GCC Code Coverage Report
Directory: . Exec Total Coverage
File: src/prop/minisat/core/Solver.cc Lines: 855 1026 83.3 %
Date: 2021-08-11 Branches: 1177 2782 42.3 %

Line Exec Source
1
/***************************************************************************************[Solver.cc]
2
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
3
Copyright (c) 2007-2010, Niklas Sorensson
4
5
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
6
associated documentation files (the "Software"), to deal in the Software without restriction,
7
including without limitation the rights to use, copy, modify, merge, publish, distribute,
8
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
9
furnished to do so, subject to the following conditions:
10
11
The above copyright notice and this permission notice shall be included in all copies or
12
substantial portions of the Software.
13
14
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
15
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
16
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
17
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
18
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
**************************************************************************************************/
20
21
#include "prop/minisat/core/Solver.h"
22
23
#include <math.h>
24
25
#include <iostream>
26
#include <unordered_set>
27
28
#include "base/check.h"
29
#include "base/output.h"
30
#include "options/base_options.h"
31
#include "options/main_options.h"
32
#include "options/prop_options.h"
33
#include "options/smt_options.h"
34
#include "proof/clause_id.h"
35
#include "prop/minisat/minisat.h"
36
#include "prop/minisat/mtl/Sort.h"
37
#include "prop/theory_proxy.h"
38
39
using namespace cvc5::prop;
40
41
namespace cvc5 {
42
namespace Minisat {
43
44
namespace {
45
/*
46
 * Returns true if the solver should add all clauses at the current assertion
47
 * level.
48
 *
49
 * FIXME: This is a workaround. Currently, our resolution proofs do not
50
 * handle clauses with a lower-than-assertion-level correctly because the
51
 * resolution proofs get removed when popping the context but the SAT solver
52
 * keeps using them.
53
 */
54
12597051
bool assertionLevelOnly()
55
{
56
17484218
  return (options::produceProofs() || options::unsatCores())
57
20306945
         && options::incrementalSolving();
58
}
59
60
//=================================================================================================
61
// Helper functions for decision tree tracing
62
63
// Writes to Trace macro for decision tree tracing
64
static inline void dtviewDecisionHelper(size_t level,
65
                                        const Node& node,
66
                                        const char* decisiontype)
67
{
68
  Trace("dtview") << std::string(level - (options::incrementalSolving() ? 1 : 0), '*')
69
                  << " " << node << " :" << decisiontype << "-DECISION:" << std::endl;
70
}
71
72
// Writes to Trace macro for propagation tracing
73
static inline void dtviewPropagationHeaderHelper(size_t level)
74
{
75
  Trace("dtview::prop") << std::string(level + 1 - (options::incrementalSolving() ? 1 : 0),
76
                                       '*')
77
                        << " /Propagations/" << std::endl;
78
}
79
80
// Writes to Trace macro for propagation tracing
81
static inline void dtviewBoolPropagationHelper(size_t level,
82
                                               Lit& l,
83
                                               cvc5::prop::TheoryProxy* proxy)
84
{
85
  Trace("dtview::prop") << std::string(
86
      level + 1 - (options::incrementalSolving() ? 1 : 0), ' ')
87
                        << ":BOOL-PROP: "
88
                        << proxy->getNode(MinisatSatSolver::toSatLiteral(l))
89
                        << std::endl;
90
}
91
92
// Writes to Trace macro for conflict tracing
93
static inline void dtviewPropConflictHelper(size_t level,
94
                                            Clause& confl,
95
                                            cvc5::prop::TheoryProxy* proxy)
96
{
97
  Trace("dtview::conflict")
98
      << std::string(level + 1 - (options::incrementalSolving() ? 1 : 0), ' ')
99
      << ":PROP-CONFLICT: (or";
100
  for (int i = 0; i < confl.size(); i++)
101
  {
102
    Trace("dtview::conflict")
103
        << " " << proxy->getNode(MinisatSatSolver::toSatLiteral(confl[i]));
104
  }
105
  Trace("dtview::conflict") << ")" << std::endl;
106
}
107
108
}  // namespace
109
110
//=================================================================================================
111
// Options:
112
113
static const char* _cat = "CORE";
114
115
9779
static DoubleOption  opt_var_decay         (_cat, "var-decay",   "The variable activity decay factor",            0.95,     DoubleRange(0, false, 1, false));
116
9779
static DoubleOption  opt_clause_decay      (_cat, "cla-decay",   "The clause activity decay factor",              0.999,    DoubleRange(0, false, 1, false));
117
9779
static DoubleOption  opt_random_var_freq   (_cat, "rnd-freq",    "The frequency with which the decision heuristic tries to choose a random variable", 0, DoubleRange(0, true, 1, true));
118
9779
static DoubleOption  opt_random_seed       (_cat, "rnd-seed",    "Used by the random variable selection",         91648253, DoubleRange(0, false, HUGE_VAL, false));
119
9779
static IntOption     opt_ccmin_mode        (_cat, "ccmin-mode",  "Controls conflict clause minimization (0=none, 1=basic, 2=deep)", 2, IntRange(0, 2));
120
9779
static IntOption     opt_phase_saving      (_cat, "phase-saving", "Controls the level of phase saving (0=none, 1=limited, 2=full)", 2, IntRange(0, 2));
121
9779
static BoolOption    opt_rnd_init_act      (_cat, "rnd-init",    "Randomize the initial activity", false);
122
9779
static BoolOption    opt_luby_restart      (_cat, "luby",        "Use the Luby restart sequence", true);
123
9779
static IntOption     opt_restart_first     (_cat, "rfirst",      "The base restart interval", 25, IntRange(1, INT32_MAX));
124
9779
static DoubleOption  opt_restart_inc       (_cat, "rinc",        "Restart interval increase factor", 3, DoubleRange(1, false, HUGE_VAL, false));
125
9779
static DoubleOption  opt_garbage_frac      (_cat, "gc-frac",     "The fraction of wasted memory allowed before a garbage collection is triggered",  0.20, DoubleRange(0, false, HUGE_VAL, false));
126
127
//=================================================================================================
128
// Proof declarations
129
CRef Solver::TCRef_Undef = CRef_Undef;
130
CRef Solver::TCRef_Lazy = CRef_Lazy;
131
132
class ScopedBool
133
{
134
  bool& d_watch;
135
  bool d_oldValue;
136
137
 public:
138
3520009
  ScopedBool(bool& watch, bool newValue) : d_watch(watch), d_oldValue(watch)
139
  {
140
3520009
    watch = newValue;
141
3520009
  }
142
3520009
  ~ScopedBool() { d_watch = d_oldValue; }
143
};
144
145
//=================================================================================================
146
// Constructor/Destructor:
147
148
9918
Solver::Solver(cvc5::prop::TheoryProxy* proxy,
149
               cvc5::context::Context* context,
150
               cvc5::context::UserContext* userContext,
151
               ProofNodeManager* pnm,
152
9918
               bool enableIncremental)
153
    : d_proxy(proxy),
154
      d_context(context),
155
      assertionLevel(0),
156
      d_pfManager(nullptr),
157
      d_enable_incremental(enableIncremental),
158
      minisat_busy(false)
159
      // Parameters (user settable):
160
      //
161
      ,
162
      verbosity(0),
163
      var_decay(opt_var_decay),
164
      clause_decay(opt_clause_decay),
165
      random_var_freq(opt_random_var_freq),
166
      random_seed(opt_random_seed),
167
      luby_restart(opt_luby_restart),
168
      ccmin_mode(opt_ccmin_mode),
169
      phase_saving(opt_phase_saving),
170
      rnd_pol(false),
171
      rnd_init_act(opt_rnd_init_act),
172
      garbage_frac(opt_garbage_frac),
173
      restart_first(opt_restart_first),
174
      restart_inc(opt_restart_inc)
175
176
      // Parameters (the rest):
177
      //
178
      ,
179
      learntsize_factor(1),
180
      learntsize_inc(1.5)
181
182
      // Parameters (experimental):
183
      //
184
      ,
185
      learntsize_adjust_start_confl(100),
186
      learntsize_adjust_inc(1.5)
187
188
      // Statistics: (formerly in 'SolverStats')
189
      //
190
      ,
191
      solves(0),
192
      starts(0),
193
      decisions(0),
194
      rnd_decisions(0),
195
      propagations(0),
196
      conflicts(0),
197
      resources_consumed(0),
198
      dec_vars(0),
199
      clauses_literals(0),
200
      learnts_literals(0),
201
      max_literals(0),
202
      tot_literals(0)
203
204
      ,
205
      ok(true),
206
      cla_inc(1),
207
      var_inc(1),
208
19836
      watches(WatcherDeleted(ca)),
209
      qhead(0),
210
      simpDB_assigns(-1),
211
      simpDB_props(0),
212
19836
      order_heap(VarOrderLt(activity)),
213
      progress_estimate(0),
214
9918
      remove_satisfied(!enableIncremental)
215
216
      // Resource constraints:
217
      //
218
      ,
219
      conflict_budget(-1),
220
      propagation_budget(-1),
221
59508
      asynch_interrupt(false)
222
{
223
9918
  if (pnm)
224
  {
225
2508
    d_pfManager.reset(
226
1254
        new SatProofManager(this, proxy->getCnfStream(), userContext, pnm));
227
  }
228
229
  // Create the constant variables
230
9918
  varTrue = newVar(true, false, false);
231
9918
  varFalse = newVar(false, false, false);
