef_Undef.
1316
|
1317
|    Post-conditions:
1318
|      * the propagation queue is empty, even if there was a conflict.
1319
|________________________________________________________________________________________________@*/
1320
4296737
CRef Solver::propagateBool()
1321
{
1322
4296737
    CRef    confl     = CRef_Undef;
1323
4296737
    int     num_props = 0;
1324
4296737
    watches.cleanAll();
1325
1326
225874923
    while (qhead < trail.size()){
1327
110789093
        Lit            p   = trail[qhead++];     // 'p' is enqueued fact to propagate.
1328
110789093
        vec<Watcher>&  ws  = watches[p];
1329
        Watcher        *i, *j, *end;
1330
110789093
        num_props++;
1331
1332
        // if propagation tracing enabled, print boolean propagation
1333
110789093
        if (Trace.isOn("dtview::prop"))
1334
        {
1335
          dtviewBoolPropagationHelper(decisionLevel(), p, d_proxy);
1336
        }
1337
1338
930812491
        for (i = j = (Watcher*)ws, end = i + ws.size();  i != end;){
1339
            // Try to avoid inspecting the clause:
1340
820023398
            Lit blocker = i->blocker;
1341
1337968993
            if (value(blocker) == l_True){
1342
1581026189
                *j++ = *i++; continue; }
1343
1344
            // Make sure the false literal is data[1]:
1345
302077803
            CRef     cr        = i->cref;
1346
302077803
            Clause&  c         = ca[cr];
1347
302077803
            Lit      false_lit = ~p;
1348
302077803
            if (c[0] == false_lit)
1349
88506652
                c[0] = c[1], c[1] = false_lit;
1350
302077803
            Assert(c[1] == false_lit);
1351
302077803
            i++;
1352
1353
            // If 0th watch is true, then clause is already satisfied.
1354
302077803
            Lit     first = c[0];
1355
302077803
            Watcher w     = Watcher(cr, first);
1356
329267207
            if (first != blocker && value(first) == l_True){
1357
54378808
                *j++ = w; continue; }
1358
1359
            // Look for new watch:
1360
274888399
            Assert(c.size() >= 2);
1361
1302754502
            for (int k = 2; k < c.size(); k++)
1362
1192498984
                if (value(c[k]) != l_False){
1363
164632881
                    c[1] = c[k]; c[k] = false_lit;
1364
164632881
                    watches[~c[1]].push(w);
1365
164632881
                    goto NextClause; }
1366
1367
            // Did not find watch -- clause is unit under assignment:
1368
110255518
            *j++ = w;
1369
110255518
            if (value(first) == l_False){
1370
260612
                confl = cr;
1371
260612
                qhead = trail.size();
1372
                // Copy the remaining watches:
1373
6267000
                while (i < end)
1374
3003194
                    *j++ = *i++;
1375
            }else
1376
109994906
                uncheckedEnqueue(first, cr);
1377
1378
274888399
        NextClause:;
1379
        }
1380
110789093
        ws.shrink(i - j);
1381
    }
1382
4296737
    propagations += num_props;
1383
4296737
    simpDB_props -= num_props;
1384
1385
4296737
    return confl;
1386
}
1387
1388
1389
/*_________________________________________________________________________________________________
1390
|
1391
|  reduceDB : ()  ->  [void]
1392
|
1393
|  Description:
1394
|    Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
1395
|    clauses are clauses that are reason to some assignment. Binary clauses are never removed.
