GCC Code Coverage Report
Directory: . Exec Total Coverage
File: src/prop/minisat/core/Solver.cc Lines: 855 1026 83.3 %
Date: 2021-08-06 Branches: 1182 2804 42.2 %

Line Exec Source
1
/***************************************************************************************[Solver.cc]
2
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
3
Copyright (c) 2007-2010, Niklas Sorensson
4
5
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
6
associated documentation files (the "Software"), to deal in the Software without restriction,
7
including without limitation the rights to use, copy, modify, merge, publish, distribute,
8
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
9
furnished to do so, subject to the following conditions:
10
11
The above copyright notice and this permission notice shall be included in all copies or
12
substantial portions of the Software.
13
14
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
15
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
16
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
17
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
18
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
**************************************************************************************************/
20
21
#include "prop/minisat/core/Solver.h"
22
23
#include <math.h>
24
25
#include <iostream>
26
#include <unordered_set>
27
28
#include "base/check.h"
29
#include "base/output.h"
30
#include "options/base_options.h"
31
#include "options/main_options.h"
32
#include "options/prop_options.h"
33
#include "options/smt_options.h"
34
#include "proof/clause_id.h"
35
#include "prop/minisat/minisat.h"
36
#include "prop/minisat/mtl/Sort.h"
37
#include "prop/theory_proxy.h"
38
39
using namespace cvc5::prop;
40
41
namespace cvc5 {
42
namespace Minisat {
43
44
namespace {
45
/*
46
 * Returns true if the solver should add all clauses at the current assertion
47
 * level.
48
 *
49
 * FIXME: This is a workaround. Currently, our resolution proofs do not
50
 * handle clauses with a lower-than-assertion-level correctly because the
51
 * resolution proofs get removed when popping the context but the SAT solver
52
 * keeps using them.
53
 */
54
12662288
bool assertionLevelOnly()
55
{
56
30629656
  return (options::produceProofs() || options::unsatCores())
57
20437419
         && options::incrementalSolving();
58
}
59
60
//=================================================================================================
61
// Helper functions for decision tree tracing
62
63
// Writes to Trace macro for decision tree tracing
64
static inline void dtviewDecisionHelper(size_t level,
65
                                        const Node& node,
66
                                        const char* decisiontype)
67
{
68
  Trace("dtview") << std::string(level - (options::incrementalSolving() ? 1 : 0), '*')
69
                  << " " << node << " :" << decisiontype << "-DECISION:" << std::endl;
70
}
71
72
// Writes to Trace macro for propagation tracing
73
static inline void dtviewPropagationHeaderHelper(size_t level)
74
{
75
  Trace("dtview::prop") << std::string(level + 1 - (options::incrementalSolving() ? 1 : 0),
76
                                       '*')
77
                        << " /Propagations/" << std::endl;
78
}
79
80
// Writes to Trace macro for propagation tracing
81
static inline void dtviewBoolPropagationHelper(size_t level,
82
                                               Lit& l,
83
                                               cvc5::prop::TheoryProxy* proxy)
84
{
85
  Trace("dtview::prop") << std::string(
86
      level + 1 - (options::incrementalSolving() ? 1 : 0), ' ')
87
                        << ":BOOL-PROP: "
88
                        << proxy->getNode(MinisatSatSolver::toSatLiteral(l))
89
                        << std::endl;
90
}
91
92
// Writes to Trace macro for conflict tracing
93
static inline void dtviewPropConflictHelper(size_t level,
94
                                            Clause& confl,
95
                                            cvc5::prop::TheoryProxy* proxy)
96
{
97
  Trace("dtview::conflict")
98
      << std::string(level + 1 - (options::incrementalSolving() ? 1 : 0), ' ')
99
      << ":PROP-CONFLICT: (or";
100
  for (int i = 0; i < confl.size(); i++)
101
  {
102
    Trace("dtview::conflict")
103
        << " " << proxy->getNode(MinisatSatSolver::toSatLiteral(confl[i]));
104
  }
105
  Trace("dtview::conflict") << ")" << std::endl;
106
}
107
108
}  // namespace
109
110
//=================================================================================================
111
// Options:
112
113
static const char* _cat = "CORE";
114
115
9774
static DoubleOption  opt_var_decay         (_cat, "var-decay",   "The variable activity decay factor",            0.95,     DoubleRange(0, false, 1, false));
116
9774
static DoubleOption  opt_clause_decay      (_cat, "cla-decay",   "The clause activity decay factor",              0.999,    DoubleRange(0, false, 1, false));
117
9774
static DoubleOption  opt_random_var_freq   (_cat, "rnd-freq",    "The frequency with which the decision heuristic tries to choose a random variable", 0, DoubleRange(0, true, 1, true));
118
9774
static DoubleOption  opt_random_seed       (_cat, "rnd-seed",    "Used by the random variable selection",         91648253, DoubleRange(0, false, HUGE_VAL, false));
119
9774
static IntOption     opt_ccmin_mode        (_cat, "ccmin-mode",  "Controls conflict clause minimization (0=none, 1=basic, 2=deep)", 2, IntRange(0, 2));
120
9774
static IntOption     opt_phase_saving      (_cat, "phase-saving", "Controls the level of phase saving (0=none, 1=limited, 2=full)", 2, IntRange(0, 2));
121
9774
static BoolOption    opt_rnd_init_act      (_cat, "rnd-init",    "Randomize the initial activity", false);
122
9774
static BoolOption    opt_luby_restart      (_cat, "luby",        "Use the Luby restart sequence", true);
123
9774
static IntOption     opt_restart_first     (_cat, "rfirst",      "The base restart interval", 25, IntRange(1, INT32_MAX));
124
9774
static DoubleOption  opt_restart_inc       (_cat, "rinc",        "Restart interval increase factor", 3, DoubleRange(1, false, HUGE_VAL, false));
125
9774
static DoubleOption  opt_garbage_frac      (_cat, "gc-frac",     "The fraction of wasted memory allowed before a garbage collection is triggered",  0.20, DoubleRange(0, false, HUGE_VAL, false));
126
127
//=================================================================================================
128
// Proof declarations
129
CRef Solver::TCRef_Undef = CRef_Undef;
130
CRef Solver::TCRef_Lazy = CRef_Lazy;
131
132
class ScopedBool
133
{
134
  bool& d_watch;
135
  bool d_oldValue;
136
137
 public:
138
3662032
  ScopedBool(bool& watch, bool newValue) : d_watch(watch), d_oldValue(watch)
139
  {
140
3662032
    watch = newValue;
141
3662032
  }
142
3662032
  ~ScopedBool() { d_watch = d_oldValue; }
143
};
144
145
//=================================================================================================
146
// Constructor/Destructor:
147
148
9920
Solver::Solver(cvc5::prop::TheoryProxy* proxy,
149
               cvc5::context::Context* context,
150
               cvc5::context::UserContext* userContext,
151
               ProofNodeManager* pnm,
152
9920
               bool enableIncremental)
153
    : d_proxy(proxy),
154
      d_context(context),
155
      assertionLevel(0),
156
      d_pfManager(nullptr),
157
      d_enable_incremental(enableIncremental),
158
      minisat_busy(false)
159
      // Parameters (user settable):
160
      //
161
      ,
162
      verbosity(0),
163
      var_decay(opt_var_decay),
164
      clause_decay(opt_clause_decay),
165
      random_var_freq(opt_random_var_freq),
166
      random_seed(opt_random_seed),
167
      luby_restart(opt_luby_restart),
168
      ccmin_mode(opt_ccmin_mode),
169
      phase_saving(opt_phase_saving),
170
      rnd_pol(false),
171
      rnd_init_act(opt_rnd_init_act),
172
      garbage_frac(opt_garbage_frac),
173
      restart_first(opt_restart_first),
174
      restart_inc(opt_restart_inc)
175
176
      // Parameters (the rest):
177
      //
178
      ,
179
      learntsize_factor(1),
180
      learntsize_inc(1.5)
181
182
      // Parameters (experimental):
183
      //
184
      ,
185
      learntsize_adjust_start_confl(100),
186
      learntsize_adjust_inc(1.5)
187
188
      // Statistics: (formerly in 'SolverStats')
189
      //
190
      ,
191
      solves(0),
192
      starts(0),
193
      decisions(0),
194
      rnd_decisions(0),
195
      propagations(0),
196
      conflicts(0),
197
      resources_consumed(0),
198
      dec_vars(0),
199
      clauses_literals(0),
200
      learnts_literals(0),
201
      max_literals(0),
202
      tot_literals(0)
203
204
      ,
205
      ok(true),
206
      cla_inc(1),
207
      var_inc(1),
208
19840
      watches(WatcherDeleted(ca)),
209
      qhead(0),
210
      simpDB_assigns(-1),
211
      simpDB_props(0),
212
19840
      order_heap(VarOrderLt(activity)),
213
      progress_estimate(0),
214
9920
      remove_satisfied(!enableIncremental)
215
216
      // Resource constraints:
217
      //
218
      ,
219
      conflict_budget(-1),
220
      propagation_budget(-1),
221
59520
      asynch_interrupt(false)
222
{
223
9920
  if (pnm)
224
  {
225
2508
    d_pfManager.reset(
226
1254
        new SatProofManager(this, proxy->getCnfStream(), userContext, pnm));
227
  }
228
229
  // Create the constant variables
230
9920
  varTrue = newVar(true, false, false);
231
9920
  varFalse = newVar(false, false, false);