232
233
  // Assert the constants
234
9918
  uncheckedEnqueue(mkLit(varTrue, false));
235
9918
  uncheckedEnqueue(mkLit(varFalse, true));
236
9918
}
237
238
239
9918
Solver::~Solver()
240
{
241
9918
}
242
243
244
//=================================================================================================
245
// Minor methods:
246
247
248
// Creates a new SAT variable in the solver. If 'decision_var' is cleared, variable will not be
249
// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
250
//
251
1294364
Var Solver::newVar(bool sign, bool dvar, bool isTheoryAtom, bool preRegister, bool canErase)
252
{
253
1294364
    int v = nVars();
254
255
1294364
    watches  .init(mkLit(v, false));
256
1294364
    watches  .init(mkLit(v, true ));
257
1294364
    assigns  .push(l_Undef);
258
1294364
    vardata  .push(VarData(CRef_Undef, -1, -1, assertionLevel, -1));
259
1294364
    activity .push(rnd_init_act ? drand(random_seed) * 0.00001 : 0);
260
1294364
    seen     .push(0);
261
1294364
    polarity .push(sign);
262
1294364
    decision .push();
263
1294364
    trail    .capacity(v+1);
264
    // push whether it corresponds to a theory atom
265
1294364
    theory.push(isTheoryAtom);
266
267
1294364
    setDecisionVar(v, dvar);
268
269
1294364
    Debug("minisat") << "new var " << v << std::endl;
270
271
    // If the variable is introduced at non-zero level, we need to reintroduce it on backtracks
272
1294364
    if (preRegister)
273
    {
274
1190888
      Debug("minisat") << "  To register at level " << decisionLevel()
275
595444
                       << std::endl;
276
595444
      variables_to_register.push(VarIntroInfo(v, decisionLevel()));
277
    }
278
279
1294364
    return v;
280
}
281
282
4869
void Solver::resizeVars(int newSize) {
283
4869
  Assert(d_enable_incremental);
284
4869
  Assert(decisionLevel() == 0);
285
4869
  Assert(newSize >= 2) << "always keep true/false";
286
4869
  if (newSize < nVars()) {
287
3069
    int shrinkSize = nVars() - newSize;
288
289
    // Resize watches up to the negated last literal
290
3069
    watches.resizeTo(mkLit(newSize-1, true));
291
292
    // Resize all info arrays
293
3069
    assigns.shrink(shrinkSize);
294
3069
    vardata.shrink(shrinkSize);
295
3069
    activity.shrink(shrinkSize);
296
3069
    seen.shrink(shrinkSize);
297
3069
    polarity.shrink(shrinkSize);
298
3069
    decision.shrink(shrinkSize);
299
3069
    theory.shrink(shrinkSize);
300
  }
301
302
4869
  if (Debug.isOn("minisat::pop")) {
303
    for (int i = 0; i < trail.size(); ++ i) {
304
      Assert(var(trail[i]) < nVars());
305
    }
306
  }
307
4869
}
308
309
174473958
CRef Solver::reason(Var x) {
310
174473958
  Trace("pf::sat") << "Solver::reason(" << x << ")" << std::endl;
311
312
  // If we already have a reason, just return it
313
174473958
  if (vardata[x].d_reason != CRef_Lazy)
314
  {
315
174435668
    if (Trace.isOn("pf::sat"))
316
    {
317
      Trace("pf::sat") << "  Solver::reason: " << vardata[x].d_reason << ", ";
318
      if (vardata[x].d_reason == CRef_Undef)
319
      {
320
        Trace("pf::sat") << "CRef_Undef";
321
      }
322
      else
323
      {
324
        for (unsigned i = 0, size = ca[vardata[x].d_reason].size(); i < size;
325
             ++i)
326
        {
327
          Trace("pf::sat") << ca[vardata[x].d_reason][i] << " ";
328
        }
329
      }
330
      Trace("pf::sat") << "\n";
331
    }
332
174435668
    return vardata[x].d_reason;
333
  }
334
  // What's the literal we are trying to explain
335
38290
  Lit l = mkLit(x, value(x) != l_True);
336
337
  // Get the explanation from the theory
338
76580
  SatClause explanation_cl;
339
  // FIXME: at some point return a tag with the theory that spawned you
340
38290
  d_proxy->explainPropagation(MinisatSatSolver::toSatLiteral(l),
341
                              explanation_cl);
342
76580
  vec<Lit> explanation;
343
38290
  MinisatSatSolver::toMinisatClause(explanation_cl, explanation);
344
345
76580
  Trace("pf::sat") << "Solver::reason: explanation_cl = " << explanation_cl
346
38290
                   << std::endl;
347
348
  // Sort the literals by trail index level
349
38290
  lemma_lt lt(*this);
350
38290
  sort(explanation, lt);
351
38290
  Assert(explanation[0] == l);
352
353
  // Compute the assertion level for this clause
354
38290
  int explLevel = 0;
355
38290
  if (assertionLevelOnly())
356
  {
357
1550
    explLevel = assertionLevel;
358
    }
359
    else
360
    {
361
      int i, j;
362
36740
      Lit prev = lit_Undef;
363
275969
      for (i = 0, j = 0; i < explanation.size(); ++i)
364
      {
365
        // This clause is valid theory propagation, so its level is the level of
366
        // the top literal
367
239229
        explLevel = std::max(explLevel, intro_level(var(explanation[i])));
368
369
239229
        Assert(value(explanation[i]) != l_Undef);
370
239229
        Assert(i == 0
371
               || trail_index(var(explanation[0]))
372
                      > trail_index(var(explanation[i])));
373
374
        // Always keep the first literal
375
275969
        if (i == 0)
376
        {
377
36740
          prev = explanation[j++] = explanation[i];
378
36740
          continue;
379
        }
380
        // Ignore duplicate literals
381
202489
        if (explanation[i] == prev)
382
        {
383
          continue;
384
        }
385
        // Ignore zero level literals
386
404978
        if (level(var(explanation[i])) == 0
387
202489
            && user_level(var(explanation[i]) == 0))
388
        {
389
          continue;
390
        }
391
        // Keep this literal
392
202489
        prev = explanation[j++] = explanation[i];
393
      }
394
36740
      explanation.shrink(i - j);
395
396
36740
      Trace("pf::sat") << "Solver::reason: explanation = ";
397
275969
      for (int k = 0; k < explanation.size(); ++k)
398
      {
399
239229
        Trace("pf::sat") << explanation[k] << " ";
400
      }
401
36740
      Trace("pf::sat") << std::endl;
402
403
      // We need an explanation clause so we add a fake literal
404
36740
      if (j == 1)
405
      {
406
        // Add not TRUE to the clause
407
        explanation.push(mkLit(varTrue, true));
408
      }
409
    }
410
411
    // Construct the reason
412
38290
    CRef real_reason = ca.alloc(explLevel, explanation, true);
413
38290
    vardata[x] = VarData(real_reason, level(x), user_level(x), intro_level(x), trail_index(x));
414
38290
    clauses_removable.push(real_reason);
415
38290
    attachClause(real_reason);
416
417
38290
    return real_reason;
418
}
419
420
3947488
bool Solver::addClause_(vec<Lit>& ps, bool removable, ClauseId& id)
421
{
422
3947488
    if (!ok) return false;
423
424
    // Check if clause is satisfied and remove false/duplicate literals:
425
3947488
    sort(ps);
426
    Lit p; int i, j;
427
428
    // Which user-level to assert this clause at
429
3947488
    int clauseLevel = (removable && !assertionLevelOnly()) ? 0 : assertionLevel;
430
431
    // Check the clause for tautologies and similar
432
3947488
    int falseLiteralsCount = 0;
433
15657553
    for (i = j = 0, p = lit_Undef; i < ps.size(); i++) {
434
      // Update the level
435
23781590
      clauseLevel = assertionLevelOnly()
436
23164364
                        ? assertionLevel
437
23164364
                        : std::max(clauseLevel, intro_level(var(ps[i])));
438
      // Tautologies are ignored
439
11890795
      if (ps[i] == ~p) {
440
17707
        id = ClauseIdUndef;
441
        // Clause can be ignored
442
17707
        return true;
443
      }
444
      // Clauses with 0-level true literals are also ignored
445
11873088
      if (value(ps[i]) == l_True && level(var(ps[i])) == 0 && user_level(var(ps[i])) == 0) {
446
163023
        id = ClauseIdUndef;
447
163023
        return true;
448
      }
449
      // Ignore repeated literals
450
11710065
      if (ps[i] == p) {
451
19237
        continue;
452
      }
453
      // If a literal is false at 0 level (both sat and user level) we also
454
      // ignore it, unless we are tracking the SAT solver's reasoning
455
11690828
      if (value(ps[i]) == l_False) {
456
7022717
        if (!options::unsatCores() && !needProof() && level(var(ps[i])) == 0
457
3485810
            && user_level(var(ps[i])) == 0)
458
        {
459
754049
          continue;
460
        }
461
        else
462
        {
463
          // If we decide to keep it, we count it into the false literals
464
1957103
          falseLiteralsCount++;
465
        }
466
      }
467
      // This literal is a keeper
468
10936779
      ps[j++] = p = ps[i];
469
    }
470
471
    // Fit to size
472
3766758
    ps.shrink(i - j);
473
474
    // If we are in solve_ or propagate
475
3766758
    if (minisat_busy)
476
    {
477
2126405
      Trace("pf::sat") << "Add clause adding a new lemma: ";
478
8679373
      for (int k = 0; k < ps.size(); ++k) {
479
6552968
        Trace("pf::sat") << ps[k] << " ";
480
      }
481
2126405
      Trace("pf::sat") << std::endl;
482
483
2126405
      lemmas.push();
484
2126405
      ps.copyTo(lemmas.last());
485
2126405
      lemmas_removable.push(removable);
486
    } else {
487
1640353
      Assert(decisionLevel() == 0);
488
489
      // If all false, we're in conflict
490
1640353
      if (ps.size() == falseLiteralsCount) {
491
1321
        if (options::unsatCores() || needProof())
492
        {
493
          // Take care of false units here; otherwise, we need to
494
          // construct the clause below to give to the proof manager
495
          // as the final conflict.