1396
|________________________________________________________________________________________________@*/
1397
struct reduceDB_lt {
1398
    ClauseAllocator& ca;
1399
3477
    reduceDB_lt(ClauseAllocator& ca_) : ca(ca_) {}
1400
4486913
    bool operator () (CRef x, CRef y) {
1401
4486913
        return ca[x].size() > 2 && (ca[y].size() == 2 || ca[x].activity() < ca[y].activity()); }
1402
};
1403
3477
void Solver::reduceDB()
1404
{
1405
    int     i, j;
1406
3477
    double  extra_lim = cla_inc / clauses_removable.size();    // Remove any clause below this activity
1407
1408
3477
    sort(clauses_removable, reduceDB_lt(ca));
1409
    // Don't delete binary or locked clauses. From the rest, delete clauses from the first half
1410
    // and clauses with activity smaller than 'extra_lim':
1411
417106
    for (i = j = 0; i < clauses_removable.size(); i++){
1412
413629
        Clause& c = ca[clauses_removable[i]];
1413
413629
        if (c.size() > 2 && !locked(c) && (i < clauses_removable.size() / 2 || c.activity() < extra_lim))
1414
185854
            removeClause(clauses_removable[i]);
1415
        else
1416
227775
            clauses_removable[j++] = clauses_removable[i];
1417
    }
1418
3477
    clauses_removable.shrink(i - j);
1419
3477
    checkGarbage();
1420
3477
}
1421
1422
1423
17969
void Solver::removeSatisfied(vec<CRef>& cs)
1424
{
1425
    int i, j;
1426
475128
    for (i = j = 0; i < cs.size(); i++){
1427
457159
        Clause& c = ca[cs[i]];
1428
457159
        if (satisfied(c)) {
1429
49720
          removeClause(cs[i]);
1430
        }
1431
        else
1432
        {
1433
407439
          cs[j++] = cs[i];
1434
        }
1435
    }
1436
17969
    cs.shrink(i - j);
1437
17969
}
1438
1439
9738
void Solver::removeClausesAboveLevel(vec<CRef>& cs, int level)
1440
{
1441
    int i, j;
1442
834960
    for (i = j = 0; i < cs.size(); i++){
1443
825222
        Clause& c = ca[cs[i]];
1444
825222
        if (c.level() > level) {
1445
248294
          Assert(!locked(c));
1446
248294
          removeClause(cs[i]);
1447
        } else {
1448
576928
            cs[j++] = cs[i];
1449
        }
1450
    }
1451
9738
    cs.shrink(i - j);
1452
9738
}
1453
1454
17969
void Solver::rebuildOrderHeap()
1455
{
1456
35938
    vec<Var> vs;
1457
2723103
    for (Var v = 0; v < nVars(); v++)
1458
2705134
        if (decision[v] && value(v) == l_Undef)
1459
2060646
            vs.push(v);
1460
17969
    order_heap.build(vs);
1461
17969
}
1462
1463
1464
/*_________________________________________________________________________________________________
1465
|
1466
|  simplify : [void]  ->  [bool]
1467
|
1468
|  Description:
1469
|    Simplify the clause database according to the current top-level assigment. Currently, the only
1470
|    thing done here is the removal of satisfied clauses, but more things can be put here.
1471
|________________________________________________________________________________________________@*/
1472
44369
bool Solver::simplify()
1473
{
1474
44369
  Assert(decisionLevel() == 0);
1475
1476
44369
  if (!ok || propagate(CHECK_WITHOUT_THEORY) != CRef_Undef) return ok = false;
1477
1478
44153
  if (nAssigns() == simpDB_assigns || (simpDB_props > 0)) return true;
1479
1480
  // Remove satisfied clauses:
1481
17969
  removeSatisfied(clauses_removable);
1482
17969
  if (remove_satisfied)  // Can be turned off.
1483
    removeSatisfied(clauses_persistent);
1484
17969
  checkGarbage();
1485
17969
  rebuildOrderHeap();
1486
1487
17969
  simpDB_assigns = nAssigns();
1488
17969
  simpDB_props =
1489
17969
      clauses_literals + learnts_literals;  // (shouldn't depend on stats
1490
                                            // really, but it will do for now)
1491
1492
17969
  return true;
1493
}
1494
1495
1496
/*_________________________________________________________________________________________________
1497
|
1498
|  search : (nof_conflicts : int) (params : const SearchParams&)  ->  [lbool]
1499
|
1500
|  Description:
1501
|    Search for a model the specified number of conflicts.
1502
|    NOTE! Use negative value for 'nof_conflicts' indicate infinity.
1503
|
1504
|  Output:
1505
|    'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If
1506
|    all variables are decision variables, this means that the clause set is satisfiable. 'l_False'
1507
|    if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached.