232
233
  // Assert the constants
234
9920
  uncheckedEnqueue(mkLit(varTrue, false));
235
9920
  uncheckedEnqueue(mkLit(varFalse, true));
236
9920
}
237
238
239
9920
Solver::~Solver()
240
{
241
9920
}
242
243
244
//=================================================================================================
245
// Minor methods:
246
247
248
// Creates a new SAT variable in the solver. If 'decision_var' is cleared, variable will not be
249
// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
250
//
251
1294795
Var Solver::newVar(bool sign, bool dvar, bool isTheoryAtom, bool preRegister, bool canErase)
252
{
253
1294795
    int v = nVars();
254
255
1294795
    watches  .init(mkLit(v, false));
256
1294795
    watches  .init(mkLit(v, true ));
257
1294795
    assigns  .push(l_Undef);
258
1294795
    vardata  .push(VarData(CRef_Undef, -1, -1, assertionLevel, -1));
259
1294795
    activity .push(rnd_init_act ? drand(random_seed) * 0.00001 : 0);
260
1294795
    seen     .push(0);
261
1294795
    polarity .push(sign);
262
1294795
    decision .push();
263
1294795
    trail    .capacity(v+1);
264
    // push whether it corresponds to a theory atom
265
1294795
    theory.push(isTheoryAtom);
266
267
1294795
    setDecisionVar(v, dvar);
268
269
1294795
    Debug("minisat") << "new var " << v << std::endl;
270
271
    // If the variable is introduced at non-zero level, we need to reintroduce it on backtracks
272
1294795
    if (preRegister)
273
    {
274
1191546
      Debug("minisat") << "  To register at level " << decisionLevel()
275
595773
                       << std::endl;
276
595773
      variables_to_register.push(VarIntroInfo(v, decisionLevel()));
277
    }
278
279
1294795
    return v;
280
}
281
282
4869
void Solver::resizeVars(int newSize) {
283
4869
  Assert(d_enable_incremental);
284
4869
  Assert(decisionLevel() == 0);
285
4869
  Assert(newSize >= 2) << "always keep true/false";
286
4869
  if (newSize < nVars()) {
287
3069
    int shrinkSize = nVars() - newSize;
288
289
    // Resize watches up to the negated last literal
290
3069
    watches.resizeTo(mkLit(newSize-1, true));
291
292
    // Resize all info arrays
293
3069
    assigns.shrink(shrinkSize);
294
3069
    vardata.shrink(shrinkSize);
295
3069
    activity.shrink(shrinkSize);
296
3069
    seen.shrink(shrinkSize);
297
3069
    polarity.shrink(shrinkSize);
298
3069
    decision.shrink(shrinkSize);
299
3069
    theory.shrink(shrinkSize);
300
  }
301
302
4869
  if (Debug.isOn("minisat::pop")) {
303
    for (int i = 0; i < trail.size(); ++ i) {
304
      Assert(var(trail[i]) < nVars());
305
    }
306
  }
307
4869
}
308
309
174666197
CRef Solver::reason(Var x) {
310
174666197
  Trace("pf::sat") << "Solver::reason(" << x << ")" << std::endl;
311
312
  // If we already have a reason, just return it
313
174666197
  if (vardata[x].d_reason != CRef_Lazy)
314
  {
315
174627604
    if (Trace.isOn("pf::sat"))
316
    {
317
      Trace("pf::sat") << "  Solver::reason: " << vardata[x].d_reason << ", ";
318
      if (vardata[x].d_reason == CRef_Undef)
319
      {
320
        Trace("pf::sat") << "CRef_Undef";
321
      }
322
      else
323
      {
324
        for (unsigned i = 0, size = ca[vardata[x].d_reason].size(); i < size;
325
             ++i)
326
        {
327
          Trace("pf::sat") << ca[vardata[x].d_reason][i] << " ";
328
        }
329
      }
330
      Trace("pf::sat") << "\n";
331
    }
332
174627604
    return vardata[x].d_reason;
333
  }
334
  // What's the literal we are trying to explain
335
38593
  Lit l = mkLit(x, value(x) != l_True);
336
337
  // Get the explanation from the theory
338
77186
  SatClause explanation_cl;
339
  // FIXME: at some point return a tag with the theory that spawned you
340
38593
  d_proxy->explainPropagation(MinisatSatSolver::toSatLiteral(l),
341
                              explanation_cl);
342
77186
  vec<Lit> explanation;
343
38593
  MinisatSatSolver::toMinisatClause(explanation_cl, explanation);
344
345
77186
  Trace("pf::sat") << "Solver::reason: explanation_cl = " << explanation_cl
346
38593
                   << std::endl;
347
348
  // Sort the literals by trail index level
349
38593
  lemma_lt lt(*this);
350
38593
  sort(explanation, lt);
351
38593
  Assert(explanation[0] == l);
352
353
  // Compute the assertion level for this clause
354
38593
  int explLevel = 0;
355
38593
  if (assertionLevelOnly())
356
  {
357
1513
    explLevel = assertionLevel;
358
    }
359
    else
360
    {
361
      int i, j;
362
37080
      Lit prev = lit_Undef;
363
277935
      for (i = 0, j = 0; i < explanation.size(); ++i)
364
      {
365
        // This clause is valid theory propagation, so its level is the level of
366
        // the top literal
367
240855
        explLevel = std::max(explLevel, intro_level(var(explanation[i])));
368
369
240855
        Assert(value(explanation[i]) != l_Undef);
370
240855
        Assert(i == 0
371
               || trail_index(var(explanation[0]))
372
                      > trail_index(var(explanation[i])));
373
374
        // Always keep the first literal
375
277935
        if (i == 0)
376
        {
377
37080
          prev = explanation[j++] = explanation[i];
378
37080
          continue;
379
        }
380
        // Ignore duplicate literals
381
203775
        if (explanation[i] == prev)
382
        {
383
          continue;
384
        }
385
        // Ignore zero level literals
386
407550
        if (level(var(explanation[i])) == 0
387
203775
            && user_level(var(explanation[i]) == 0))
388
        {
389
          continue;
390
        }
391
        // Keep this literal
392
203775
        prev = explanation[j++] = explanation[i];
393
      }
394
37080
      explanation.shrink(i - j);
395
396
37080
      Trace("pf::sat") << "Solver::reason: explanation = ";
397
277935
      for (int k = 0; k < explanation.size(); ++k)
398
      {
399
240855
        Trace("pf::sat") << explanation[k] << " ";
400
      }
401
37080
      Trace("pf::sat") << std::endl;
402
403
      // We need an explanation clause so we add a fake literal
404
37080
      if (j == 1)
405
      {
406
        // Add not TRUE to the clause
407
        explanation.push(mkLit(varTrue, true));
408
      }
409
    }
410
411
    // Construct the reason
412
38593
    CRef real_reason = ca.alloc(explLevel, explanation, true);
413
38593
    vardata[x] = VarData(real_reason, level(x), user_level(x), intro_level(x), trail_index(x));
414
38593
    clauses_removable.push(real_reason);
415
38593
    attachClause(real_reason);
416
417
38593
    return real_reason;
418
}
419
420
3953425
bool Solver::addClause_(vec<Lit>& ps, bool removable, ClauseId& id)
421
{
422
3953425
    if (!ok) return false;
423
424
    // Check if clause is satisfied and remove false/duplicate literals:
425
3953425
    sort(ps);
426
    Lit p; int i, j;
427
428
    // Which user-level to assert this clause at
429
3953425
    int clauseLevel = (removable && !assertionLevelOnly()) ? 0 : assertionLevel;
430
431
    // Check the clause for tautologies and similar
432
3953425
    int falseLiteralsCount = 0;
433
15718427
    for (i = j = 0, p = lit_Undef; i < ps.size(); i++) {
434
      // Update the level
435
23891424
      clauseLevel = assertionLevelOnly()
436
23277399
                        ? assertionLevel
437
23277399
                        : std::max(clauseLevel, intro_level(var(ps[i])));
438
      // Tautologies are ignored
439
11945712
      if (ps[i] == ~p) {
440
17683
        id = ClauseIdUndef;
441
        // Clause can be ignored
442
17683
        return true;
443
      }
444
      // Clauses with 0-level true literals are also ignored
445
11928029
      if (value(ps[i]) == l_True && level(var(ps[i])) == 0 && user_level(var(ps[i])) == 0) {
446
163027
        id = ClauseIdUndef;
447
163027
        return true;
448
      }
449
      // Ignore repeated literals
450
11765002
      if (ps[i] == p) {
451
19237
        continue;
452
      }
453
      // If a literal is false at 0 level (both sat and user level) we also
454
      // ignore it, unless we are tracking the SAT solver's reasoning
455
11745765
      if (value(ps[i]) == l_False) {
456
7124459
        if (!options::unsatCores() && !needProof() && level(var(ps[i])) == 0
457
3536681
            && user_level(var(ps[i])) == 0)
458
        {
459
754049
          continue;
460
        }
461
        else
462
        {
463
          // If we decide to keep it, we count it into the false literals
464
2007974
          falseLiteralsCount++;
465
        }
466
      }
467
      // This literal is a keeper
468
10991716
      ps[j++] = p = ps[i];
469
    }
470
471
    // Fit to size
472
3772715
    ps.shrink(i - j);
473
474
    // If we are in solve_ or propagate
475
3772715
    if (minisat_busy)
476
    {
477
2131644
      Trace("pf::sat") << "Add clause adding a new lemma: ";
478
8737527
      for (int k = 0; k < ps.size(); ++k) {
479
6605883
        Trace("pf::sat") << ps[k] << " ";
480
      }
481
2131644
      Trace("pf::sat") << std::endl;
482
483
2131644
      lemmas.push();
484
2131644
      ps.copyTo(lemmas.last());
485
2131644
      lemmas_removable.push(removable);
486
    } else {
487
1641071
      Assert(decisionLevel() == 0);
488
489
      // If all false, we're in conflict
490
1641071
      if (ps.size() == falseLiteralsCount) {
491
1321
        if (options::unsatCores() || needProof())
492
        {
493
          // Take care of false units here; otherwise, we need to
494
          // construct the clause below to give to the proof manager
495
          // as the final conflict.