496
489
          if(falseLiteralsCount == 1) {
497
470
            if (needProof())
498
            {
499
470
              d_pfManager->finalizeProof(ps[0], true);
500
            }
501
84282
            return ok = false;
502
          }
503
        }
504
        else
505
        {
506
832
          return ok = false;
507
        }
508
      }
509
510
1639051
      CRef cr = CRef_Undef;
511
512
      // If not unit, add the clause
513
1639051
      if (ps.size() > 1) {
514
515
1560193
        lemma_lt lt(*this);
516
1560193
        sort(ps, lt);
517
518
1560193
        cr = ca.alloc(clauseLevel, ps, false);
519
1560193
        clauses_persistent.push(cr);
520
1560193
        attachClause(cr);
521
522
1560193
        if (options::unsatCores() || needProof())
523
        {
524
817136
          if (ps.size() == falseLiteralsCount)
525
          {
526
19
            if (needProof())
527
            {
528
19
              d_pfManager->finalizeProof(ca[cr], true);
529
            }
530
19
            return ok = false;
531
          }
532
        }
533
      }
534
535
      // Check if it propagates
536
1639032
      if (ps.size() == falseLiteralsCount + 1) {
537
82491
        if(assigns[var(ps[0])] == l_Undef) {
538
80149
          Assert(assigns[var(ps[0])] != l_False);
539
80149
          uncheckedEnqueue(ps[0], cr);
540
160298
          Debug("cores") << "i'm registering a unit clause, maybe input"
541
80149
                         << std::endl;
542
80149
          if (ps.size() == 1)
543
          {
544
            // We need to do this so that the closedness check, if being done,
545
            // goes through when we have unit assumptions whose literal has
546
            // already been registered, as the ProofCnfStream will not register
547
            // them and as they are not the result of propagation will be left
548
            // hanging in assumptions accumulator
549
77342
            if (needProof())
550
            {
551
23803
              d_pfManager->registerSatLitAssumption(ps[0]);
552
            }
553
          }
554
80149
          CRef confl = propagate(CHECK_WITHOUT_THEORY);
555
80149
          if(! (ok = (confl == CRef_Undef)) ) {
556
38
            if (needProof())
557
            {
558
13
              if (ca[confl].size() == 1)
559
              {
560
                d_pfManager->finalizeProof(ca[confl][0]);
561
              }
562
              else
563
              {
564
13
                d_pfManager->finalizeProof(ca[confl]);
565
              }
566
            }
567
          }
568
80149
          return ok;
569
        } else {
570
2342
          return ok;
571
        }
572
      }
573
    }
574
575
3682946
    return true;
576
}
577
578
579
4046802
void Solver::attachClause(CRef cr) {
580
4046802
    const Clause& c = ca[cr];
581
4046802
    if (Debug.isOn("minisat"))
582
    {
583
      Debug("minisat") << "Solver::attachClause(" << c << "): ";
584
      for (unsigned i = 0, size = c.size(); i < size; ++i)
585
      {
586
        Debug("minisat") << c[i] << " ";
587
      }
588
      Debug("minisat") << ", level " << c.level() << "\n";
589
    }
590
4046802
    Assert(c.size() > 1);
591
4046802
    watches[~c[0]].push(Watcher(cr, c[1]));
592
4046802
    watches[~c[1]].push(Watcher(cr, c[0]));
593
4046802
    if (c.removable()) learnts_literals += c.size();
594
3529339
    else            clauses_literals += c.size();
595
4046802
}
596
597
598
821790
void Solver::detachClause(CRef cr, bool strict) {
599
821790
    const Clause& c = ca[cr];
600
821790
    Debug("minisat") << "Solver::detachClause(" << c << ")" << std::endl;
601
821790
    if (Debug.isOn("minisat"))
602
    {
603
      Debug("minisat") << "Solver::detachClause(" << c << "), CRef " << cr
604
                       << ", clause ";
605
      for (unsigned i = 0, size = c.size(); i < size; ++i)
606
      {
607
        Debug("minisat") << c[i] << " ";
608
      }
609
610
      Debug("minisat") << "\n";
611
    }
612
821790
    Assert(c.size() > 1);
613
614
821790
    if (strict){
615
89052
        remove(watches[~c[0]], Watcher(cr, c[1]));
616
89052
        remove(watches[~c[1]], Watcher(cr, c[0]));
617
    }else{
618
        // Lazy detaching: (NOTE! Must clean all watcher lists before garbage collecting this clause)
619
732738
        watches.smudge(~c[0]);
620
732738
        watches.smudge(~c[1]);
621
    }
622
623
821790
    if (c.removable()) learnts_literals -= c.size();
624
581895
    else            clauses_literals -= c.size(); }
625
626
627
732738
void Solver::removeClause(CRef cr) {
628
732738
    Clause& c = ca[cr];
629
732738
    if (Debug.isOn("minisat"))
630
    {
631
      Debug("minisat") << "Solver::removeClause(" << c << "), CRef " << cr
632
                       << ", clause ";
633
      for (unsigned i = 0, size = c.size(); i < size; ++i)
634
      {
635
        Debug("minisat") << c[i] << " ";
636
      }
637
      Debug("minisat") << "\n";
638
    }
639
732738
    detachClause(cr);
640
    // Don't leave pointers to free'd memory!
641
732738
    if (locked(c))
642
    {
643
      // a locked clause c is one whose first literal c[0] is true and is
644
      // propagated by c itself, i.e. vardata[var(c[0])].d_reason == c. Because
645
      // of this if we need to justify the propagation of c[0], via
646
      // Solver::reason, if it appears in a resolution chain built lazily we
647
      // will be unable to do so after the step below. Thus we eagerly justify
648
      // this propagation here.
649
10789
      if (needProof())
650
      {
651
2062
        Trace("pf::sat")
652
1031
            << "Solver::removeClause: eagerly compute propagation of " << c[0]
653
1031
            << "\n";
654
1031
        d_pfManager->startResChain(c);
655
4135
        for (unsigned i = 1, size = c.size(); i < size; ++i)
656
        {
657
3104
          d_pfManager->addResolutionStep(c[i]);
658
        }
659
1031
        d_pfManager->endResChain(c[0]);
660
      }
661
10789
      vardata[var(c[0])].d_reason = CRef_Undef;
662
    }
663
732738
    c.mark(1);
664
732738
    ca.free(cr);
665
732738
}
666
667
668
451294
bool Solver::satisfied(const Clause& c) const {
669
21435903
    for (int i = 0; i < c.size(); i++)
670
21029047
        if (value(c[i]) == l_True)
671
44438
            return true;
672
406856
    return false; }
673
674
675
// Revert to the state at given level (keeping all assignment at 'level' but not beyond).