1508
|________________________________________________________________________________________________@*/
1509
16343
lbool Solver::search(int nof_conflicts)
1510
{
1511
16343
  Assert(ok);
1512
  int backtrack_level;
1513
16343
  int conflictC = 0;
1514
32686
  vec<Lit> learnt_clause;
1515
16343
  starts++;
1516
1517
16343
  TheoryCheckType check_type = CHECK_WITH_THEORY;
1518
  for (;;)
1519
  {
1520
    // Propagate and call the theory solvers
1521
3383976
    CRef confl = propagate(check_type);
1522
3383962
    Assert(lemmas.size() == 0);
1523
1524
3383962
    if (confl != CRef_Undef)
1525
    {
1526
314558
      conflicts++;
1527
314558
      conflictC++;
1528
1529
314558
      if (decisionLevel() == 0)
1530
      {
1531
3388
        if (needProof())
1532
        {
1533
858
          if (confl == CRef_Lazy)
1534
          {
1535
48
            d_pfManager->finalizeProof();
1536
          }
1537
          else
1538
          {
1539
810
            d_pfManager->finalizeProof(ca[confl]);
1540
          }
1541
        }
1542
3388
        return l_False;
1543
      }
1544
1545
      // Analyze the conflict
1546
311170
      learnt_clause.clear();
1547
311170
      int max_level = analyze(confl, learnt_clause, backtrack_level);
1548
311170
      cancelUntil(backtrack_level);
1549
1550
      // Assert the conflict clause and the asserting literal
1551
311170
      if (learnt_clause.size() == 1)
1552
      {
1553
6048
        uncheckedEnqueue(learnt_clause[0]);
1554
6048
        if (needProof())
1555
        {
1556
1540
          d_pfManager->endResChain(learnt_clause[0]);
1557
        }
1558
      }
1559
      else
1560
      {
1561
305122
        CRef cr = ca.alloc(assertionLevelOnly() ? assertionLevel : max_level,
1562
                           learnt_clause,
1563
305122
                           true);
1564
305122
        clauses_removable.push(cr);
1565
305122
        attachClause(cr);
1566
305122
        claBumpActivity(ca[cr]);
1567
305122
        uncheckedEnqueue(learnt_clause[0], cr);
1568
305122
        if (needProof())
1569
        {
1570
30634
          d_pfManager->endResChain(ca[cr]);
1571
        }
1572
      }
1573
1574
311170
      varDecayActivity();
1575
311170
      claDecayActivity();
1576
1577
311170
      if (--learntsize_adjust_cnt == 0)
1578
      {
1579
581
        learntsize_adjust_confl *= learntsize_adjust_inc;
1580
581
        learntsize_adjust_cnt = (int)learntsize_adjust_confl;
1581
581
        max_learnts *= learntsize_inc;
1582
1583
581
        if (verbosity >= 1)
1584
          printf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |\n",
1585
                 (int)conflicts,
1586
                 (int)dec_vars
1587
                     - (trail_lim.size() == 0 ? trail.size() : trail_lim[0]),
1588
                 nClauses(),
1589
                 (int)clauses_literals,
1590
                 (int)max_learnts,
1591
                 nLearnts(),
1592
                 (double)learnts_literals / nLearnts(),
1593
                 progressEstimate() * 100);
1594
      }
1595
1596
362381
      if (theoryConflict && options::sat_refine_conflicts())
1597
      {
1598
        check_type = CHECK_FINAL_FAKE;
1599
      }
1600
      else
1601
      {
1602
311170
        check_type = CHECK_WITH_THEORY;
1603
      }
1604
    }
1605
    else
1606
    {
1607
      // If this was a final check, we are satisfiable
1608
3069404
      if (check_type == CHECK_FINAL)
1609
      {
1610
        // Note that we are done making decisions when there are no pending decisions
1611
        // on assumptions, and the decision engine indicates it is done.
1612
69253
        bool decisionEngineDone = (decisionLevel() >= assumptions.size())
1613
69253
                                  && d_proxy->isDecisionEngineDone();
1614
        // Unless a lemma has added more stuff to the queues
1615
190359
        if (!decisionEngineDone
1616
69253
            && (!order_heap.empty() || qhead < trail.size()))
1617
        {
1618
51853
          check_type = CHECK_WITH_THEORY;
1619
182315
          continue;
1620
        }
1621
17400
        else if (recheck)
1622
        {
1623
          // There some additional stuff added, so we go for another
1624
          // full-check
1625
9918
          continue;
1626
        }
1627
        else
1628
        {
1629
          // Yes, we're truly satisfiable
1630
7482
          return l_True;
1631
        }
1632
      }
1633
3000151
      else if (check_type == CHECK_FINAL_FAKE)
1634
      {
1635
        check_type = CHECK_WITH_THEORY;
1636
      }
1637
1638
6000302
      if ((nof_conflicts >= 0 && conflictC >= nof_conflicts)
1639
5997564
          || !withinBudget(Resource::SatConflictStep))
1640
      {
1641
        // Reached bound on number of conflicts:
1642
2738