496
489
          if(falseLiteralsCount == 1) {
497
470
            if (needProof())
498
            {
499
470
              d_pfManager->finalizeProof(ps[0], true);
500
            }
501
84282
            return ok = false;
502
          }
503
        }
504
        else
505
        {
506
832
          return ok = false;
507
        }
508
      }
509
510
1639769
      CRef cr = CRef_Undef;
511
512
      // If not unit, add the clause
513
1639769
      if (ps.size() > 1) {
514
515
1560911
        lemma_lt lt(*this);
516
1560911
        sort(ps, lt);
517
518
1560911
        cr = ca.alloc(clauseLevel, ps, false);
519
1560911
        clauses_persistent.push(cr);
520
1560911
        attachClause(cr);
521
522
1560911
        if (options::unsatCores() || needProof())
523
        {
524
817854
          if (ps.size() == falseLiteralsCount)
525
          {
526
19
            if (needProof())
527
            {
528
19
              d_pfManager->finalizeProof(ca[cr], true);
529
            }
530
19
            return ok = false;
531
          }
532
        }
533
      }
534
535
      // Check if it propagates
536
1639750
      if (ps.size() == falseLiteralsCount + 1) {
537
82491
        if(assigns[var(ps[0])] == l_Undef) {
538
80149
          Assert(assigns[var(ps[0])] != l_False);
539
80149
          uncheckedEnqueue(ps[0], cr);
540
160298
          Debug("cores") << "i'm registering a unit clause, maybe input"
541
80149
                         << std::endl;
542
80149
          if (ps.size() == 1)
543
          {
544
            // We need to do this so that the closedness check, if being done,
545
            // goes through when we have unit assumptions whose literal has
546
            // already been registered, as the ProofCnfStream will not register
547
            // them and as they are not the result of propagation will be left
548
            // hanging in assumptions accumulator
549
77342
            if (needProof())
550
            {
551
23803
              d_pfManager->registerSatLitAssumption(ps[0]);
552
            }
553
          }
554
80149
          CRef confl = propagate(CHECK_WITHOUT_THEORY);
555
80149
          if(! (ok = (confl == CRef_Undef)) ) {
556
38
            if (needProof())
557
            {
558
13
              if (ca[confl].size() == 1)
559
              {
560
                d_pfManager->finalizeProof(ca[confl][0]);
561
              }
562
              else
563
              {
564
13
                d_pfManager->finalizeProof(ca[confl]);
565
              }
566
            }
567
          }
568
80149
          return ok;
569
        } else {
570
2342
          return ok;
571
        }
572
      }
573
    }
574
575
3688903
    return true;
576
}
577
578
579
4054692
void Solver::attachClause(CRef cr) {
580
4054692
    const Clause& c = ca[cr];
581
4054692
    if (Debug.isOn("minisat"))
582
    {
583
      Debug("minisat") << "Solver::attachClause(" << c << "): ";
584
      for (unsigned i = 0, size = c.size(); i < size; ++i)
585
      {
586
        Debug("minisat") << c[i] << " ";
587
      }
588
      Debug("minisat") << ", level " << c.level() << "\n";
589
    }
590
4054692
    Assert(c.size() > 1);
591
4054692
    watches[~c[0]].push(Watcher(cr, c[1]));
592
4054692
    watches[~c[1]].push(Watcher(cr, c[0]));
593
4054692
    if (c.removable()) learnts_literals += c.size();
594
3531104
    else            clauses_literals += c.size();
595
4054692
}
596
597
598
825786
void Solver::detachClause(CRef cr, bool strict) {
599
825786
    const Clause& c = ca[cr];
600
825786
    Debug("minisat") << "Solver::detachClause(" << c << ")" << std::endl;
601
825786
    if (Debug.isOn("minisat"))
602
    {
603
      Debug("minisat") << "Solver::detachClause(" << c << "), CRef " << cr
604
                       << ", clause ";
605
      for (unsigned i = 0, size = c.size(); i < size; ++i)
606
      {
607
        Debug("minisat") << c[i] << " ";
608
      }
609
610
      Debug("minisat") << "\n";
611
    }
612
825786
    Assert(c.size() > 1);
613
614
825786
    if (strict){
615
89052
        remove(watches[~c[0]], Watcher(cr, c[1]));
616
89052
        remove(watches[~c[1]], Watcher(cr, c[0]));
617
    }else{
618
        // Lazy detaching: (NOTE! Must clean all watcher lists before garbage collecting this clause)
619
736734
        watches.smudge(~c[0]);
620
736734
        watches.smudge(~c[1]);
621
    }
622
623
825786
    if (c.removable()) learnts_literals -= c.size();
624
581895
    else            clauses_literals -= c.size(); }
625
626
627
736734
void Solver::removeClause(CRef cr) {
628
736734
    Clause& c = ca[cr];
629
736734
    if (Debug.isOn("minisat"))
630
    {
631
      Debug("minisat") << "Solver::removeClause(" << c << "), CRef " << cr
632
                       << ", clause ";
633
      for (unsigned i = 0, size = c.size(); i < size; ++i)
634
      {
635
        Debug("minisat") << c[i] << " ";
636
      }
637
      Debug("minisat") << "\n";
638
    }
639
736734
    detachClause(cr);
640
    // Don't leave pointers to free'd memory!
641
736734
    if (locked(c))
642
    {
643
      // a locked clause c is one whose first literal c[0] is true and is
644
      // propagated by c itself, i.e. vardata[var(c[0])].d_reason == c. Because
645
      // of this if we need to justify the propagation of c[0], via
646
      // Solver::reason, if it appears in a resolution chain built lazily we
647
      // will be unable to do so after the step below. Thus we eagerly justify
648
      // this propagation here.
649
10789
      if (needProof())
650
      {
651
2062
        Trace("pf::sat")
652
1031
            << "Solver::removeClause: eagerly compute propagation of " << c[0]
653
1031
            << "\n";
654
1031
        d_pfManager->startResChain(c);
655
4135
        for (unsigned i = 1, size = c.size(); i < size; ++i)
656
        {
657
3104
          d_pfManager->addResolutionStep(c[i]);
658
        }
659
1031
        d_pfManager->endResChain(c[0]);
660
      }
661
10789
      vardata[var(c[0])].d_reason = CRef_Undef;
662
    }
663
736734
    c.mark(1);
664
736734
    ca.free(cr);
665
736734
}
666
667
668
453210
bool Solver::satisfied(const Clause& c) const {
669
21468117
    for (int i = 0; i < c.size(); i++)
670
21059345
        if (value(c[i]) == l_True)
671
44438
            return true;
672
408772
    return false; }
673
674
675
// Revert to the state at given level (keeping all assignment at 'level' but not beyond).
676
//
677
578607
void Solver::cancelUntil(int level) {
678
578607
    Debug("minisat") << "minisat::cancelUntil(" << level << ")" << std::endl;
679
680
578607
    if (decisionLevel() > level){
681
        // Pop the SMT context
682
3549441
        for (int l = trail_lim.size() - level; l > 0; --l) {
683
3091217
          d_context->pop();
684
        }
685
116704845
        for (int c = trail.size()-1; c >= trail_lim[level]; c--){
686
116246621
            Var      x  = var(trail[c]);
687
116246621
            assigns [x] = l_Undef;
688
116246621
            vardata[x].d_trail_index = -1;
689
232493242
            if ((phase_saving > 1 ||
690
                 ((phase_saving == 1) && c > trail_lim.last())
691
232493242
                 ) && ((polarity[x] & 0x2) == 0)) {
692
115348927
              polarity[x] = sign(trail[c]);
693
            }
694
116246621
            insertVarOrder(x);
695
        }
696
458224
        qhead = trail_lim[level];
697
458224
        trail.shrink(trail.size() - trail_lim[level]);
698
458224
        trail_lim.shrink(trail_lim.size() - level);
699
458224
        flipped.shrink(flipped.size() - level);
700
701
        // Register variables that have not been registered yet
702
458224
        int currentLevel = decisionLevel();
703
892684
        for (int i = variables_to_register.size() - 1;
704
892684
             i >= 0 && variables_to_register[i].d_level > currentLevel;
705
             --i)
706
        {
707
434460
          variables_to_register[i].d_level = currentLevel;
708
868920
          d_proxy->variableNotify(
709
434460
              MinisatSatSolver::toSatVariable(variables_to_register[i].d_var));
710
        }
711
    }
712
578607
}
713
714
15188
void Solver::resetTrail() { cancelUntil(0); }
715
716
//=================================================================================================
717
// Major methods:
718
719
720
2816438
Lit Solver::pickBranchLit()
721
{
722
    Lit nextLit;
723
724
    // Theory requests
725
2816436
    nextLit =
726
2816438
        MinisatSatSolver::toMinisatLit(d_proxy->getNextTheoryDecisionRequest());
727
2837160
    while (nextLit != lit_Undef) {
728
60469
      if(value(var(nextLit)) == l_Undef) {
729
100214
        Debug("theoryDecision")
730
50107
            << "getNextTheoryDecisionRequest(): now deciding on " << nextLit
731
50107
            << std::endl;
732
50107
        decisions++;
733
734
        // org-mode tracing -- theory decision
735
50107
        if (Trace.isOn("dtview"))
736
        {
737
          dtviewDecisionHelper(
738
              d_context->getLevel(),
739
              d_proxy->getNode(MinisatSatSolver::toSatLiteral(nextLit)),
740
              "THEORY");
741
        }
742
743
50107
        if (Trace.isOn("dtview::prop"))
744
        {
745
          dtviewPropagationHeaderHelper(d_context->getLevel());
746
        }
747
748
50107
        return nextLit;
749
      } else {
750
20724
        Debug("theoryDecision")
751
10362
            << "getNextTheoryDecisionRequest(): would decide on " << nextLit
752
10362
            << " but it already has an assignment" << std::endl;
753
      }
754
10362
      nextLit = MinisatSatSolver::toMinisatLit(
755
10362
          d_proxy->getNextTheoryDecisionRequest());
756
    }
757
5532658
    Debug("theoryDecision")
758
2766329
        << "getNextTheoryDecisionRequest(): decide on another literal"
759
2766329
        << std::endl;
760
761
    // DE requests
762
2766329
    bool stopSearch = false;
763
2766329
    nextLit = MinisatSatSolver::toMinisatLit(
764
2766329
        d_proxy->getNextDecisionEngineRequest(stopSearch));
765
2766329
    if(stopSearch) {
766
51468
      return lit_Undef;
767
    }
768
2714861
    if(nextLit != lit_Undef) {
769
1131166
      Assert(value(var(nextLit)) == l_Undef)
770
          << "literal to decide already has value";
771
1131166
      decisions++;
772
1131166
      Var next = var(nextLit);
773
1131166
      if(polarity[next] & 0x2) {
774
208219
        nextLit = mkLit(next, polarity[next] & 0x1);
775
      }
776
777
      // org-mode tracing -- decision engine decision
778
1131166
      if (Trace.isOn("dtview"))
779
      {
780
        dtviewDecisionHelper(
781
            d_context->getLevel(),
782
            d_proxy->getNode(MinisatSatSolver::toSatLiteral(nextLit)),
783
            "DE");
784
      }
785
786
1131166
      if (Trace.isOn("dtview::prop"))
787
      {
788
        dtviewPropagationHeaderHelper(d_context->getLevel());
789
      }
790
791
1131166
      return nextLit;
792
    }
793
794
1583695
    Var next = var_Undef;
795
796
    // Random decision:
797
1583695
    if (drand(random_seed) < random_var_freq && !order_heap.empty()){
798
        next = order_heap[irand(random_seed,order_heap.size())];
799
        if (value(next) == l_Undef && decision[next])
800
            rnd_decisions++; }
801
802
    // Activity based decision:
803
11888395
    while (next >= nVars() || next == var_Undef || value(next) != l_Undef || !decision[next]) {
804
5172755
        if (order_heap.empty()){
805
20405
            next = var_Undef;
806
20405
            break;
807
        }else {
808
5152350
            next = order_heap.removeMin();
809
        }
810
811
5152350
        if(!decision[next]) continue;
812
        // Check with decision engine about relevancy
813
10279396
        if (d_proxy->isDecisionRelevant(MinisatSatSolver::toSatVariable(next))
814
5139698
            == false)
815
        {
816
          next = var_Undef;
817
        }
818
    }
819
820
1583695
    if(next == var_Undef) {
821
20405
      return lit_Undef;
822
    } else {
823
1563290
      decisions++;
824
      // Check with decision engine if it can tell polarity
825
      lbool dec_pol = MinisatSatSolver::toMinisatlbool(
826
1563290
          d_proxy->getDecisionPolarity(MinisatSatSolver::toSatVariable(next)));
827
      Lit decisionLit;
828
1563290
      if(dec_pol != l_Undef) {
829
        Assert(dec_pol == l_True || dec_pol == l_False);
830
        decisionLit = mkLit(next, (dec_pol == l_True));
831
      }
832
      else
833
      {
834
        // If it can't use internal heuristic to do that
835
1563290
        decisionLit = mkLit(
836
1563290
            next, rnd_pol ? drand(random_seed) < 0.5 : (polarity[next] & 0x1));
837
      }
838
839
      // org-mode tracing -- decision engine decision
840
1563290
      if (Trace.isOn("dtview"))
841
      {
842
        dtviewDecisionHelper(
843
            d_context->getLevel(),
844
            d_proxy->getNode(MinisatSatSolver::toSatLiteral(decisionLit)),
845
            "DE");
846
      }
847
848
1563290
      if (Trace.isOn("dtview::prop"))
849
      {
850
        dtviewPropagationHeaderHelper(d_context->getLevel());
851
      }
852
853
1563290
      return decisionLit;
854
    }
855
}
856
857
858
/*_________________________________________________________________________________________________
859
|
860
|  analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&)  ->  [void]
861
|
862
|  Description:
863
|    Analyze conflict and produce a reason clause.