676
//
677
571884
void Solver::cancelUntil(int level) {
678
571884
    Debug("minisat") << "minisat::cancelUntil(" << level << ")" << std::endl;
679
680
571884
    if (decisionLevel() > level){
681
        // Pop the SMT context
682
3406504
        for (int l = trail_lim.size() - level; l > 0; --l) {
683
2953971
          d_context->pop();
684
        }
685
116099481
        for (int c = trail.size()-1; c >= trail_lim[level]; c--){
686
115646948
            Var      x  = var(trail[c]);
687
115646948
            assigns [x] = l_Undef;
688
115646948
            vardata[x].d_trail_index = -1;
689
231293896
            if ((phase_saving > 1 ||
690
                 ((phase_saving == 1) && c > trail_lim.last())
691
231293896
                 ) && ((polarity[x] & 0x2) == 0)) {
692
114771961
              polarity[x] = sign(trail[c]);
693
            }
694
115646948
            insertVarOrder(x);
695
        }
696
452533
        qhead = trail_lim[level];
697
452533
        trail.shrink(trail.size() - trail_lim[level]);
698
452533
        trail_lim.shrink(trail_lim.size() - level);
699
452533
        flipped.shrink(flipped.size() - level);
700
701
        // Register variables that have not been registered yet
702
452533
        int currentLevel = decisionLevel();
703
885629
        for (int i = variables_to_register.size() - 1;
704
885629
             i >= 0 && variables_to_register[i].d_level > currentLevel;
705
             --i)
706
        {
707
433096
          variables_to_register[i].d_level = currentLevel;
708
866192
          d_proxy->variableNotify(
709
433096
              MinisatSatSolver::toSatVariable(variables_to_register[i].d_var));
710
        }
711
    }
712
571884
}
713
714
15186
void Solver::resetTrail() { cancelUntil(0); }
715
716
//=================================================================================================
717
// Major methods:
718
719
720
2677163
Lit Solver::pickBranchLit()
721
{
722
    Lit nextLit;
723
724
    // Theory requests
725
2677161
    nextLit =
726
2677163
        MinisatSatSolver::toMinisatLit(d_proxy->getNextTheoryDecisionRequest());
727
2697885
    while (nextLit != lit_Undef) {
728
60469
      if(value(var(nextLit)) == l_Undef) {
729
100214
        Debug("theoryDecision")
730
50107
            << "getNextTheoryDecisionRequest(): now deciding on " << nextLit
731
50107
            << std::endl;
732
50107
        decisions++;
733
734
        // org-mode tracing -- theory decision
735
50107
        if (Trace.isOn("dtview"))
736
        {
737
          dtviewDecisionHelper(
738
              d_context->getLevel(),
739
              d_proxy->getNode(MinisatSatSolver::toSatLiteral(nextLit)),
740
              "THEORY");
741
        }
742
743
50107
        if (Trace.isOn("dtview::prop"))
744
        {
745
          dtviewPropagationHeaderHelper(d_context->getLevel());
746
        }
747
748
50107
        return nextLit;
749
      } else {
750
20724
        Debug("theoryDecision")
751
10362
            << "getNextTheoryDecisionRequest(): would decide on " << nextLit
752
10362
            << " but it already has an assignment" << std::endl;
753
      }
754
10362
      nextLit = MinisatSatSolver::toMinisatLit(
755
10362
          d_proxy->getNextTheoryDecisionRequest());
756
    }
757
5254108
    Debug("theoryDecision")
758
2627054
        << "getNextTheoryDecisionRequest(): decide on another literal"
759
2627054
        << std::endl;
760
761
    // DE requests
762
2627054
    bool stopSearch = false;
763
2627054
    nextLit = MinisatSatSolver::toMinisatLit(
764
2627054
        d_proxy->getNextDecisionEngineRequest(stopSearch));
765
2627054
    if(stopSearch) {
766
51470
      return lit_Undef;
767
    }
768
2575584
    if(nextLit != lit_Undef) {
769
1131437
      Assert(value(var(nextLit)) == l_Undef)
770
          << "literal to decide already has value";
771
1131437
      decisions++;
772
1131437
      Var next = var(nextLit);
773
1131437
      if(polarity[next] & 0x2) {
774
208268
        nextLit = mkLit(next, polarity[next] & 0x1);
775
      }
776
777
      // org-mode tracing -- decision engine decision
778
1131437
      if (Trace.isOn("dtview"))
779
      {
780
        dtviewDecisionHelper(
781
            d_context->getLevel(),
782
            d_proxy->getNode(MinisatSatSolver::toSatLiteral(nextLit)),
783
            "DE");
784
      }
785
786
1131437
      if (Trace.isOn("dtview::prop"))
787
      {
788
        dtviewPropagationHeaderHelper(d_context->getLevel());
789
      }
790
791
1131437
      return nextLit;
792
    }
793
794
1444147
    Var next = var_Undef;
795
796
    // Random decision:
797
1444147
    if (drand(random_seed) < random_var_freq && !order_heap.empty()){
798
        next = order_heap[irand(random_seed,order_heap.size())];
799
        if (value(next) == l_Undef && decision[next])
800
            rnd_decisions++; }
801
802
    // Activity based decision:
803
10706283
    while (next >= nVars() || next == var_Undef || value(next) != l_Undef || !decision[next]) {
804
4649367
        if (order_heap.empty()){
805
18299
            next = var_Undef;
806
18299
            break;
807
        }else {
808
4631068
            next = order_heap.removeMin();
809
        }
810
811
4631068
        if(!decision[next]) continue;
812
        // Check with decision engine about relevancy
813
9236832
        if (d_proxy->isDecisionRelevant(MinisatSatSolver::toSatVariable(next))
814
4618416
            == false)
815
        {
816
          next = var_Undef;
817
        }
818
    }
819
820
1444147
    if(next == var_Undef) {
821
18299
      return lit_Undef;
822
    } else {
823
1425848
      decisions++;
824
      // Check with decision engine if it can tell polarity
825
      lbool dec_pol = MinisatSatSolver::toMinisatlbool(
826
1425848
          d_proxy->getDecisionPolarity(MinisatSatSolver::toSatVariable(next)));
827
      Lit decisionLit;
828
1425848
      if(dec_pol != l_Undef) {
829
        Assert(dec_pol == l_True || dec_pol == l_False);
830
        decisionLit = mkLit(next, (dec_pol == l_True));
831
      }
832
      else
833
      {
834
        // If it can't use internal heuristic to do that
835
1425848
        decisionLit = mkLit(
836
1425848
            next, rnd_pol ? drand(random_seed) < 0.5 : (polarity[next] & 0x1));
837
      }
838
839
      // org-mode tracing -- decision engine decision
840
1425848
      if (Trace.isOn("dtview"))
841
      {
842
        dtviewDecisionHelper(
843
            d_context->getLevel(),
844
            d_proxy->getNode(MinisatSatSolver::toSatLiteral(decisionLit)),
845
            "DE");
846
      }
847
848
1425848
      if (Trace.isOn("dtview::prop"))
849
      {
850
        dtviewPropagationHeaderHelper(d_context->getLevel());
851
      }
852
853
1425848
      return decisionLit;
854
    }
855
}
856
857
858
/*_________________________________________________________________________________________________
859
|
860
|  analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&)  ->  [void]
861
|
862
|  Description:
863
|    Analyze conflict and produce a reason clause.
864
|
865
|    Pre-conditions:
866
|      * 'out_learnt' is assumed to be cleared.
867
|      * Current decision level must be greater than root level.
868
|
869
|    Post-conditions:
870
|      * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
871
|      * If out_learnt.size() > 1 then 'out_learnt[1]' has the greatest decision level of the
872
|        rest of literals. There may be others from the same level though.
873
|      * returns the maximal level of the resolved clauses
874
|
875
|________________________________________________________________________________________________@*/
876
302062
int Solver::analyze(CRef confl, vec<Lit>& out_learnt, int& out_btlevel)
877
{
878
604124
  Trace("pf::sat") << "Solver::analyze: starting with " << confl
879
302062
                   << " with decision level " << decisionLevel() << "\n";
880
881
302062
  int pathC = 0;
882
302062
  Lit p = lit_Undef;
883
884
  // Generate conflict clause:
885
  //
886
302062
  out_learnt.push();  // (leave room for the asserting literal)
887
302062
  int index = trail.size() - 1;
888
889
302062
  int max_resolution_level = 0;  // Maximal level of the resolved clauses
890
891
302062
    if (needProof())
892
    {
893
22704
      d_pfManager->startResChain(ca[confl]);
894
    }
895
33433112
    do{
896
33735174
      Assert(confl != CRef_Undef);  // (otherwise should be UIP)
897
898
      {
899
        // ! IMPORTANT !