        progress_estimate = progressEstimate();
1643
2738
        cancelUntil(0);
1644
        // [mdeters] notify theory engine of restarts for deferred
1645
        // theory processing
1646
2738
        d_proxy->notifyRestart();
1647
2738
        return l_Undef;
1648
      }
1649
1650
      // Simplify the set of problem clauses:
1651
2997413
      if (decisionLevel() == 0 && !simplify())
1652
      {
1653
        return l_False;
1654
      }
1655
1656
2997413
      if (clauses_removable.size() - nAssigns() >= max_learnts)
1657
      {
1658
        // Reduce the set of learnt clauses:
1659
3477
        reduceDB();
1660
      }
1661
1662
2997413
      Lit next = lit_Undef;
1663
3055537
      while (decisionLevel() < assumptions.size())
1664
      {
1665
        // Perform user provided assumption:
1666
348328
        Lit p = assumptions[decisionLevel()];
1667
348328
        if (value(p) == l_True)
1668
        {
1669
          // Dummy decision level:
1670
29062
          newDecisionLevel();
1671
        }
1672
319266
        else if (value(p) == l_False)
1673
        {
1674
2719
          analyzeFinal(~p, d_conflict);
1675
2719
          return l_False;
1676
        }
1677
        else
1678
        {
1679
316547
          next = p;
1680
316547
          break;
1681
        }
1682
      }
1683
1684
2994694
      if (next == lit_Undef)
1685
      {
1686
        // New variable decision:
1687
2678147
        next = pickBranchLit();
1688
1689
2746836
        if (next == lit_Undef)
1690
        {
1691
          // We need to do a full theory check to confirm
1692
137382
          Debug("minisat::search")
1693
68691
              << "Doing a full theory check..." << std::endl;
1694
68691
          check_type = CHECK_FINAL;
1695
68691
          continue;
1696
        }
1697
      }
1698
1699
      // Increase decision level and enqueue 'next'
1700
2926001
      newDecisionLevel();
1701
2926001
      uncheckedEnqueue(next);
1702
    }
1703
3367633
  }
1704
}
1705
1706
1707
2738
double Solver::progressEstimate() const
1708
{
1709
2738
    double  progress = 0;
1710
2738
    double  F = 1.0 / nVars();
1711
1712
193747
    for (int i = 0; i <= decisionLevel(); i++){
1713
191009
        int beg = i == 0 ? 0 : trail_lim[i - 1];
1714
191009
        int end = i == decisionLevel() ? trail.size() : trail_lim[i];
1715
191009
        progress += pow(F, i) * (end - beg);
1716
    }
1717
1718
2738
    return progress / nVars();
1719
}
1720
1721
/*
1722
  Finite subsequences of the Luby-sequence:
1723
1724
  0: 1
1725
  1: 1 1 2
1726
  2: 1 1 2 1 1 2 4
1727
  3: 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8
1728
  ...
1729
1730
1731
 */
1732
1733
16343
static double luby(double y, int x){
1734
1735
    // Find the finite subsequence that contains index 'x', and the
1736
    // size of that subsequence:
1737
    int size, seq;
1738
16343
    for (size = 1, seq = 0; size < x+1; seq++, size = 2*size+1);
1739
1740
28201
    while (size-1 != x){
1741
5929
        size = (size-1)>>1;
1742
5929
        seq--;
1743
5929
        x = x % size;
1744
    }
1745
1746
16343
    return pow(y, seq);
1747
}
1748
1749
// NOTE: assumptions passed in member-variable 'assumptions'.
1750
14970
lbool Solver::solve_()
1751
{
1752
14970
    Debug("minisat") << "nvars = " << nVars() << std::endl;
1753
1754
29940
    ScopedBool scoped_bool(minisat_busy, true);
1755
1756
14970
    Assert(decisionLevel() == 0);
1757
1758
14970
    model.clear();
1759
14970
    d_conflict.clear();
1760
14970
    if (!ok){
1761
1365
      minisat_busy = false;
1762
1365
      return l_False;
1763
    }
1764
1765
13605
    solves++;
1766
1767
13605
    max_learnts               = nClauses() * learntsize_factor;
1768
13605
    learntsize_adjust_confl   = learntsize_adjust_start_confl;
1769
13605
    learntsize_adjust_cnt     = (int)learntsize_adjust_confl;
1770
13605
    lbool   status            = l_Undef;
1771
1772
13605
    if (verbosity >= 1){
1773
1
        printf("============================[ Search Statistics ]==============================\n");
1774
1
        printf("| Conflicts |          ORIGINAL         |          LEARNT          | Progress |\n");
1775
1
        printf("|           |    Vars  Clauses Literals |    Limit  Clauses Lit/Cl |          |\n");
1776
1
        printf("===============================================================================\n");
1777
    }
1778
1779
    // Search:
1780
13605
    int curr_restarts = 0;
1781
46259
    while (status == l_Undef){
1782
16343
        double rest_base = luby_restart ? luby(restart_inc, curr_restarts) : pow(restart_inc, curr_restarts);
1783
16343
        status = search(rest_base * restart_first);
1784
16327
        if (!withinBudget(Resource::SatConflictStep))
1785
          break;  // FIXME add restart option?