864
|
865
|    Pre-conditions:
866
|      * 'out_learnt' is assumed to be cleared.
867
|      * Current decision level must be greater than root level.
868
|
869
|    Post-conditions:
870
|      * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
871
|      * If out_learnt.size() > 1 then 'out_learnt[1]' has the greatest decision level of the
872
|        rest of literals. There may be others from the same level though.
873
|      * returns the maximal level of the resolved clauses
874
|
875
|________________________________________________________________________________________________@*/
876
303691
int Solver::analyze(CRef confl, vec<Lit>& out_learnt, int& out_btlevel)
877
{
878
607382
  Trace("pf::sat") << "Solver::analyze: starting with " << confl
879
303691
                   << " with decision level " << decisionLevel() << "\n";
880
881
303691
  int pathC = 0;
882
303691
  Lit p = lit_Undef;
883
884
  // Generate conflict clause:
885
  //
886
303691
  out_learnt.push();  // (leave room for the asserting literal)
887
303691
  int index = trail.size() - 1;
888
889
303691
  int max_resolution_level = 0;  // Maximal level of the resolved clauses
890
891
303691
    if (needProof())
892
    {
893
22704
      d_pfManager->startResChain(ca[confl]);
894
    }
895
33449191
    do{
896
33752882
      Assert(confl != CRef_Undef);  // (otherwise should be UIP)
897
898
      {
899
        // ! IMPORTANT !
900
        // It is not safe to use c after this block of code because
901
        // resolveOutUnit() below may lead to clauses being allocated, which
902
        // in turn may lead to reallocations that invalidate c.
903
33752882
        Clause& c = ca[confl];
904
33752882
        max_resolution_level = std::max(max_resolution_level, c.level());
905
906
33752882
        if (c.removable()) claBumpActivity(c);
907
      }
908
909
33752882
        if (Trace.isOn("pf::sat"))
910
        {
911
          Trace("pf::sat") << "Solver::analyze: conflict clause ";
912
          for (unsigned i = 0, size = ca[confl].size(); i < size; ++i)
913
          {
914
            Trace("pf::sat") << ca[confl][i] << " ";
915
          }
916
          Trace("pf::sat") << "\n";
917
        }
918
919
33752882
        Trace("pf::sat") << cvc5::push;
920
231407810
        for (int j = (p == lit_Undef) ? 0 : 1, size = ca[confl].size();
921
231407810
             j < size;
922
             j++)
923
        {
924
197654928
          Lit q = ca[confl][j];
925
926
395309856
          Trace("pf::sat") << "Lit " << q
927
395309856
                           << " seen/level: " << (seen[var(q)] ? 1 : 0) << " / "
928
197654928
                           << level(var(q)) << "\n";
929
197654928
          if (!seen[var(q)] && level(var(q)) > 0)
930
          {
931
60964632
            varBumpActivity(var(q));
932
60964632
            seen[var(q)] = 1;
933
60964632
            if (level(var(q)) >= decisionLevel())
934
33752882
              pathC++;
935
            else
936
27211750
              out_learnt.push(q);
937
          }
938
          else
939
          {
940
            // We could be resolving a literal propagated by a clause/theory
941
            // using information from a higher level
942
136690296
            if (!seen[var(q)] && level(var(q)) == 0)
943
            {
944
394020
              max_resolution_level =
945
788040
                  std::max(max_resolution_level, user_level(var(q)));
946
            }
947
948
            // FIXME: can we do it lazily if we actually need the proof?
949
136690296
            if (level(var(q)) == 0 && needProof())
950
            {
951
139484
              d_pfManager->addResolutionStep(q);
952
            }
953
          }
954
        }
955
33752882
        Trace("pf::sat") << cvc5::pop;
956
957
        // Select next clause to look at:
958
93810442
        while (!seen[var(trail[index--])]);
959
33752882
        p     = trail[index+1];
960
33752882
        confl = reason(var(p));
961
33752882
        seen[var(p)] = 0;
962
33752882
        pathC--;
963
964
33752882
        if (pathC > 0 && confl != CRef_Undef && needProof())
965
        {
966
296763
          d_pfManager->addResolutionStep(ca[confl], p);
967
        }
968
969
33752882
    } while (pathC > 0);
970
303691
    out_learnt[0] = ~p;
971
303691
    if (Debug.isOn("newproof::sat"))
972
    {
973
      Debug("newproof::sat") << "finished with learnt clause ";
974
      for (unsigned i = 0, size = out_learnt.size(); i < size; ++i)
975
      {
976
        prop::SatLiteral satLit = toSatLiteral<Minisat::Solver>(out_learnt[i]);
977
        Debug("newproof::sat") << satLit << " ";
978
      }
979
      Debug("newproof::sat") << "\n";
980
    }
981
982
    // Simplify conflict clause:
983
    int i, j;
984
303691
    out_learnt.copyTo(analyze_toclear);
985
303691
    if (ccmin_mode == 2){
986
303691
        uint32_t abstract_level = 0;
987
27515441
        for (i = 1; i < out_learnt.size(); i++)
988
27211750
            abstract_level |= abstractLevel(var(out_learnt[i])); // (maintain an abstraction of levels involved in conflict)
989
990
27515441
        for (i = j = 1; i < out_learnt.size(); i++) {
991
27211750
            if (reason(var(out_learnt[i])) == CRef_Undef) {
992
4593362
                out_learnt[j++] = out_learnt[i];
993
            } else {
994
              // Check if the literal is redundant
995
22618388
              if (!litRedundant(out_learnt[i], abstract_level)) {
996
                // Literal is not redundant
997
20206072
                out_learnt[j++] = out_learnt[i];
998
              } else {
999
2412316
                if (needProof())
1000
                {
1001
72924
                  Debug("newproof::sat")
1002
36462
                      << "Solver::analyze: redundant lit "
1003
36462
                      << toSatLiteral<Minisat::Solver>(out_learnt[i]) << "\n";
1004
36462
                  d_pfManager->addResolutionStep(out_learnt[i], true);
1005
                }
1006
                // Literal is redundant, to be safe, mark the level as current assertion level
1007
                // TODO: maybe optimize
1008
2412316
                max_resolution_level = std::max(max_resolution_level, user_level(var(out_learnt[i])));
1009
              }
1010
            }
1011
        }
1012
1013
    }else if (ccmin_mode == 1){
1014
        Unreachable();
1015
        for (i = j = 1; i < out_learnt.size(); i++){
1016
            Var x = var(out_learnt[i]);
1017
1018
            if (reason(x) == CRef_Undef)
1019
                out_learnt[j++] = out_learnt[i];
1020
            else{
1021
                Clause& c = ca[reason(var(out_learnt[i]))];
1022
                for (int k = 1; k < c.size(); k++)
1023
                    if (!seen[var(c[k])] && level(var(c[k])) > 0){
1024
                        out_learnt[j++] = out_learnt[i];
1025
                        break; }
1026
            }
1027
        }
1028
    }else
1029
        i = j = out_learnt.size();
1030
1031
303691
    max_literals += out_learnt.size();
1032
303691
    out_learnt.shrink(i - j);
1033
303691
    tot_literals += out_learnt.size();
1034
1035
    // Find correct backtrack level:
1036
    //
1037
303691
    if (out_learnt.size() == 1)
1038
6043
        out_btlevel = 0;
1039
    else{
1040
297648
        int max_i = 1;
1041
        // Find the first literal assigned at the next-highest level:
1042
24799434
        for (int k = 2; k < out_learnt.size(); k++)
1043
24501786
          if (level(var(out_learnt[k])) > level(var(out_learnt[max_i])))
1044
677048
            max_i = k;
1045
        // Swap-in this literal at index 1:
1046
297648
        Lit p2 = out_learnt[max_i];
1047
297648
        out_learnt[max_i] = out_learnt[1];
1048
297648
        out_learnt[1] = p2;
1049
297648
        out_btlevel = level(var(p2));
1050
    }
1051
1052
30349691
    for (int k = 0; k < analyze_toclear.size(); k++)
1053
30046000
      seen[var(analyze_toclear[k])] = 0;  // ('seen[]' is now cleared)
1054
1055
    // Return the maximal resolution level
1056
303691
    return max_resolution_level;
1057
}
1058
1059
1060
// Check if 'p' can be removed. 'abstract_levels' is used to abort early if the algorithm is
1061
// visiting literals at levels that cannot be removed later.
1062
22618388
bool Solver::litRedundant(Lit p, uint32_t abstract_levels)
1063
{
1064
22618388
    analyze_stack.clear(); analyze_stack.push(p);
1065
22618388
    int top = analyze_toclear.size();
1066
62337576
    while (analyze_stack.size() > 0){
1067
40065666
        CRef c_reason = reason(var(analyze_stack.last()));
1068
40065666
        Assert(c_reason != CRef_Undef);
1069
40065666
        Clause& c = ca[c_reason];
1070
40065666
        int c_size = c.size();
1071
40065666
        analyze_stack.pop();
1072
1073
        // Since calling reason might relocate to resize, c is not necesserily the right reference, we must
1074
        // use the allocator each time
1075
155222446
        for (int i = 1; i < c_size; i++){
1076
135362852
          Lit p2 = ca[c_reason][i];
1077
135362852
          if (!seen[var(p2)] && level(var(p2)) > 0)
1078
          {
1079
146842366
            if (reason(var(p2)) != CRef_Undef
1080
73421183
                && (abstractLevel(var(p2)) & abstract_levels) != 0)
1081
            {
1082
53215111
              seen[var(p2)] = 1;
1083
53215111
              analyze_stack.push(p2);
1084
53215111
              analyze_toclear.push(p2);
1085
            }
1086
            else
1087
            {
1088
70890624
              for (int j = top; j < analyze_toclear.size(); j++)
1089
50684552
                seen[var(analyze_toclear[j])] = 0;
1090
20206072
              analyze_toclear.shrink(analyze_toclear.size() - top);
1091
20206072
              return false;
1092
            }
1093
          }
1094
        }
1095
    }
1096
1097
2412316
    return true;
1098
}
1099
1100
1101
/*_________________________________________________________________________________________________
1102
|
1103
|  analyzeFinal : (p : Lit)  ->  [void]
1104
|
1105
|  Description:
1106
|    Specialized analysis procedure to express the final conflict in terms of assumptions.
1107
|    Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
1108
|    stores the result in 'out_conflict'.