900
        // It is not safe to use c after this block of code because
901
        // resolveOutUnit() below may lead to clauses being allocated, which
902
        // in turn may lead to reallocations that invalidate c.
903
33735174
        Clause& c = ca[confl];
904
33735174
        max_resolution_level = std::max(max_resolution_level, c.level());
905
906
33735174
        if (c.removable()) claBumpActivity(c);
907
      }
908
909
33735174
        if (Trace.isOn("pf::sat"))
910
        {
911
          Trace("pf::sat") << "Solver::analyze: conflict clause ";
912
          for (unsigned i = 0, size = ca[confl].size(); i < size; ++i)
913
          {
914
            Trace("pf::sat") << ca[confl][i] << " ";
915
          }
916
          Trace("pf::sat") << "\n";
917
        }
918
919
33735174
        Trace("pf::sat") << cvc5::push;
920
231244308
        for (int j = (p == lit_Undef) ? 0 : 1, size = ca[confl].size();
921
231244308
             j < size;
922
             j++)
923
        {
924
197509134
          Lit q = ca[confl][j];
925
926
395018268
          Trace("pf::sat") << "Lit " << q
927
395018268
                           << " seen/level: " << (seen[var(q)] ? 1 : 0) << " / "
928
197509134
                           << level(var(q)) << "\n";
929
197509134
          if (!seen[var(q)] && level(var(q)) > 0)
930
          {
931
60907919
            varBumpActivity(var(q));
932
60907919
            seen[var(q)] = 1;
933
60907919
            if (level(var(q)) >= decisionLevel())
934
33735174
              pathC++;
935
            else
936
27172745
              out_learnt.push(q);
937
          }
938
          else
939
          {
940
            // We could be resolving a literal propagated by a clause/theory
941
            // using information from a higher level
942
136601215
            if (!seen[var(q)] && level(var(q)) == 0)
943
            {
944
394073
              max_resolution_level =
945
788146
                  std::max(max_resolution_level, user_level(var(q)));
946
            }
947
948
            // FIXME: can we do it lazily if we actually need the proof?
949
136601215
            if (level(var(q)) == 0 && needProof())
950
            {
951
139484
              d_pfManager->addResolutionStep(q);
952
            }
953
          }
954
        }
955
33735174
        Trace("pf::sat") << cvc5::pop;
956
957
        // Select next clause to look at:
958
93658910
        while (!seen[var(trail[index--])]);
959
33735174
        p     = trail[index+1];
960
33735174
        confl = reason(var(p));
961
33735174
        seen[var(p)] = 0;
962
33735174
        pathC--;
963
964
33735174
        if (pathC > 0 && confl != CRef_Undef && needProof())
965
        {
966
296763
          d_pfManager->addResolutionStep(ca[confl], p);
967
        }
968
969
33735174
    } while (pathC > 0);
970
302062
    out_learnt[0] = ~p;
971
302062
    if (Debug.isOn("newproof::sat"))
972
    {
973
      Debug("newproof::sat") << "finished with learnt clause ";
974
      for (unsigned i = 0, size = out_learnt.size(); i < size; ++i)
975
      {
976
        prop::SatLiteral satLit = toSatLiteral<Minisat::Solver>(out_learnt[i]);
977
        Debug("newproof::sat") << satLit << " ";
978
      }
979
      Debug("newproof::sat") << "\n";
980
    }
981
982
    // Simplify conflict clause:
983
    int i, j;
984
302062
    out_learnt.copyTo(analyze_toclear);
985
302062
    if (ccmin_mode == 2){
986
302062
        uint32_t abstract_level = 0;
987
27474807
        for (i = 1; i < out_learnt.size(); i++)
988
27172745
            abstract_level |= abstractLevel(var(out_learnt[i])); // (maintain an abstraction of levels involved in conflict)
989
990
27474807
        for (i = j = 1; i < out_learnt.size(); i++) {
991
27172745
            if (reason(var(out_learnt[i])) == CRef_Undef) {
992
4583725
                out_learnt[j++] = out_learnt[i];
993
            } else {
994
              // Check if the literal is redundant
995
22589020
              if (!litRedundant(out_learnt[i], abstract_level)) {
996
                // Literal is not redundant
997
20177606
                out_learnt[j++] = out_learnt[i];
998
              } else {
999
2411414
                if (needProof())
1000
                {
1001
72924
                  Debug("newproof::sat")
1002
36462
                      << "Solver::analyze: redundant lit "
1003
36462
                      << toSatLiteral<Minisat::Solver>(out_learnt[i]) << "\n";
1004
36462
                  d_pfManager->addResolutionStep(out_learnt[i], true);
1005
                }
1006
                // Literal is redundant, to be safe, mark the level as current assertion level
1007
                // TODO: maybe optimize
1008
2411414
                max_resolution_level = std::max(max_resolution_level, user_level(var(out_learnt[i])));
1009
              }
1010
            }
1011
        }
1012
1013
    }else if (ccmin_mode == 1){
1014
        Unreachable();
1015
        for (i = j = 1; i < out_learnt.size(); i++){
1016
            Var x = var(out_learnt[i]);
1017
1018
            if (reason(x) == CRef_Undef)
1019
                out_learnt[j++] = out_learnt[i];
1020
            else{
1021
                Clause& c = ca[reason(var(out_learnt[i]))];
1022
                for (int k = 1; k < c.size(); k++)
1023
                    if (!seen[var(c[k])] && level(var(c[k])) > 0){
1024
                        out_learnt[j++] = out_learnt[i];
1025
                        break; }
1026
            }
1027
        }
1028
    }else
1029
        i = j = out_learnt.size();
1030
1031
302062
    max_literals += out_learnt.size();
1032
302062
    out_learnt.shrink(i - j);
1033
302062
    tot_literals += out_learnt.size();
1034
1035
    // Find correct backtrack level:
1036
    //
1037
302062
    if (out_learnt.size() == 1)
1038
6041
        out_btlevel = 0;
1039
    else{
1040
296021
        int max_i = 1;
1041
        // Find the first literal assigned at the next-highest level:
1042
24761331
        for (int k = 2; k < out_learnt.size(); k++)
1043
24465310
          if (level(var(out_learnt[k])) > level(var(out_learnt[max_i])))
1044
676091
            max_i = k;
1045
        // Swap-in this literal at index 1:
1046
296021
        Lit p2 = out_learnt[max_i];
1047
296021
        out_learnt[max_i] = out_learnt[1];
1048
296021
        out_learnt[1] = p2;
1049
296021
        out_btlevel = level(var(p2));
1050
    }
1051
1052
30307258
    for (int k = 0; k < analyze_toclear.size(); k++)
1053
30005196
      seen[var(analyze_toclear[k])] = 0;  // ('seen[]' is now cleared)
1054
1055
    // Return the maximal resolution level
1056
302062
    return max_resolution_level;
1057
}
1058
1059
1060
// Check if 'p' can be removed. 'abstract_levels' is used to abort early if the algorithm is
1061
// visiting literals at levels that cannot be removed later.
1062
22589020
bool Solver::litRedundant(Lit p, uint32_t abstract_levels)
1063
{
1064
22589020
    analyze_stack.clear(); analyze_stack.push(p);
1065
22589020
    int top = analyze_toclear.size();
1066
62274912
    while (analyze_stack.size() > 0){
1067
40020552
        CRef c_reason = reason(var(analyze_stack.last()));
1068
40020552
        Assert(c_reason != CRef_Undef);
1069
40020552
        Clause& c = ca[c_reason];
1070
40020552
        int c_size = c.size();
1071
40020552
        analyze_stack.pop();
1072
1073
        // Since calling reason might relocate to resize, c is not necesserily the right reference, we must
1074
        // use the allocator each time
1075
155066978
        for (int i = 1; i < c_size; i++){
1076
135224032
          Lit p2 = ca[c_reason][i];
1077
135224032
          if (!seen[var(p2)] && level(var(p2)) > 0)
1078
          {
1079
146662850
            if (reason(var(p2)) != CRef_Undef
1080
73331425
                && (abstractLevel(var(p2)) & abstract_levels) != 0)
1081
            {
1082
53153819
              seen[var(p2)] = 1;
1083
53153819
              analyze_stack.push(p2);
1084
53153819
              analyze_toclear.push(p2);
1085
            }
1086
            else
1087
            {
1088
70801036
              for (int j = top; j < analyze_toclear.size(); j++)
1089
50623430
                seen[var(analyze_toclear[j])] = 0;
1090
20177606
              analyze_toclear.shrink(analyze_toclear.size() - top);
1091
20177606
              return false;
1092
            }
1093
          }
1094
        }
1095
    }
1096
1097
2411414
    return true;
1098
}
1099
1100
1101
/*_________________________________________________________________________________________________
1102
|
1103
|  analyzeFinal : (p : Lit)  ->  [void]
1104
|
1105
|  Description:
1106
|    Specialized analysis procedure to express the final conflict in terms of assumptions.