1786
16327
        curr_restarts++;
1787
    }
1788
1789
13589
    if (!withinBudget(Resource::SatConflictStep))
1790
      status = l_Undef;
1791
1792
13589
    if (verbosity >= 1)
1793
1
        printf("===============================================================================\n");
1794
1795
1796
13589
    if (status == l_True){
1797
        // Extend & copy model:
1798
7482
        model.growTo(nVars());
1799
616306
        for (int i = 0; i < nVars(); i++) {
1800
608824
          model[i] = value(i);
1801
608824
          Debug("minisat") << i << " = " << model[i] << std::endl;
1802
        }
1803
    }
1804
6107
    else if (status == l_False && d_conflict.size() == 0)
1805
3388
      ok = false;
1806
1807
13589
    return status;
1808
}
1809
1810
//=================================================================================================
1811
// Writing CNF to DIMACS:
1812
//
1813
// FIXME: this needs to be rewritten completely.
1814
1815
static Var mapVar(Var x, vec<Var>& map, Var& max)
1816
{
1817
    if (map.size() <= x || map[x] == -1){
1818
        map.growTo(x+1, -1);
1819
        map[x] = max++;
1820
    }
1821
    return map[x];
1822
}
1823
1824
1825
void Solver::toDimacs(FILE* f, Clause& c, vec<Var>& map, Var& max)
1826
{
1827
    if (satisfied(c)) return;
1828
1829
    for (int i = 0; i < c.size(); i++)
1830
        if (value(c[i]) != l_False)
1831
            fprintf(f, "%s%d ", sign(c[i]) ? "-" : "", mapVar(var(c[i]), map, max)+1);
1832
    fprintf(f, "0\n");
1833
}
1834
1835
1836
void Solver::toDimacs(const char *file, const vec<Lit>& assumps)
1837
{
1838
    FILE* f = fopen(file, "wr");
1839
    if (f == NULL)
1840
        fprintf(stderr, "could not open file %s\n", file), exit(1);
1841
    toDimacs(f, assumps);
1842
    fclose(f);
1843
}
1844
1845
1846
void Solver::toDimacs(FILE* f, const vec<Lit>& assumps)
1847
{
1848
    // Handle case when solver is in contradictory state:
1849
    if (!ok){
1850
        fprintf(f, "p cnf 1 2\n1 0\n-1 0\n");
1851
        return; }
1852
1853
    vec<Var> map; Var max = 0;
1854
1855
    // Cannot use removeClauses here because it is not safe
1856
    // to deallocate them at this point. Could be improved.
1857
    int cnt = 0;
1858
    for (int i = 0; i < clauses_persistent.size(); i++)
1859
        if (!satisfied(ca[clauses_persistent[i]]))
1860
            cnt++;
1861
1862
    for (int i = 0; i < clauses_persistent.size(); i++)
1863
        if (!satisfied(ca[clauses_persistent[i]])){
1864
            Clause& c = ca[clauses_persistent[i]];
1865
            for (int j = 0; j < c.size(); j++)
1866
                if (value(c[j]) != l_False)
1867
                    mapVar(var(c[j]), map, max);
1868
        }
1869
1870
    // Assumptions are added as unit clauses:
1871
    cnt += assumptions.size();
1872
1873
    fprintf(f, "p cnf %d %d\n", max, cnt);
1874
1875
    for (int i = 0; i < assumptions.size(); i++){
1876
      Assert(value(assumptions[i]) != l_False);
1877
      fprintf(f,
1878
              "%s%d 0\n",
1879
              sign(assumptions[i]) ? "-" : "",
1880
              mapVar(var(assumptions[i]), map, max) + 1);
1881
    }
1882
1883
    for (int i = 0; i < clauses_persistent.size(); i++)
1884
        toDimacs(f, ca[clauses_persistent[i]], map, max);
1885
1886
    if (verbosity > 0)
1887
        printf("Wrote %d clauses with %d variables.\n", cnt, max);
1888
}
1889
1890
1891
//=================================================================================================
1892
// Garbage Collection methods:
1893
1894
2769
void Solver::relocAll(ClauseAllocator& to)
1895
{
1896
    // All watchers:
1897
    //
1898
    // for (int i = 0; i < watches.size(); i++)
1899
2769
    watches.cleanAll();
1900
842741
    for (int v = 0; v < nVars(); v++)
1901
2519916
        for (int s = 0; s < 2; s++){
1902
1679944