1109
|________________________________________________________________________________________________@*/
1110
2723
void Solver::analyzeFinal(Lit p, vec<Lit>& out_conflict)
1111
{
1112
2723
    out_conflict.clear();
1113
2723
    out_conflict.push(p);
1114
1115
2723
    if (decisionLevel() == 0)
1116
914
        return;
1117
1118
1809
    seen[var(p)] = 1;
1119
1120
131360
    for (int i = trail.size()-1; i >= trail_lim[0]; i--){
1121
129551
        Var x = var(trail[i]);
1122
129551
        if (seen[x]){
1123
28590
            if (reason(x) == CRef_Undef){
1124
10577
              Assert(level(x) > 0);
1125
10577
              out_conflict.push(~trail[i]);
1126
            }else{
1127
18013
                Clause& c = ca[reason(x)];
1128
57398
                for (int j = 1; j < c.size(); j++)
1129
39385
                    if (level(var(c[j])) > 0)
1130
38359
                        seen[var(c[j])] = 1;
1131
            }
1132
28590
            seen[x] = 0;
1133
        }
1134
    }
1135
1136
1809
    seen[var(p)] = 0;
1137
}
1138
1139
116584702
void Solver::uncheckedEnqueue(Lit p, CRef from)
1140
{
1141
116584702
  if (Debug.isOn("minisat"))
1142
  {
1143
    Debug("minisat") << "unchecked enqueue of " << p << " ("
1144
                     << trail_index(var(p)) << ") trail size is "
1145
                     << trail.size() << " cap is " << trail.capacity()
1146
                     << ", reason is " << from << ", ";
1147
    if (from == CRef_Lazy)
1148
    {
1149
      Debug("minisat") << "CRef_Lazy";
1150
    }
1151
    else if (from == CRef_Undef)
1152
    {
1153
      Debug("minisat") << "CRef_Undef";
1154
    }
1155
    else
1156
    {
1157
      for (unsigned i = 0, size = ca[from].size(); i < size; ++i)
1158
      {
1159
        Debug("minisat") << ca[from][i] << " ";
1160
      }
1161
    }
1162
    Debug("minisat") << "\n";
1163
  }
1164
116584702
  Assert(value(p) == l_Undef);
1165
116584702
  Assert(var(p) < nVars());
1166
116584702
  assigns[var(p)] = lbool(!sign(p));
1167
116584702
  vardata[var(p)] = VarData(
1168
      from, decisionLevel(), assertionLevel, intro_level(var(p)), trail.size());
1169
116584702
  trail.push_(p);
1170
116584702
  if (theory[var(p)])
1171
  {
1172
    // Enqueue to the theory
1173
17377927
    d_proxy->enqueueTheoryLiteral(MinisatSatSolver::toSatLiteral(p));
1174
  }
1175
116584702
}
1176
1177
3647050
CRef Solver::propagate(TheoryCheckType type)
1178
{
1179
3647050
    CRef confl = CRef_Undef;
1180
3647050
    recheck = false;
1181
3647050
    theoryConflict = false;
1182
1183
7294100
    ScopedBool scoped_bool(minisat_busy, true);
1184
1185
    // Add lemmas that we're left behind
1186
3647050
    if (lemmas.size() > 0) {
1187
145
      confl = updateLemmas();
1188
145
      if (confl != CRef_Undef) {
1189
        return confl;
1190
      }
1191
    }
1192
1193
    // If this is the final check, no need for Boolean propagation and
1194
    // theory propagation
1195
3647050
    if (type == CHECK_FINAL) {
1196
      // Do the theory check
1197
77463
      theoryCheck(cvc5::theory::Theory::EFFORT_FULL);
1198
      // Pick up the theory propagated literals (there could be some,
1199
      // if new lemmas are added)
1200
77452
      propagateTheory();
1201
      // If there are lemmas (or conflicts) update them
1202
77452
      if (lemmas.size() > 0) {
1203
61175
        recheck = true;
1204
61175
        confl = updateLemmas();
1205
61175
        return confl;
1206
      } else {
1207
16277
        recheck = d_proxy->theoryNeedCheck();
1208
16277
        return confl;
1209
      }
1210
    }
1211
1212
    // Keep running until we have checked everything, we
1213
    // have no conflict and no new literals have been asserted
1214
924195
    do {
1215
        // Propagate on the clauses
1216
4493782
        confl = propagateBool();
1217
        // If no conflict, do the theory check
1218
4493782
        if (confl == CRef_Undef && type != CHECK_WITHOUT_THEORY) {
1219
            // Do the theory check
1220
4108110
            if (type == CHECK_FINAL_FAKE) {
1221
              theoryCheck(cvc5::theory::Theory::EFFORT_FULL);
1222
            } else {
1223
4108110
              theoryCheck(cvc5::theory::Theory::EFFORT_STANDARD);
1224
            }
1225
            // Pick up the theory propagated literals
1226
4108107
            propagateTheory();
1227
            // If there are lemmas (or conflicts) update them
1228
8216214
            if (lemmas.size() > 0) {
1229
195645
              confl = updateLemmas();
1230
            }
1231
        } else {
1232
          // if dumping decision tree, print the conflict
1233
385672
          if (Trace.isOn("dtview::conflict"))
1234
          {
1235
            if (confl != CRef_Undef)
1236
            {
1237
              dtviewPropConflictHelper(decisionLevel(), ca[confl], d_proxy);
1238
            }
1239
          }
1240
          // Even though in conflict, we still need to discharge the lemmas
1241
385672
          if (lemmas.size() > 0) {
1242
            // Remember the trail size
1243
            int oldLevel = decisionLevel();
1244
            // Update the lemmas
1245
            CRef lemmaConflict = updateLemmas();
1246
            // If we get a conflict, we prefer it since it's earlier in the trail
1247
            if (lemmaConflict != CRef_Undef) {
1248
              // Lemma conflict takes precedence, since it's earlier in the trail
1249
              confl = lemmaConflict;
1250
            } else {
1251
              // Otherwise, the Boolean conflict is canceled in the case we popped the trail
1252
              if (oldLevel > decisionLevel()) {
1253
                confl = CRef_Undef;
1254
              }
1255
            }
1256
          }
1257
        }
1258
4493779
    } while (confl == CRef_Undef && qhead < trail.size());
1259
3569584
    return confl;
1260
}
1261
1262
4185559
void Solver::propagateTheory() {
1263
8371118
  SatClause propagatedLiteralsClause;
1264
  // Doesn't actually call propagate(); that's done in theoryCheck() now that combination
1265
  // is online.  This just incorporates those propagations previously discovered.
1266
4185559
  d_proxy->theoryPropagate(propagatedLiteralsClause);
1267
1268
8371118
  vec<Lit> propagatedLiterals;
1269
4185559
  MinisatSatSolver::toMinisatClause(propagatedLiteralsClause, propagatedLiterals);
1270
1271
4185559
  int oldTrailSize = trail.size();
1272
4185559
  Debug("minisat") << "old trail size is " << oldTrailSize << ", propagating " << propagatedLiterals.size() << " lits..." << std::endl;
1273
10958354
  for (unsigned i = 0, i_end = propagatedLiterals.size(); i < i_end; ++ i) {
1274
6772795
    Debug("minisat") << "Theory propagated: " << propagatedLiterals[i] << std::endl;
1275
    // multiple theories can propagate the same literal
1276
6772795
    Lit p = propagatedLiterals[i];
1277
6772795
    if (value(p) == l_Undef) {
1278
3274389
      uncheckedEnqueue(p, CRef_Lazy);
1279
    } else {
1280
3498406
      if (value(p) == l_False) {
1281
72373
        Debug("minisat") << "Conflict in theory propagation" << std::endl;
1282
144746
        SatClause explanation_cl;
1283
72373
        d_proxy->explainPropagation(MinisatSatSolver::toSatLiteral(p),
1284
                                    explanation_cl);
1285
144746
        vec<Lit> explanation;
1286
72373
        MinisatSatSolver::toMinisatClause(explanation_cl, explanation);
1287
        ClauseId id; // FIXME: mark it as explanation here somehow?
1288
72373
        addClause(explanation, true, id);
1289
      }
1290
    }
1291
  }
1292
4185559
}
1293
1294
/*_________________________________________________________________________________________________
1295
|
1296
|  theoryCheck: [void]  ->  [Clause*]
1297
|
1298
|  Description:
1299
|    Checks all enqueued theory facts for satisfiability. If a conflict arises, the conflicting
1300
|    clause is returned, otherwise NULL.
1301
|
1302
|    Note: the propagation queue might be NOT empty
1303
|________________________________________________________________________________________________@*/
1304
4185573
void Solver::theoryCheck(cvc5::theory::Theory::Effort effort)
1305
{
1306
4185573
  d_proxy->theoryCheck(effort);
1307
4185559
}
1308
1309
/*_________________________________________________________________________________________________
1310
|
1311
|  propagateBool : [void]  ->  [Clause*]
1312
|
1313
|  Description:
1314
|    Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
1315
|    otherwise CRef_Undef.
1316
|
1317
|    Post-conditions:
1318
|      * the propagation queue is empty, even if there was a conflict.
1319
|________________________________________________________________________________________________@*/
1320
4493782
CRef Solver::propagateBool()
1321
{
1322
4493782
    CRef    confl     = CRef_Undef;
1323
4493782
    int     num_props = 0;
1324
4493782
    watches.cleanAll();
1325
1326
226120340
    while (qhead < trail.size()){
1327
110813279
        Lit            p   = trail[qhead++];     // 'p' is enqueued fact to propagate.
1328
110813279
        vec<Watcher>&  ws  = watches[p];
1329
        Watcher        *i, *j, *end;
1330
110813279
        num_props++;
1331
1332
        // if propagation tracing enabled, print boolean propagation
1333
110813279
        if (Trace.isOn("dtview::prop"))
1334
        {
1335
          dtviewBoolPropagationHelper(decisionLevel(), p, d_proxy);
1336
        }
1337
1338
911562995
        for (i = j = (Watcher*)ws, end = i + ws.size();  i != end;){
1339
            // Try to avoid inspecting the clause:
1340
800749716
            Lit blocker = i->blocker;
1341
1303467267
            if (value(blocker) == l_True){
1342
1534139450
                *j++ = *i++; continue; }
1343
1344
            // Make sure the false literal is data[1]:
1345
298032165
            CRef     cr        = i->cref;
1346
298032165
            Clause&  c         = ca[cr];
1347
298032165
            Lit      false_lit = ~p;
1348
298032165
            if (c[0] == false_lit)
1349
85937168
                c[0] = c[1], c[1] = false_lit;
1350
298032165
            Assert(c[1] == false_lit);
1351
298032165
            i++;
1352
1353
            // If 0th watch is true, then clause is already satisfied.