1107
|    Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
1108
|    stores the result in 'out_conflict'.
1109
|________________________________________________________________________________________________@*/
1110
2721
void Solver::analyzeFinal(Lit p, vec<Lit>& out_conflict)
1111
{
1112
2721
    out_conflict.clear();
1113
2721
    out_conflict.push(p);
1114
1115
2721
    if (decisionLevel() == 0)
1116
912
        return;
1117
1118
1809
    seen[var(p)] = 1;
1119
1120
131448
    for (int i = trail.size()-1; i >= trail_lim[0]; i--){
1121
129639
        Var x = var(trail[i]);
1122
129639
        if (seen[x]){
1123
28593
            if (reason(x) == CRef_Undef){
1124
10577
              Assert(level(x) > 0);
1125
10577
              out_conflict.push(~trail[i]);
1126
            }else{
1127
18016
                Clause& c = ca[reason(x)];
1128
57407
                for (int j = 1; j < c.size(); j++)
1129
39391
                    if (level(var(c[j])) > 0)
1130
38365
                        seen[var(c[j])] = 1;
1131
            }
1132
28593
            seen[x] = 0;
1133
        }
1134
    }
1135
1136
1809
    seen[var(p)] = 0;
1137
}
1138
1139
115985028
void Solver::uncheckedEnqueue(Lit p, CRef from)
1140
{
1141
115985028
  if (Debug.isOn("minisat"))
1142
  {
1143
    Debug("minisat") << "unchecked enqueue of " << p << " ("
1144
                     << trail_index(var(p)) << ") trail size is "
1145
                     << trail.size() << " cap is " << trail.capacity()
1146
                     << ", reason is " << from << ", ";
1147
    if (from == CRef_Lazy)
1148
    {
1149
      Debug("minisat") << "CRef_Lazy";
1150
    }
1151
    else if (from == CRef_Undef)
1152
    {
1153
      Debug("minisat") << "CRef_Undef";
1154
    }
1155
    else
1156
    {
1157
      for (unsigned i = 0, size = ca[from].size(); i < size; ++i)
1158
      {
1159
        Debug("minisat") << ca[from][i] << " ";
1160
      }
1161
    }
1162
    Debug("minisat") << "\n";
1163
  }
1164
115985028
  Assert(value(p) == l_Undef);
1165
115985028
  Assert(var(p) < nVars());
1166
115985028
  assigns[var(p)] = lbool(!sign(p));
1167
115985028
  vardata[var(p)] = VarData(
1168
      from, decisionLevel(), assertionLevel, intro_level(var(p)), trail.size());
1169
115985028
  trail.push_(p);
1170
115985028
  if (theory[var(p)])
1171
  {
1172
    // Enqueue to the theory
1173
16809110
    d_proxy->enqueueTheoryLiteral(MinisatSatSolver::toSatLiteral(p));
1174
  }
1175
115985028
}
1176
1177
3505029
CRef Solver::propagate(TheoryCheckType type)
1178
{
1179
3505029
    CRef confl = CRef_Undef;
1180
3505029
    recheck = false;
1181
3505029
    theoryConflict = false;
1182
1183
7010058
    ScopedBool scoped_bool(minisat_busy, true);
1184
1185
    // Add lemmas that we're left behind
1186
3505029
    if (lemmas.size() > 0) {
1187
145
      confl = updateLemmas();
1188
145
      if (confl != CRef_Undef) {
1189
        return confl;
1190
      }
1191
    }
1192
1193
    // If this is the final check, no need for Boolean propagation and
1194
    // theory propagation
1195
3505029
    if (type == CHECK_FINAL) {
1196
      // Do the theory check
1197
75359
      theoryCheck(cvc5::theory::Theory::EFFORT_FULL);
1198
      // Pick up the theory propagated literals (there could be some,
1199
      // if new lemmas are added)
1200
75348
      propagateTheory();
1201
      // If there are lemmas (or conflicts) update them
1202
75348
      if (lemmas.size() > 0) {
1203
59086
        recheck = true;
1204
59086
        confl = updateLemmas();
1205
59086
        return confl;
1206
      } else {
1207
16262
        recheck = d_proxy->theoryNeedCheck();
1208
16262
        return confl;
1209
      }
1210
    }
1211
1212
    // Keep running until we have checked everything, we
1213
    // have no conflict and no new literals have been asserted
1214
878568
    do {
1215
        // Propagate on the clauses
1216
4308238
        confl = propagateBool();
1217
        // If no conflict, do the theory check
1218
4308238
        if (confl == CRef_Undef && type != CHECK_WITHOUT_THEORY) {
1219
            // Do the theory check
1220
3923108
            if (type == CHECK_FINAL_FAKE) {
1221
              theoryCheck(cvc5::theory::Theory::EFFORT_FULL);
1222
            } else {
1223
3923108
              theoryCheck(cvc5::theory::Theory::EFFORT_STANDARD);
1224
            }
1225
            // Pick up the theory propagated literals
1226
3923105
            propagateTheory();
1227
            // If there are lemmas (or conflicts) update them
1228
7846210
            if (lemmas.size() > 0) {
1229
192666
              confl = updateLemmas();
1230
            }
1231
        } else {
1232
          // if dumping decision tree, print the conflict
1233
385130
          if (Trace.isOn("dtview::conflict"))
1234
          {
1235
            if (confl != CRef_Undef)
1236
            {
1237
              dtviewPropConflictHelper(decisionLevel(), ca[confl], d_proxy);
1238
            }
1239
          }
1240
          // Even though in conflict, we still need to discharge the lemmas
1241
385130
          if (lemmas.size() > 0) {
1242
            // Remember the trail size
1243
            int oldLevel = decisionLevel();
1244
            // Update the lemmas
1245
            CRef lemmaConflict = updateLemmas();
1246
            // If we get a conflict, we prefer it since it's earlier in the trail
1247
            if (lemmaConflict != CRef_Undef) {
1248
              // Lemma conflict takes precedence, since it's earlier in the trail
1249
              confl = lemmaConflict;
1250
            } else {
1251
              // Otherwise, the Boolean conflict is canceled in the case we popped the trail
1252
              if (oldLevel > decisionLevel()) {
1253
                confl = CRef_Undef;
1254
              }
1255
            }
1256
          }
1257
        }
1258
4308235
    } while (confl == CRef_Undef && qhead < trail.size());
1259
3429667
    return confl;
1260
}
1261
1262
3998453
void Solver::propagateTheory() {
1263
7996906
  SatClause propagatedLiteralsClause;
1264
  // Doesn't actually call propagate(); that's done in theoryCheck() now that combination
1265
  // is online.  This just incorporates those propagations previously discovered.
1266
3998453
  d_proxy->theoryPropagate(propagatedLiteralsClause);
1267
1268
7996906
  vec<Lit> propagatedLiterals;
1269
3998453
  MinisatSatSolver::toMinisatClause(propagatedLiteralsClause, propagatedLiterals);
1270
1271
3998453
  int oldTrailSize = trail.size();
1272
3998453
  Debug("minisat") << "old trail size is " << oldTrailSize << ", propagating " << propagatedLiterals.size() << " lits..." << std::endl;
1273
10342443
  for (unsigned i = 0, i_end = propagatedLiterals.size(); i < i_end; ++ i) {
1274
6343990
    Debug("minisat") << "Theory propagated: " << propagatedLiterals[i] << std::endl;
1275
    // multiple theories can propagate the same literal
1276
6343990
    Lit p = propagatedLiterals[i];
1277
6343990
    if (value(p) == l_Undef) {
1278
3034663
      uncheckedEnqueue(p, CRef_Lazy);
1279
    } else {
1280
3309327
      if (value(p) == l_False) {
1281
72275
        Debug("minisat") << "Conflict in theory propagation" << std::endl;
1282
144550
        SatClause explanation_cl;
1283
72275
        d_proxy->explainPropagation(MinisatSatSolver::toSatLiteral(p),
1284
                                    explanation_cl);
1285
144550
        vec<Lit> explanation;
1286
72275
        MinisatSatSolver::toMinisatClause(explanation_cl, explanation);
1287
        ClauseId id; // FIXME: mark it as explanation here somehow?
1288
72275
        addClause(explanation, true, id);
1289
      }
1290
    }
1291
  }
1292
3998453
}
1293
1294
/*_________________________________________________________________________________________________
1295
|
1296
|  theoryCheck: [void]  ->  [Clause*]
1297
|
1298
|  Description:
1299
|    Checks all enqueued theory facts for satisfiability. If a conflict arises, the conflicting
1300
|    clause is returned, otherwise NULL.