            Lit p = mkLit(v, s);
1903
            // printf(" >>> RELOCING: %s%d\n", sign(p)?"-":"", var(p)+1);
1904
1679944
            vec<Watcher>& ws = watches[p];
1905
5232972
            for (int j = 0; j < ws.size(); j++)
1906
            {
1907
3553028
              ca.reloc(ws[j].cref, to);
1908
            }
1909
        }
1910
1911
    // All reasons:
1912
    //
1913
178255
    for (int i = 0; i < trail.size(); i++){
1914
175486
        Var v = var(trail[i]);
1915
1916
350972
        if (hasReasonClause(v)
1917
175486
            && (ca[reason(v)].reloced() || locked(ca[reason(v)])))
1918
        {
1919
36864
          ca.reloc(vardata[v].d_reason, to);
1920
        }
1921
    }
1922
    // All learnt:
1923
    //
1924
186484
    for (int i = 0; i < clauses_removable.size(); i++)
1925
    {
1926
183715
      ca.reloc(clauses_removable[i], to);
1927
    }
1928
    // All original:
1929
    //
1930
1595568
    for (int i = 0; i < clauses_persistent.size(); i++)
1931
    {
1932
1592799
      ca.reloc(clauses_persistent[i], to);
1933
    }
1934
2769
}
1935
1936
1937
void Solver::garbageCollect()
1938
{
1939
    // Initialize the next region to a size corresponding to the estimated utilization degree. This
1940
    // is not precise but should avoid some unnecessary reallocations for the new region:
1941
    ClauseAllocator to(ca.size() - ca.wasted());
1942
1943
    relocAll(to);
1944
    if (verbosity >= 2)
1945
        printf("|  Garbage collection:   %12d bytes => %12d bytes             |\n",
1946
               ca.size()*ClauseAllocator::Unit_Size, to.size()*ClauseAllocator::Unit_Size);
1947
    to.moveTo(ca);
1948
}
1949
1950
4869
void Solver::push()
1951
{
1952
4869
  Assert(d_enable_incremental);
1953
4869
  Assert(decisionLevel() == 0);
1954
1955
4869
  ++assertionLevel;
1956
4869
  Debug("minisat") << "in user push, increasing assertion level to " << assertionLevel << std::endl;
1957
4869
  trail_ok.push(ok);
1958
4869
  assigns_lim.push(assigns.size());
1959
1960
4869
  d_context->push();  // SAT context for cvc5
1961
1962
4869
  Debug("minisat") << "MINISAT PUSH assertionLevel is " << assertionLevel << ", trail.size is " << trail.size() << std::endl;
1963
4869
}
1964
1965
4869
void Solver::pop()
1966
{
1967
4869
  Assert(d_enable_incremental);
1968
1969
4869
  Assert(decisionLevel() == 0);
1970
1971
  // Pop the trail below the user level
1972
4869
  --assertionLevel;
1973
9738
  Debug("minisat") << "in user pop, decreasing assertion level to "
1974
4869
                   << assertionLevel << "\n"
1975
4869
                   << cvc5::push;
1976
  while (true) {
1977
57347
    Debug("minisat") << "== unassigning " << trail.last() << std::endl;
1978
57347
    Var      x  = var(trail.last());
1979
57347
    if (user_level(x) > assertionLevel) {
1980
52478
      assigns[x] = l_Undef;
1981
52478
      vardata[x] = VarData(CRef_Undef, -1, -1, intro_level(x), -1);
1982
52478
      if(phase_saving >= 1 && (polarity[x] & 0x2) == 0)
1983
51321
        polarity[x] = sign(trail.last());
1984
52478
      insertVarOrder(x);
1985
52478
      trail.pop();
1986
    } else {
1987
4869
      break;
1988
    }
1989
52478
  }
1990
1991
  // The head should be at the trail top
1992
4869
  qhead = trail.size();
1993
1994
  // Remove the clauses
1995
4869
  removeClausesAboveLevel(clauses_persistent, assertionLevel);
1996
4869
  removeClausesAboveLevel(clauses_removable, assertionLevel);
1997
4869
  Debug("minisat") << cvc5::pop;
1998
  // Pop the SAT context to notify everyone
1999
4869
  d_context->pop();  // SAT context for cvc5
2000
2001
9738
  Debug("minisat") << "MINISAT POP assertionLevel is " << assertionLevel
2002
4869
                   << ", trail.size is " << trail.size() << "\n";
2003
  // Pop the created variables
2004
4869
  resizeVars(assigns_lim.last());
2005
4869
  assigns_lim.pop();
2006
4869