1354
298032165
            Lit     first = c[0];
1355
298032165
            Watcher w     = Watcher(cr, first);
1356
324018962
            if (first != blocker && value(first) == l_True){
1357
51973594
                *j++ = w; continue; }
1358
1359
            // Look for new watch:
1360
272045368
            Assert(c.size() >= 2);
1361
1275453291
            for (int k = 2; k < c.size(); k++)
1362
1165643297
                if (value(c[k]) != l_False){
1363
162235374
                    c[1] = c[k]; c[k] = false_lit;
1364
162235374
                    watches[~c[1]].push(w);
1365
162235374
                    goto NextClause; }
1366
1367
            // Did not find watch -- clause is unit under assignment:
1368
109809994
            *j++ = w;
1369
109809994
            if (value(first) == l_False){
1370
251832
                confl = cr;
1371
251832
                qhead = trail.size();
1372
                // Copy the remaining watches:
1373
6152282
                while (i < end)
1374
2950225
                    *j++ = *i++;
1375
            }else
1376
109558162
                uncheckedEnqueue(first, cr);
1377
1378
272045368
        NextClause:;
1379
        }
1380
110813279
        ws.shrink(i - j);
1381
    }
1382
4493782
    propagations += num_props;
1383
4493782
    simpDB_props -= num_props;
1384
1385
4493782
    return confl;
1386
}
1387
1388
1389
/*_________________________________________________________________________________________________
1390
|
1391
|  reduceDB : ()  ->  [void]
1392
|
1393
|  Description:
1394
|    Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
1395
|    clauses are clauses that are reason to some assignment. Binary clauses are never removed.
1396
|________________________________________________________________________________________________@*/
1397
struct reduceDB_lt {
1398
    ClauseAllocator& ca;
1399
3486
    reduceDB_lt(ClauseAllocator& ca_) : ca(ca_) {}
1400
4612754
    bool operator () (CRef x, CRef y) {
1401
4612754
        return ca[x].size() > 2 && (ca[y].size() == 2 || ca[x].activity() < ca[y].activity()); }
1402
};
1403
3486
void Solver::reduceDB()
1404
{
1405
    int     i, j;
1406
3486
    double  extra_lim = cla_inc / clauses_removable.size();    // Remove any clause below this activity
1407
1408
3486
    sort(clauses_removable, reduceDB_lt(ca));
1409
    // Don't delete binary or locked clauses. From the rest, delete clauses from the first half
1410
    // and clauses with activity smaller than 'extra_lim':
1411
426472
    for (i = j = 0; i < clauses_removable.size(); i++){
1412
422986
        Clause& c = ca[clauses_removable[i]];
1413
422986
        if (c.size() > 2 && !locked(c) && (i < clauses_removable.size() / 2 || c.activity() < extra_lim))
1414
190519
            removeClause(clauses_removable[i]);
1415
        else
1416
232467
            clauses_removable[j++] = clauses_removable[i];
1417
    }
1418
3486
    clauses_removable.shrink(i - j);
1419
3486
    checkGarbage();
1420
3486
}
1421
1422
1423
18066
void Solver::removeSatisfied(vec<CRef>& cs)
1424
{
1425
    int i, j;
1426
471276
    for (i = j = 0; i < cs.size(); i++){
1427
453210
        Clause& c = ca[cs[i]];
1428
453210
        if (satisfied(c)) {
1429
44438
          removeClause(cs[i]);
1430
        }
1431
        else
1432
        {
1433
408772
          cs[j++] = cs[i];
1434
        }
1435
    }
1436
18066
    cs.shrink(i - j);
1437
18066
}
1438
1439
9738
void Solver::removeClausesAboveLevel(vec<CRef>& cs, int level)
1440
{
1441
    int i, j;
1442
834955
    for (i = j = 0; i < cs.size(); i++){
1443
825217
        Clause& c = ca[cs[i]];
1444
825217
        if (c.level() > level) {
1445
248287
          Assert(!locked(c));
1446
248287
          removeClause(cs[i]);
1447
        } else {
1448
576930
            cs[j++] = cs[i];
1449
        }
1450
    }
1451
9738
    cs.shrink(i - j);
1452
9738
}
1453
1454
18066
void Solver::rebuildOrderHeap()
1455
{
1456
36132
    vec<Var> vs;
1457
2736013
    for (Var v = 0; v < nVars(); v++)
1458
2717947
        if (decision[v] && value(v) == l_Undef)
1459
2065033
            vs.push(v);
1460
18066
    order_heap.build(vs);
1461
18066
}
1462
1463
1464
/*_________________________________________________________________________________________________
1465
|
1466
|  simplify : [void]  ->  [bool]
1467
|
1468
|  Description:
1469
|    Simplify the clause database according to the current top-level assigment. Currently, the only
1470
|    thing done here is the removal of satisfied clauses, but more things can be put here.
1471
|________________________________________________________________________________________________@*/
1472
44895
bool Solver::simplify()
1473
{
1474
44895
  Assert(decisionLevel() == 0);
1475
1476
44895
  if (!ok || propagate(CHECK_WITHOUT_THEORY) != CRef_Undef) return ok = false;
1477
1478
44679
  if (nAssigns() == simpDB_assigns || (simpDB_props > 0)) return true;
1479
1480
  // Remove satisfied clauses:
1481
18066
  removeSatisfied(clauses_removable);
1482
18066
  if (remove_satisfied)  // Can be turned off.
1483
    removeSatisfied(clauses_persistent);
1484
18066
  checkGarbage();
1485
18066
  rebuildOrderHeap();
1486
1487
18066
  simpDB_assigns = nAssigns();
1488
18066
  simpDB_props =
1489
18066
      clauses_literals + learnts_literals;  // (shouldn't depend on stats
1490
                                            // really, but it will do for now)
1491
1492
18066
  return true;
1493
}
1494
1495
1496
/*_________________________________________________________________________________________________
1497
|
1498
|  search : (nof_conflicts : int) (params : const SearchParams&)  ->  [lbool]
1499
|
1500
|  Description:
1501
|    Search for a model the specified number of conflicts.
1502
|    NOTE! Use negative value for 'nof_conflicts' indicate infinity.
1503
|
1504
|  Output:
1505
|    'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If
1506
|    all variables are decision variables, this means that the clause set is satisfiable. 'l_False'
1507
|    if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached.
1508
|________________________________________________________________________________________________@*/
1509
16309
lbool Solver::search(int nof_conflicts)
1510
{
1511
16309
  Assert(ok);
1512
  int backtrack_level;
1513
16309
  int conflictC = 0;
1514
32618
  vec<Lit> learnt_clause;
1515
16309
  starts++;
1516
1517
16309
  TheoryCheckType check_type = CHECK_WITH_THEORY;
1518
  for (;;)
1519
  {
1520
    // Propagate and call the theory solvers
1521
3513169
    CRef confl = propagate(check_type);
1522
3513155
    Assert(lemmas.size() == 0);
1523
1524
3513155
    if (confl != CRef_Undef)
1525
    {
1526
307081
      conflicts++;
1527
307081
      conflictC++;
1528
1529
307081
      if (decisionLevel() == 0)
1530
      {
1531
3390
        if (needProof())
1532
        {
1533
860
          if (confl == CRef_Lazy)
1534
          {
1535
49
            d_pfManager->finalizeProof();
1536
          }
1537
          else
1538
          {
1539
811
            d_pfManager->finalizeProof(ca[confl]);
1540
          }
1541
        }
1542
3390
        return l_False;
1543
      }
1544
1545
      // Analyze the conflict
1546
303691
      learnt_clause.clear();
1547
303691
      int max_level = analyze(confl, learnt_clause, backtrack_level);
1548
303691
      cancelUntil(backtrack_level);
1549
1550
      // Assert the conflict clause and the asserting literal
1551
303691
      if (learnt_clause.size() == 1)
1552
      {
1553
6043
        uncheckedEnqueue(learnt_clause[0]);
1554
6043
        if (needProof())
1555
        {
1556
1524
          d_pfManager->endResChain(learnt_clause[0]);
1557
        }
1558
      }
1559
      else
1560
      {
1561
297648
        CRef cr = ca.alloc(assertionLevelOnly() ? assertionLevel : max_level,
1562
                           learnt_clause,
1563
297648
                           true);
1564
297648
        clauses_removable.push(cr);
1565
297648
        attachClause(cr);
1566
297648
        claBumpActivity(ca[cr]);
1567
297648
        uncheckedEnqueue(learnt_clause[0], cr);
1568
297648
        if (needProof())
1569
        {
1570
21180
          d_pfManager->endResChain(ca[cr]);
1571
        }
1572
      }
1573
1574
303691
      varDecayActivity();
1575
303691
      claDecayActivity();
1576
1577
303691
      if (--learntsize_adjust_cnt == 0)
1578
      {
1579
575
        learntsize_adjust_confl *= learntsize_adjust_inc;
1580
575
        learntsize_adjust_cnt = (int)learntsize_adjust_confl;
1581
575
        max_learnts *= learntsize_inc;
1582
1583
575
        if (verbosity >= 1)
1584
          printf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |\n",
1585
                 (int)conflicts,
1586
                 (int)dec_vars
1587
                     - (trail_lim.size() == 0 ? trail.size() : trail_lim[0]),
1588
                 nClauses(),
1589
                 (int)clauses_literals,
1590
                 (int)max_learnts,
1591
                 nLearnts(),
1592
                 (double)learnts_literals / nLearnts(),
1593
                 progressEstimate() * 100);
1594
      }
1595
1596
356203
      if (theoryConflict && options::sat_refine_conflicts())
1597
      {
1598
        check_type = CHECK_FINAL_FAKE;
1599
      }
1600
      else
1601
      {
1602
303691
        check_type = CHECK_WITH_THEORY;
1603
      }
1604
    }
1605
    else
1606
    {
1607
      // If this was a final check, we are satisfiable
1608
3206074
      if (check_type == CHECK_FINAL)
1609
      {
1610
        // Note that we are done making decisions when there are no pending decisions
1611
        // on assumptions, and the decision engine indicates it is done.