1301
|
1302
|    Note: the propagation queue might be NOT empty
1303
|________________________________________________________________________________________________@*/
1304
3998467
void Solver::theoryCheck(cvc5::theory::Theory::Effort effort)
1305
{
1306
3998467
  d_proxy->theoryCheck(effort);
1307
3998453
}
1308
1309
/*_________________________________________________________________________________________________
1310
|
1311
|  propagateBool : [void]  ->  [Clause*]
1312
|
1313
|  Description:
1314
|    Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
1315
|    otherwise CRef_Undef.
1316
|
1317
|    Post-conditions:
1318
|      * the propagation queue is empty, even if there was a conflict.
1319
|________________________________________________________________________________________________@*/
1320
4308238
CRef Solver::propagateBool()
1321
{
1322
4308238
    CRef    confl     = CRef_Undef;
1323
4308238
    int     num_props = 0;
1324
4308238
    watches.cleanAll();
1325
1326
224747420
    while (qhead < trail.size()){
1327
110219591
        Lit            p   = trail[qhead++];     // 'p' is enqueued fact to propagate.
1328
110219591
        vec<Watcher>&  ws  = watches[p];
1329
        Watcher        *i, *j, *end;
1330
110219591
        num_props++;
1331
1332
        // if propagation tracing enabled, print boolean propagation
1333
110219591
        if (Trace.isOn("dtview::prop"))
1334
        {
1335
          dtviewBoolPropagationHelper(decisionLevel(), p, d_proxy);
1336
        }
1337
1338
909691618
        for (i = j = (Watcher*)ws, end = i + ws.size();  i != end;){
1339
            // Try to avoid inspecting the clause:
1340
799472027
            Lit blocker = i->blocker;
1341
1301311790
            if (value(blocker) == l_True){
1342
1531462475
                *j++ = *i++; continue; }
1343
1344
            // Make sure the false literal is data[1]:
1345
297632264
            CRef     cr        = i->cref;
1346
297632264
            Clause&  c         = ca[cr];
1347
297632264
            Lit      false_lit = ~p;
1348
297632264
            if (c[0] == false_lit)
1349
85825684
                c[0] = c[1], c[1] = false_lit;
1350
297632264
            Assert(c[1] == false_lit);
1351
297632264
            i++;
1352
1353
            // If 0th watch is true, then clause is already satisfied.
1354
297632264
            Lit     first = c[0];
1355
297632264
            Watcher w     = Watcher(cr, first);
1356
323575450
            if (first != blocker && value(first) == l_True){
1357
51886372
                *j++ = w; continue; }
1358
1359
            // Look for new watch:
1360
271689078
            Assert(c.size() >= 2);
1361
1274508111
            for (int k = 2; k < c.size(); k++)
1362
1164915654
                if (value(c[k]) != l_False){
1363
162096621
                    c[1] = c[k]; c[k] = false_lit;
1364
162096621
                    watches[~c[1]].push(w);
1365
162096621
                    goto NextClause; }
1366
1367
            // Did not find watch -- clause is unit under assignment:
1368
109592457
            *j++ = w;
1369
109592457
            if (value(first) == l_False){
1370
251316
                confl = cr;
1371
251316
                qhead = trail.size();
1372
                // Copy the remaining watches:
1373
6148006
                while (i < end)
1374
2948345
                    *j++ = *i++;
1375
            }else
1376
109341141
                uncheckedEnqueue(first, cr);
1377
1378
271689078
        NextClause:;
1379
        }
1380
110219591
        ws.shrink(i - j);
1381
    }
1382
4308238
    propagations += num_props;
1383
4308238
    simpDB_props -= num_props;
1384
1385
4308238
    return confl;
1386
}
1387
1388
1389
/*_________________________________________________________________________________________________
1390
|
1391
|  reduceDB : ()  ->  [void]
1392
|
1393
|  Description:
1394
|    Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
1395
|    clauses are clauses that are reason to some assignment. Binary clauses are never removed.
1396
|________________________________________________________________________________________________@*/
1397
struct reduceDB_lt {
1398
    ClauseAllocator& ca;
1399
3480
    reduceDB_lt(ClauseAllocator& ca_) : ca(ca_) {}
1400
4501063
    bool operator () (CRef x, CRef y) {
1401
4501063
        return ca[x].size() > 2 && (ca[y].size() == 2 || ca[x].activity() < ca[y].activity()); }
1402
};
1403
3480
void Solver::reduceDB()
1404
{
1405
    int     i, j;
1406
3480
    double  extra_lim = cla_inc / clauses_removable.size();    // Remove any clause below this activity
1407
1408
3480
    sort(clauses_removable, reduceDB_lt(ca));
1409
    // Don't delete binary or locked clauses. From the rest, delete clauses from the first half
1410
    // and clauses with activity smaller than 'extra_lim':
1411
418323
    for (i = j = 0; i < clauses_removable.size(); i++){
1412
414843
        Clause& c = ca[clauses_removable[i]];
1413
414843
        if (c.size() > 2 && !locked(c) && (i < clauses_removable.size() / 2 || c.activity() < extra_lim))
1414
186523
            removeClause(clauses_removable[i]);
1415
        else
1416
228320
            clauses_removable[j++] = clauses_removable[i];
1417
    }
1418
3480
    clauses_removable.shrink(i - j);
1419
3480
    checkGarbage();
1420
3480
}
1421
1422
1423
18063
void Solver::removeSatisfied(vec<CRef>& cs)
1424
{
1425
    int i, j;
1426
469357
    for (i = j = 0; i < cs.size(); i++){
1427
451294
        Clause& c = ca[cs[i]];
1428
451294
        if (satisfied(c)) {
1429
44438
          removeClause(cs[i]);
1430
        }
1431
        else
1432
        {
1433
406856
          cs[j++] = cs[i];
1434
        }
1435
    }
1436
18063
    cs.shrink(i - j);
1437
18063
}
1438
1439
9738
void Solver::removeClausesAboveLevel(vec<CRef>& cs, int level)
1440
{
1441
    int i, j;
1442
834955
    for (i = j = 0; i < cs.size(); i++){
1443
825217
        Clause& c = ca[cs[i]];
1444
825217
        if (c.level() > level) {
1445
248287
          Assert(!locked(c));
1446
248287
          removeClause(cs[i]);
1447
        } else {
1448
576930
            cs[j++] = cs[i];
1449
        }
1450
    }
1451
9738
    cs.shrink(i - j);
1452
9738
}
1453
1454
18063
void Solver::rebuildOrderHeap()
1455
{
1456
36126
    vec<Var> vs;
1457
2735823
    for (Var v = 0; v < nVars(); v++)
1458
2717760
        if (decision[v] && value(v) == l_Undef)
1459
2064838
            vs.push(v);
1460
18063
    order_heap.build(vs);
1461
18063
}
1462
1463
1464
/*_________________________________________________________________________________________________
1465
|
1466
|  simplify : [void]  ->  [bool]
1467
|
1468
|  Description:
1469
|    Simplify the clause database according to the current top-level assigment. Currently, the only
1470
|    thing done here is the removal of satisfied clauses, but more things can be put here.
1471
|________________________________________________________________________________________________@*/
1472
44869
bool Solver::simplify()
1473
{
1474
44869
  Assert(decisionLevel() == 0);
1475
1476
44869
  if (!ok || propagate(CHECK_WITHOUT_THEORY) != CRef_Undef) return ok = false;
1477
1478
44653
  if (nAssigns() == simpDB_assigns || (simpDB_props > 0)) return true;
1479
1480
  // Remove satisfied clauses:
1481
18063
  removeSatisfied(clauses_removable);
1482
18063
  if (remove_satisfied)  // Can be turned off.
1483
    removeSatisfied(clauses_persistent);
1484
18063
  checkGarbage();
1485
18063
  rebuildOrderHeap();
1486
1487
18063
  simpDB_assigns = nAssigns();
1488
18063
  simpDB_props =
1489
18063
      clauses_literals + learnts_literals;  // (shouldn't depend on stats
1490
                                            // really, but it will do for now)
1491
1492
18063
  return true;
1493
}
1494
1495
1496
/*_________________________________________________________________________________________________
1497
|
1498
|  search : (nof_conflicts : int) (params : const SearchParams&)  ->  [lbool]
1499
|
1500
|  Description:
1501
|    Search for a model the specified number of conflicts.
1502
|    NOTE! Use negative value for 'nof_conflicts' indicate infinity.
1503
|
1504
|  Output:
1505
|    'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If
1506
|    all variables are decision variables, this means that the clause set is satisfiable. 'l_False'
1507
|    if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached.