  variables_to_register.clear();
2007
2008
  // Pop the OK
2009
4869
  ok = trail_ok.last();
2010
4869
  trail_ok.pop();
2011
4869
}
2012
2013
248742
CRef Solver::updateLemmas() {
2014
2015
248742
  Debug("minisat::lemmas") << "Solver::updateLemmas() begin" << std::endl;
2016
2017
  // Avoid adding lemmas indefinitely without resource-out
2018
248742
  d_proxy->spendResource(Resource::LemmaStep);
2019
2020
248742
  CRef conflict = CRef_Undef;
2021
2022
  // Decision level to backtrack to
2023
248742
  int backtrackLevel = decisionLevel();
2024
2025
  // We use this comparison operator
2026
248742
  lemma_lt lt(*this);
2027
2028
  // Check for propagation and level to backtrack to
2029
248742
  int i = 0;
2030
746360
  while (i < lemmas.size()) {
2031
    // We need this loop as when we backtrack, due to registration more lemmas could be added
2032
4479667
    for (; i < lemmas.size(); ++ i)
2033
    {
2034
      // The current lemma
2035
2115429
      vec<Lit>& lemma = lemmas[i];
2036
2037
2115429
      Trace("pf::sat") << "Solver::updateLemmas: working on lemma: ";
2038
8633162
      for (int k = 0; k < lemma.size(); ++k) {
2039
6517733
        Trace("pf::sat") << lemma[k] << " ";
2040
      }
2041
2115429
      Trace("pf::sat") << std::endl;
2042
2043
      // If it's an empty lemma, we have a conflict at zero level
2044
2116646
      if (lemma.size() == 0) {
2045
1217
        Assert(!options::unsatCores() && !needProof());
2046
1217
        conflict = CRef_Lazy;
2047
1217
        backtrackLevel = 0;
2048
1217
        Debug("minisat::lemmas") << "Solver::updateLemmas(): found empty clause" << std::endl;
2049
1217
        continue;
2050
      }
2051
      // Sort the lemma to be able to attach
2052
2114212
      sort(lemma, lt);
2053
      // See if the lemma propagates something
2054
2114212
      if (lemma.size() == 1 || value(lemma[1]) == l_False) {
2055
444412
        Debug("minisat::lemmas") << "found unit " << lemma.size() << std::endl;
2056
        // This lemma propagates, see which level we need to backtrack to
2057
444412
        int currentBacktrackLevel = lemma.size() == 1 ? 0 : level(var(lemma[1]));
2058
        // Even if the first literal is true, we should propagate it at this level (unless it's set at a lower level)
2059
444412
        if (value(lemma[0]) != l_True || level(var(lemma[0])) > currentBacktrackLevel) {
2060
429836
          if (currentBacktrackLevel < backtrackLevel) {
2061
146004
            backtrackLevel = currentBacktrackLevel;
2062
          }
2063
        }
2064
      }
2065
    }
2066
2067
    // Pop so that propagation would be current
2068
248809
    Debug("minisat::lemmas") << "Solver::updateLemmas(): backtracking to " << backtrackLevel << " from " << decisionLevel() << std::endl;
2069
248809
    cancelUntil(backtrackLevel);
2070
  }
2071
2072
  // Last index in the trail
2073
248742
  int backtrack_index = trail.size();
2074
2075
  // Attach all the clauses and enqueue all the propagations
2076
2364171
  for (int j = 0; j < lemmas.size(); ++j)
2077
  {
2078
    // The current lemma
2079
2115429
    vec<Lit>& lemma = lemmas[j];
2080
2115429
    bool removable = lemmas_removable[j];
2081
2082
    // Attach it if non-unit
2083
2115429
    CRef lemma_ref = CRef_Undef;
2084
2115429
    if (lemma.size() > 1) {
2085
      // If the lemmas is removable, we can compute its level by the level
2086
2053463
      int clauseLevel = assertionLevel;
2087
2053463
      if (removable && !assertionLevelOnly())
2088
      {
2089
173714
        clauseLevel = 0;
2090
1470206
        for (int k = 0; k < lemma.size(); ++k)
2091
        {
2092
1296492
          clauseLevel = std::max(clauseLevel, intro_level(var(lemma[k])));
2093
        }
2094
      }
2095
2096
2053463
      lemma_ref = ca.alloc(clauseLevel, lemma, removable);
2097
2053463
      if (removable) {
2098
181790