1612
67041
        bool decisionEngineDone = (decisionLevel() >= assumptions.size())
1613
67041
                                  && d_proxy->isDecisionEngineDone();
1614
        // Unless a lemma has added more stuff to the queues
1615
188051
        if (!decisionEngineDone
1616
67041
            && (!order_heap.empty() || qhead < trail.size()))
1617
        {
1618
53969
          check_type = CHECK_WITH_THEORY;
1619
185401
          continue;
1620
        }
1621
13072
        else if (recheck)
1622
        {
1623
          // There some additional stuff added, so we go for another
1624
          // full-check
1625
5590
          continue;
1626
        }
1627
        else
1628
        {
1629
          // Yes, we're truly satisfiable
1630
7482
          return l_True;
1631
        }
1632
      }
1633
3139033
      else if (check_type == CHECK_FINAL_FAKE)
1634
      {
1635
        check_type = CHECK_WITH_THEORY;
1636
      }
1637
1638
6278066
      if ((nof_conflicts >= 0 && conflictC >= nof_conflicts)
1639
6275368
          || !withinBudget(Resource::SatConflictStep))
1640
      {
1641
        // Reached bound on number of conflicts:
1642
2698
        progress_estimate = progressEstimate();
1643
2698
        cancelUntil(0);
1644
        // [mdeters] notify theory engine of restarts for deferred
1645
        // theory processing
1646
2698
        d_proxy->notifyRestart();
1647
2698
        return l_Undef;
1648
      }
1649
1650
      // Simplify the set of problem clauses:
1651
3136335
      if (decisionLevel() == 0 && !simplify())
1652
      {
1653
        return l_False;
1654
      }
1655
1656
3136335
      if (clauses_removable.size() - nAssigns() >= max_learnts)
1657
      {
1658
        // Reduce the set of learnt clauses:
1659
3486
        reduceDB();
1660
      }
1661
1662
3136335
      Lit next = lit_Undef;
1663
3195479
      while (decisionLevel() < assumptions.size())
1664
      {
1665
        // Perform user provided assumption:
1666
349469
        Lit p = assumptions[decisionLevel()];
1667
349469
        if (value(p) == l_True)
1668
        {
1669
          // Dummy decision level:
1670
29572
          newDecisionLevel();
1671
        }
1672
319897
        else if (value(p) == l_False)
1673
        {
1674
2723
          analyzeFinal(~p, d_conflict);
1675
2723
          return l_False;
1676
        }
1677
        else
1678
        {
1679
317174
          next = p;
1680
317174
          break;
1681
        }
1682
      }
1683
1684
3133612
      if (next == lit_Undef)
1685
      {
1686
        // New variable decision:
1687
2816438
        next = pickBranchLit();
1688
1689
2888309
        if (next == lit_Undef)
1690
        {
1691
          // We need to do a full theory check to confirm
1692
143746
          Debug("minisat::search")
1693
71873
              << "Doing a full theory check..." << std::endl;
1694
71873
          check_type = CHECK_FINAL;
1695
71873
          continue;
1696
        }
1697
      }
1698
1699
      // Increase decision level and enqueue 'next'
1700
3061737
      newDecisionLevel();
1701
3061737
      uncheckedEnqueue(next);
1702
    }
1703
3496860
  }
1704
}
1705
1706
1707
2698
double Solver::progressEstimate() const
1708
{
1709
2698
    double  progress = 0;
1710
2698
    double  F = 1.0 / nVars();
1711
1712
192251
    for (int i = 0; i <= decisionLevel(); i++){
1713
189553
        int beg = i == 0 ? 0 : trail_lim[i - 1];
1714
189553
        int end = i == decisionLevel() ? trail.size() : trail_lim[i];
1715
189553
        progress += pow(F, i) * (end - beg);
1716
    }
1717
1718
2698
    return progress / nVars();
1719
}
1720
1721
/*
1722
  Finite subsequences of the Luby-sequence:
1723
1724
  0: 1
1725
  1: 1 1 2
1726
  2: 1 1 2 1 1 2 4
1727
  3: 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8
1728
  ...
1729
1730
1731
 */
1732
1733
16309
static double luby(double y, int x){
1734
1735
    // Find the finite subsequence that contains index 'x', and the
1736
    // size of that subsequence:
1737
    int size, seq;
1738
16309
    for (size = 1, seq = 0; size < x+1; seq++, size = 2*size+1);
1739
1740
27831
    while (size-1 != x){
1741
5761
        size = (size-1)>>1;
1742
5761
        seq--;
1743
5761
        x = x % size;
1744
    }
1745
1746
16309
    return pow(y, seq);
1747
}
1748
1749
// NOTE: assumptions passed in member-variable 'assumptions'.
1750
14982
lbool Solver::solve_()
1751
{
1752
14982
    Debug("minisat") << "nvars = " << nVars() << std::endl;
1753
1754
29964
    ScopedBool scoped_bool(minisat_busy, true);
1755
1756
14982
    Assert(decisionLevel() == 0);
1757
1758
14982
    model.clear();
1759
14982
    d_conflict.clear();
1760
14982
    if (!ok){
1761
1371
      minisat_busy = false;
1762
1371
      return l_False;
1763
    }
1764
1765
13611
    solves++;
1766
1767
13611
    max_learnts               = nClauses() * learntsize_factor;
1768
13611
    learntsize_adjust_confl   = learntsize_adjust_start_confl;
1769
13611
    learntsize_adjust_cnt     = (int)learntsize_adjust_confl;
1770
13611
    lbool   status            = l_Undef;
1771
1772
13611
    if (verbosity >= 1){
1773
1
        printf("============================[ Search Statistics ]==============================\n");
1774
1
        printf("| Conflicts |          ORIGINAL         |          LEARNT          | Progress |\n");
1775
1
        printf("|           |    Vars  Clauses Literals |    Limit  Clauses Lit/Cl |          |\n");
1776
1
        printf("===============================================================================\n");
1777
    }
1778
1779
    // Search:
1780
13611
    int curr_restarts = 0;
1781
46197
    while (status == l_Undef){
1782
16309
        double rest_base = luby_restart ? luby(restart_inc, curr_restarts) : pow(restart_inc, curr_restarts);
1783
16309
        status = search(rest_base * restart_first);
1784
16293
        if (!withinBudget(Resource::SatConflictStep))
1785
          break;  // FIXME add restart option?
1786
16293
        curr_restarts++;
1787
    }
1788
1789
13595
    if (!withinBudget(Resource::SatConflictStep))
1790
      status = l_Undef;
1791
1792
13595
    if (verbosity >= 1)
1793
1
        printf("===============================================================================\n");
1794
1795
1796
13595
    if (status == l_True){
1797
        // Extend & copy model:
1798
7482
        model.growTo(nVars());
1799
616573
        for (int i = 0; i < nVars(); i++) {
1800
609091
          model[i] = value(i);
1801
609091
          Debug("minisat") << i << " = " << model[i] << std::endl;
1802
        }
1803
    }
1804
6113
    else if (status == l_False && d_conflict.size() == 0)
1805
3390
      ok = false;
1806
1807
13595
    return status;
1808
}
1809
1810
//=================================================================================================
1811
// Writing CNF to DIMACS:
1812
//
1813
// FIXME: this needs to be rewritten completely.
1814
1815
static Var mapVar(Var x, vec<Var>& map, Var& max)
1816
{
1817
    if (map.size() <= x || map[x] == -1){
1818
        map.growTo(x+1, -1);
1819
        map[x] = max++;
1820
    }
1821
    return map[x];
1822
}
1823
1824
1825
void Solver::toDimacs(FILE* f, Clause& c, vec<Var>& map, Var& max)
1826
{
1827
    if (satisfied(c)) return;
1828
1829
    for (int i = 0; i < c.size(); i++)
1830
        if (value(c[i]) != l_False)
1831
            fprintf(f, "%s%d ", sign(c[i]) ? "-" : "", mapVar(var(c[i]), map, max)+1);
1832
    fprintf(f, "0\n");
1833
}
1834
1835
1836
void Solver::toDimacs(const char *file, const vec<Lit>& assumps)
1837
{
1838
    FILE* f = fopen(file, "wr");
1839
    if (f == NULL)
1840
        fprintf(stderr, "could not open file %s\n", file), exit(1);
1841
    toDimacs(f, assumps);
1842
    fclose(f);
1843
}
1844
1845
1846
void Solver::toDimacs(FILE* f, const vec<Lit>& assumps)
1847
{
1848
    // Handle case when solver is in contradictory state:
1849
    if (!ok){
1850
        fprintf(f, "p cnf 1 2\n1 0\n-1 0\n");
1851
        return; }
1852
1853
    vec<Var> map; Var max = 0;
1854
1855
    // Cannot use removeClauses here because it is not safe
1856
    // to deallocate them at this point. Could be improved.
1857
    int cnt = 0;
1858
    for (int i = 0; i < clauses_persistent.size(); i++)
1859
        if (!satisfied(ca[clauses_persistent[i]]))
1860
            cnt++;
1861
1862
    for (int i = 0; i < clauses_persistent.size(); i++)
1863
        if (!satisfied(ca[clauses_persistent[i]])){
1864
            Clause& c = ca[clauses_persistent[i]];
1865
            for (int j = 0; j < c.size(); j++)
1866
                if (value(c[j]) != l_False)
1867
                    mapVar(var(c[j]), map, max);
1868
        }
1869
1870
    // Assumptions are added as unit clauses:
1871
    cnt += assumptions.size();
1872
1873
    fprintf(f, "p cnf %d %d\n", max, cnt);
1874
1875
    for (int i = 0; i < assumptions.size(); i++){
1876
      Assert(value(assumptions[i]) != l_False);
1877
      fprintf(f,
1878
              "%s%d 0\n",
1879
              sign(assumptions[i]) ? "-" : "",
1880
              mapVar(var(assumptions[i]), map, max) + 1);
1881
    }
1882
1883
    for (int i = 0; i < clauses_persistent.size(); i++)
1884
        toDimacs(f, ca[clauses_persistent[i]], map, max);
1885
1886
    if (verbosity > 0)
1887
        printf("Wrote %d clauses with %d variables.\n", cnt, max);
1888
}
1889
1890
1891
//=================================================================================================
1892
// Garbage Collection methods:
1893
1894
2774
void Solver::relocAll(ClauseAllocator& to)
1895
{
1896
    // All watchers:
1897
    //
1898
    // for (int i = 0; i < watches.size(); i++)
1899
2774
    watches.cleanAll();
1900
849579
    for (int v = 0; v < nVars(); v++)
1901
2540415
        for (int s = 0; s < 2; s++){
1902
1693610
            Lit p = mkLit(v, s);
1903
            // printf(" >>> RELOCING: %s%d\n", sign(p)?"-":"", var(p)+1);
1904
1693610
            vec<Watcher>& ws = watches[p];
1905
5275254
            for (int j = 0; j < ws.size(); j++)
1906
            {
1907
3581644
              ca.reloc(ws[j].cref, to);
1908
            }
1909
        }
1910
1911
    // All reasons:
1912
    //
1913
179817
    for (int i = 0; i < trail.size(); i++){
1914
177043
        Var v = var(trail[i]);
1915
1916
354086
        if (hasReasonClause(v)
1917
177043
            && (ca[reason(v)].reloced() || locked(ca[reason(v)])))
1918
        {
1919
37670
          ca.reloc(vardata[v].d_reason, to);
1920
        }
1921
    }
1922
    // All learnt:
1923
    //
1924
187662
    for (int i = 0; i < clauses_removable.size(); i++)
1925
    {
1926
184888
      ca.reloc(clauses_removable[i], to);
1927
    }
1928