        clauses_removable.push(lemma_ref);
2099
      } else {
2100
1871673
        clauses_persistent.push(lemma_ref);
2101
      }
2102
2053463
      attachClause(lemma_ref);
2103
    }
2104
2105
    // If the lemma is propagating enqueue its literal (or set the conflict)
2106
2115429
    if (conflict == CRef_Undef && value(lemma[0]) != l_True) {
2107
2033118
      if (lemma.size() == 1 || (value(lemma[1]) == l_False && trail_index(var(lemma[1])) < backtrack_index)) {
2108
664766
        Trace("pf::sat") << "Solver::updateLemmas: unit theory lemma: "
2109
332383
                         << lemma[0] << std::endl;
2110
332383
        if (value(lemma[0]) == l_False) {
2111
          // We have a conflict
2112
52859
          if (lemma.size() > 1) {
2113
52293
            Debug("minisat::lemmas") << "Solver::updateLemmas(): conflict" << std::endl;
2114
52293
            conflict = lemma_ref;
2115
          } else {
2116
566
            Debug("minisat::lemmas") << "Solver::updateLemmas(): unit conflict or empty clause" << std::endl;
2117
566
            conflict = CRef_Lazy;
2118
566
            if (needProof())
2119
            {
2120
48
              d_pfManager->storeUnitConflict(lemma[0]);
2121
            }
2122
          }
2123
        } else {
2124
279524
          Debug("minisat::lemmas") << "lemma size is " << lemma.size() << std::endl;
2125
279524
          Debug("minisat::lemmas") << "lemma ref is " << lemma_ref << std::endl;
2126
279524
          uncheckedEnqueue(lemma[0], lemma_ref);
2127
        }
2128
      }
2129
    }
2130
  }
2131
2132
  // Clear the lemmas
2133
248742
  lemmas.clear();
2134
248742
  lemmas_removable.clear();
2135
2136
248742
  if (conflict != CRef_Undef) {
2137
53987
    theoryConflict = true;
2138
  }
2139
2140
248742
  Debug("minisat::lemmas") << "Solver::updateLemmas() end" << std::endl;
2141
2142
248742
  return conflict;
2143
}
2144
2145
6006450
void ClauseAllocator::reloc(CRef& cr, ClauseAllocator& to)
2146
{
2147
6006450
  Debug("minisat") << "ClauseAllocator::reloc: cr " << cr << std::endl;
2148
  // FIXME what is this CRef_lazy
2149
6006450
  if (cr == CRef_Lazy) return;
2150
2151
6006450
  Clause& c = operator[](cr);
2152
6006450
  if (c.reloced()) { cr = c.relocation(); return; }
2153
2154
1777189
  cr = to.alloc(c.level(), c, c.removable());
2155
1777189
  c.relocate(cr);
2156
  // Copy extra data-fields:
2157
  // (This could be cleaned-up. Generalize Clause-constructor to be applicable here instead?)
2158
1777189
  to[cr].mark(c.mark());
2159
1777189
  if (to[cr].removable())         to[cr].activity() = c.activity();
2160
1593474
  else if (to[cr].has_extra()) to[cr].calcAbstraction();
2161
}
2162
2163
3027329
inline bool Solver::withinBudget(Resource r) const
2164
{
2165
3027329
  Assert(d_proxy);
2166
  // spendResource sets async_interrupt or throws UnsafeInterruptException
2167
  // depending on whether hard-limit is enabled
2168
3027329
  d_proxy->spendResource(r);
2169
2170
3027329
  bool within_budget =
2171
6054658
      !asynch_interrupt && (conflict_budget < 0 || conflicts < conflict_budget)
2172
6054658
      && (propagation_budget < 0 || propagations < propagation_budget);
2173
3027329
  return within_budget;
2174
}
2175
2176
2498
SatProofManager* Solver::getProofManager()
2177
{
2178
2498
  return isProofEnabled() ? d_pfManager.get() : nullptr;
2179
}
2180
2181
2799
std::shared_ptr<ProofNode> Solver::getProof()
2182
{
2183
2799
  return isProofEnabled() ? d_pfManager->getProof() : nullptr;
2184
}
2185
2186
39509603
bool Solver::isProofEnabled() const { return d_pfManager != nullptr; }
2187
2188
39504306
bool Solver::needProof() const
2189
{
2190
39504306
  return isProofEnabled()
2191
40993124
         && options::unsatCoresMode() != options::UnsatCoresMode::ASSUMPTIONS;
2192
}
2193
2194
}  // namespace Minisat
2195
14610230
}  // namespace cvc5