    // All original:
1929
    //
1930
1608708
    for (int i = 0; i < clauses_persistent.size(); i++)
1931
    {
1932
1605934
      ca.reloc(clauses_persistent[i], to);
1933
    }
1934
2774
}
1935
1936
1937
void Solver::garbageCollect()
1938
{
1939
    // Initialize the next region to a size corresponding to the estimated utilization degree. This
1940
    // is not precise but should avoid some unnecessary reallocations for the new region:
1941
    ClauseAllocator to(ca.size() - ca.wasted());
1942
1943
    relocAll(to);
1944
    if (verbosity >= 2)
1945
        printf("|  Garbage collection:   %12d bytes => %12d bytes             |\n",
1946
               ca.size()*ClauseAllocator::Unit_Size, to.size()*ClauseAllocator::Unit_Size);
1947
    to.moveTo(ca);
1948
}
1949
1950
4869
void Solver::push()
1951
{
1952
4869
  Assert(d_enable_incremental);
1953
4869
  Assert(decisionLevel() == 0);
1954
1955
4869
  ++assertionLevel;
1956
4869
  Debug("minisat") << "in user push, increasing assertion level to " << assertionLevel << std::endl;
1957
4869
  trail_ok.push(ok);
1958
4869
  assigns_lim.push(assigns.size());
1959
1960
4869
  d_context->push();  // SAT context for cvc5
1961
1962
4869
  Debug("minisat") << "MINISAT PUSH assertionLevel is " << assertionLevel << ", trail.size is " << trail.size() << std::endl;
1963
4869
}
1964
1965
4869
void Solver::pop()
1966
{
1967
4869
  Assert(d_enable_incremental);
1968
1969
4869
  Assert(decisionLevel() == 0);
1970
1971
  // Pop the trail below the user level
1972
4869
  --assertionLevel;
1973
9738
  Debug("minisat") << "in user pop, decreasing assertion level to "
1974
4869
                   << assertionLevel << "\n"
1975
4869
                   << cvc5::push;
1976
  while (true) {
1977
57119
    Debug("minisat") << "== unassigning " << trail.last() << std::endl;
1978
57119
    Var      x  = var(trail.last());
1979
57119
    if (user_level(x) > assertionLevel) {
1980
52250
      assigns[x] = l_Undef;
1981
52250
      vardata[x] = VarData(CRef_Undef, -1, -1, intro_level(x), -1);
1982
52250
      if(phase_saving >= 1 && (polarity[x] & 0x2) == 0)
1983
51126
        polarity[x] = sign(trail.last());
1984
52250
      insertVarOrder(x);
1985
52250
      trail.pop();
1986
    } else {
1987
4869
      break;
1988
    }
1989
52250
  }
1990
1991
  // The head should be at the trail top
1992
4869
  qhead = trail.size();
1993
1994
  // Remove the clauses
1995
4869
  removeClausesAboveLevel(clauses_persistent, assertionLevel);
1996
4869
  removeClausesAboveLevel(clauses_removable, assertionLevel);
1997
4869
  Debug("minisat") << cvc5::pop;
1998
  // Pop the SAT context to notify everyone
1999
4869
  d_context->pop();  // SAT context for cvc5
2000
2001
9738
  Debug("minisat") << "MINISAT POP assertionLevel is " << assertionLevel
2002
4869
                   << ", trail.size is " << trail.size() << "\n";
2003
  // Pop the created variables
2004
4869
  resizeVars(assigns_lim.last());
2005
4869
  assigns_lim.pop();
2006
4869
  variables_to_register.clear();
2007
2008
  // Pop the OK
2009
4869
  ok = trail_ok.last();
2010
4869
  trail_ok.pop();
2011
4869
}
2012
2013
256965
CRef Solver::updateLemmas() {
2014
2015
256965
  Debug("minisat::lemmas") << "Solver::updateLemmas() begin" << std::endl;
2016
2017
  // Avoid adding lemmas indefinitely without resource-out
2018
256965
  d_proxy->spendResource(Resource::LemmaStep);
2019
2020
256965
  CRef conflict = CRef_Undef;
2021
2022
  // Decision level to backtrack to
2023
256965
  int backtrackLevel = decisionLevel();
2024
2025
  // We use this comparison operator
2026
256965
  lemma_lt lt(*this);
2027
2028
  // Check for propagation and level to backtrack to
2029
256965
  int i = 0;
2030
771025
  while (i < lemmas.size()) {
2031
    // We need this loop as when we backtrack, due to registration more lemmas could be added
2032
4520256
    for (; i < lemmas.size(); ++ i)
2033
    {
2034
      // The current lemma
2035
2131613
      vec<Lit>& lemma = lemmas[i];
2036
2037
2131613
      Trace("pf::sat") << "Solver::updateLemmas: working on lemma: ";
2038
8737445
      for (int k = 0; k < lemma.size(); ++k) {
2039
6605832
        Trace("pf::sat") << lemma[k] << " ";
2040
      }
2041
2131613
      Trace("pf::sat") << std::endl;
2042
2043
      // If it's an empty lemma, we have a conflict at zero level
2044
2132828
      if (lemma.size() == 0) {
2045
1215
        Assert(!options::unsatCores() && !needProof());
2046
1215
        conflict = CRef_Lazy;
2047
1215
        backtrackLevel = 0;
2048
1215
        Debug("minisat::lemmas") << "Solver::updateLemmas(): found empty clause" << std::endl;
2049
1215
        continue;
2050
      }
2051
      // Sort the lemma to be able to attach
2052
2130398
      sort(lemma, lt);
2053
      // See if the lemma propagates something
2054
2130398
      if (lemma.size() == 1 || value(lemma[1]) == l_False) {
2055
454136
        Debug("minisat::lemmas") << "found unit " << lemma.size() << std::endl;
2056
        // This lemma propagates, see which level we need to backtrack to
2057
454136
        int currentBacktrackLevel = lemma.size() == 1 ? 0 : level(var(lemma[1]));
2058
        // Even if the first literal is true, we should propagate it at this level (unless it's set at a lower level)
2059
454136
        if (value(lemma[0]) != l_True || level(var(lemma[0])) > currentBacktrackLevel) {
2060
438460
          if (currentBacktrackLevel < backtrackLevel) {
2061
151874
            backtrackLevel = currentBacktrackLevel;
2062
          }
2063
        }
2064
      }
2065
    }
2066
2067
    // Pop so that propagation would be current
2068
257030
    Debug("minisat::lemmas") << "Solver::updateLemmas(): backtracking to " << backtrackLevel << " from " << decisionLevel() << std::endl;
2069
257030
    cancelUntil(backtrackLevel);
2070
  }
2071
2072
  // Last index in the trail
2073
256965
  int backtrack_index = trail.size();
2074
2075
  // Attach all the clauses and enqueue all the propagations
2076
2388578
  for (int j = 0; j < lemmas.size(); ++j)
2077
  {
2078
    // The current lemma
2079
2131613
    vec<Lit>& lemma = lemmas[j];
2080
2131613
    bool removable = lemmas_removable[j];
2081
2082
    // Attach it if non-unit
2083
2131613
    CRef lemma_ref = CRef_Undef;
2084
2131613
    if (lemma.size() > 1) {
2085
      // If the lemmas is removable, we can compute its level by the level
2086
2068488
      int clauseLevel = assertionLevel;
2087
2068488
      if (removable && !assertionLevelOnly())
2088
      {
2089
179307
        clauseLevel = 0;
2090
1537141
        for (int k = 0; k < lemma.size(); ++k)
2091
        {
2092
1357834
          clauseLevel = std::max(clauseLevel, intro_level(var(lemma[k])));
2093
        }
2094
      }
2095
2096
2068488
      lemma_ref = ca.alloc(clauseLevel, lemma, removable);
2097
2068488
      if (removable) {
2098
187347
        clauses_removable.push(lemma_ref);
2099
      } else {
2100
1881141
        clauses_persistent.push(lemma_ref);
2101
      }
2102
2068488
      attachClause(lemma_ref);
2103
    }
2104
2105
    // If the lemma is propagating enqueue its literal (or set the conflict)
2106
2131613
    if (conflict == CRef_Undef && value(lemma[0]) != l_True) {
2107
2047564
      if (lemma.size() == 1 || (value(lemma[1]) == l_False && trail_index(var(lemma[1])) < backtrack_index)) {
2108
680764
        Trace("pf::sat") << "Solver::updateLemmas: unit theory lemma: "
2109
340382
                         << lemma[0] << std::endl;
2110
340382
        if (value(lemma[0]) == l_False) {
2111
          // We have a conflict
2112
54164
          if (lemma.size() > 1) {
2113
53596
            Debug("minisat::lemmas") << "Solver::updateLemmas(): conflict" << std::endl;
2114
53596
            conflict = lemma_ref;
2115
          } else {
2116
568
            Debug("minisat::lemmas") << "Solver::updateLemmas(): unit conflict or empty clause" << std::endl;
2117
568
            conflict = CRef_Lazy;
2118
568
            if (needProof())
2119
            {
2120
49
              d_pfManager->storeUnitConflict(lemma[0]);
2121
            }
2122
          }
2123
        } else {
2124
286218
          Debug("minisat::lemmas") << "lemma size is " << lemma.size() << std::endl;
2125
286218
          Debug("minisat::lemmas") << "lemma ref is " << lemma_ref << std::endl;
2126
286218
          uncheckedEnqueue(lemma[0], lemma_ref);
2127
        }
2128
      }
2129
    }
2130
  }
2131
2132
  // Clear the lemmas
2133
256965
  lemmas.clear();
2134
256965
  lemmas_removable.clear();
2135
2136
256965
  if (conflict != CRef_Undef) {
2137
55290
    theoryConflict = true;
2138
  }
2139
2140
256965
  Debug("minisat::lemmas") << "Solver::updateLemmas() end" << std::endl;
2141
2142
256965
  return conflict;
2143
}
2144
2145
6050180
void ClauseAllocator::reloc(CRef& cr, ClauseAllocator& to)
2146
{
2147
6050180
  Debug("minisat") << "ClauseAllocator::reloc: cr " << cr << std::endl;
2148
  // FIXME what is this CRef_lazy
2149
6050180
  if (cr == CRef_Lazy) return;
2150
2151
6050180
  Clause& c = operator[](cr);
2152
6050180
  if (c.reloced()) { cr = c.relocation(); return; }
2153
2154
1791497
  cr = to.alloc(c.level(), c, c.removable());
2155
1791497
  c.relocate(cr);
2156
  // Copy extra data-fields:
2157
  // (This could be cleaned-up. Generalize Clause-constructor to be applicable here instead?)
2158
1791497
  to[cr].mark(c.mark());
2159
1791497
  if (to[cr].removable())         to[cr].activity() = c.activity();
2160
1606609
  else if (to[cr].has_extra()) to[cr].calcAbstraction();
2161
}
2162
2163
3166223
inline bool Solver::withinBudget(Resource r) const
2164
{
2165
3166223
  Assert(d_proxy);
2166
  // spendResource sets async_interrupt or throws UnsafeInterruptException
2167
  // depending on whether hard-limit is enabled
2168
3166223
  d_proxy->spendResource(r);
2169
2170
3166223
  bool within_budget =
2171
6332446
      !asynch_interrupt && (conflict_budget < 0 || conflicts < conflict_budget)
2172
6332446
      && (propagation_budget < 0 || propagations < propagation_budget);
2173
3166223
  return within_budget;
2174
}
2175
2176
2508
SatProofManager* Solver::getProofManager()
2177
{
2178
2508
  return isProofEnabled() ? d_pfManager.get() : nullptr;
2179
}
2180
2181
2811
std::shared_ptr<ProofNode> Solver::getProof()
2182
{
2183
2811
  return isProofEnabled() ? d_pfManager->getProof() : nullptr;
2184
}
2185
2186
39306361
bool Solver::isProofEnabled() const { return d_pfManager != nullptr; }
2187
2188
39301042
bool Solver::needProof() const
2189
{
2190
39301042
  return isProofEnabled()
2191
40533084
         && options::unsatCoresMode() != options::UnsatCoresMode::ASSUMPTIONS;
2192
}
2193
2194
}  // namespace Minisat
2195
29322
}  // namespace cvc5