1508
|________________________________________________________________________________________________@*/
1509
16283
lbool Solver::search(int nof_conflicts)
1510
{
1511
16283
  Assert(ok);
1512
  int backtrack_level;
1513
16283
  int conflictC = 0;
1514
32566
  vec<Lit> learnt_clause;
1515
16283
  starts++;
1516
1517
16283
  TheoryCheckType check_type = CHECK_WITH_THEORY;
1518
  for (;;)
1519
  {
1520
    // Propagate and call the theory solvers
1521
3371174
    CRef confl = propagate(check_type);
1522
3371160
    Assert(lemmas.size() == 0);
1523
1524
3371160
    if (confl != CRef_Undef)
1525
    {
1526
305452
      conflicts++;
1527
305452
      conflictC++;
1528
1529
305452
      if (decisionLevel() == 0)
1530
      {
1531
3390
        if (needProof())
1532
        {
1533
860
          if (confl == CRef_Lazy)
1534
          {
1535
49
            d_pfManager->finalizeProof();
1536
          }
1537
          else
1538
          {
1539
811
            d_pfManager->finalizeProof(ca[confl]);
1540
          }
1541
        }
1542
3390
        return l_False;
1543
      }
1544
1545
      // Analyze the conflict
1546
302062
      learnt_clause.clear();
1547
302062
      int max_level = analyze(confl, learnt_clause, backtrack_level);
1548
302062
      cancelUntil(backtrack_level);
1549
1550
      // Assert the conflict clause and the asserting literal
1551
302062
      if (learnt_clause.size() == 1)
1552
      {
1553
6041
        uncheckedEnqueue(learnt_clause[0]);
1554
6041
        if (needProof())
1555
        {
1556
1524
          d_pfManager->endResChain(learnt_clause[0]);
1557
        }
1558
      }
1559
      else
1560
      {
1561
296021
        CRef cr = ca.alloc(assertionLevelOnly() ? assertionLevel : max_level,
1562
                           learnt_clause,
1563
296021
                           true);
1564
296021
        clauses_removable.push(cr);
1565
296021
        attachClause(cr);
1566
296021
        claBumpActivity(ca[cr]);
1567
296021
        uncheckedEnqueue(learnt_clause[0], cr);
1568
296021
        if (needProof())
1569
        {
1570
21180
          d_pfManager->endResChain(ca[cr]);
1571
        }
1572
      }
1573
1574
302062
      varDecayActivity();
1575
302062
      claDecayActivity();
1576
1577
302062
      if (--learntsize_adjust_cnt == 0)
1578
      {
1579
567
        learntsize_adjust_confl *= learntsize_adjust_inc;
1580
567
        learntsize_adjust_cnt = (int)learntsize_adjust_confl;
1581
567
        max_learnts *= learntsize_inc;
1582
1583
567
        if (verbosity >= 1)
1584
          printf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |\n",
1585
                 (int)conflicts,
1586
                 (int)dec_vars
1587
                     - (trail_lim.size() == 0 ? trail.size() : trail_lim[0]),
1588
                 nClauses(),
1589
                 (int)clauses_literals,
1590
                 (int)max_learnts,
1591
                 nLearnts(),
1592
                 (double)learnts_literals / nLearnts(),
1593
                 progressEstimate() * 100);
1594
      }
1595
1596
302062
      if (theoryConflict && options::sat_refine_conflicts())
1597
      {
1598
        check_type = CHECK_FINAL_FAKE;
1599
      }
1600
      else
1601
      {
1602
302062
        check_type = CHECK_WITH_THEORY;
1603
      }
1604
    }
1605
    else
1606
    {
1607
      // If this was a final check, we are satisfiable
1608
3065708
      if (check_type == CHECK_FINAL)
1609
      {
1610
        // Note that we are done making decisions when there are no pending decisions
1611
        // on assumptions, and the decision engine indicates it is done.
1612
65983
        bool decisionEngineDone = (decisionLevel() >= assumptions.size())
1613
65983
                                  && d_proxy->isDecisionEngineDone();
1614
        // Unless a lemma has added more stuff to the queues
1615
184877
        if (!decisionEngineDone
1616
65983
            && (!order_heap.empty() || qhead < trail.size()))
1617
        {
1618
52911
          check_type = CHECK_WITH_THEORY;
1619
181181
          continue;
1620
        }
1621
13072
        else if (recheck)
1622
        {
1623
          // There some additional stuff added, so we go for another
1624
          // full-check
1625
5590
          continue;
1626
        }
1627
        else
1628
        {
1629
          // Yes, we're truly satisfiable
1630
7482
          return l_True;
1631
        }
1632
      }
1633
2999725
      else if (check_type == CHECK_FINAL_FAKE)
1634
      {
1635
        check_type = CHECK_WITH_THEORY;
1636
      }
1637
1638
5999450
      if ((nof_conflicts >= 0 && conflictC >= nof_conflicts)
1639
5996776
          || !withinBudget(Resource::SatConflictStep))
1640
      {
1641
        // Reached bound on number of conflicts:
1642
2674
        progress_estimate = progressEstimate();
1643
2674
        cancelUntil(0);
1644
        // [mdeters] notify theory engine of restarts for deferred
1645
        // theory processing
1646
2674
        d_proxy->notifyRestart();
1647
2674
        return l_Undef;
1648
      }
1649
1650
      // Simplify the set of problem clauses:
1651
2997051
      if (decisionLevel() == 0 && !simplify())
1652
      {
1653
        return l_False;
1654
      }
1655
1656
2997051
      if (clauses_removable.size() - nAssigns() >= max_learnts)
1657
      {
1658
        // Reduce the set of learnt clauses:
1659
3480
        reduceDB();
1660
      }
1661
1662
2997051
      Lit next = lit_Undef;
1663
3056059
      while (decisionLevel() < assumptions.size())
1664
      {
1665
        // Perform user provided assumption:
1666
349392
        Lit p = assumptions[decisionLevel()];
1667
349392
        if (value(p) == l_True)
1668
        {
1669
          // Dummy decision level:
1670
29504
          newDecisionLevel();
1671
        }
1672
319888
        else if (value(p) == l_False)
1673
        {
1674
2721
          analyzeFinal(~p, d_conflict);
1675
2721
          return l_False;
1676
        }
1677
        else
1678
        {
1679
317167
          next = p;
1680
317167
          break;
1681
        }
1682
      }
1683
1684
2994330
      if (next == lit_Undef)
1685
      {
1686
        // New variable decision:
1687
2677163
        next = pickBranchLit();
1688
1689
2746930
        if (next == lit_Undef)
1690
        {
1691
          // We need to do a full theory check to confirm
1692
139538
          Debug("minisat::search")
1693
69769
              << "Doing a full theory check..." << std::endl;
1694
69769
          check_type = CHECK_FINAL;
1695
69769
          continue;
1696
        }
1697
      }
1698
1699
      // Increase decision level and enqueue 'next'
1700
2924559
      newDecisionLevel();
1701
2924559
      uncheckedEnqueue(next);
1702
    }
1703
3354891
  }
1704
}
1705
1706
1707
2674
double Solver::progressEstimate() const
1708
{
1709
2674
    double  progress = 0;
1710
2674
    double  F = 1.0 / nVars();
1711
1712
191995
    for (int i = 0; i <= decisionLevel(); i++){
1713
189321
        int beg = i == 0 ? 0 : trail_lim[i - 1];
1714
189321
        int end = i == decisionLevel() ? trail.size() : trail_lim[i];
1715
189321
        progress += pow(F, i) * (end - beg);
1716
    }
1717
1718
2674
    return progress / nVars();
1719
}
1720
1721
/*
1722
  Finite subsequences of the Luby-sequence:
1723
1724
  0: 1
1725
  1: 1 1 2
1726
  2: 1 1 2 1 1 2 4
1727
  3: 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8
1728
  ...
1729
1730
1731
 */
1732
1733
16283
static double luby(double y, int x){
1734
1735
    // Find the finite subsequence that contains index 'x', and the
1736
    // size of that subsequence:
1737
    int size, seq;
1738
16283
    for (size = 1, seq = 0; size < x+1; seq++, size = 2*size+1);
1739
1740
27715
    while (size-1 != x){
1741
5716
        size = (size-1)>>1;
1742
5716
        seq--;
1743
5716
        x = x % size;
1744
    }
1745
1746
16283
    return pow(y, seq);
1747
}
1748
1749
// NOTE: assumptions passed in member-variable 'assumptions'.
1750
14980
lbool Solver::solve_()
1751
{
1752
14980
    Debug("minisat") << "nvars = " << nVars() << std::endl;
1753
1754
29960
    ScopedBool scoped_bool(minisat_busy, true);
1755
1756
14980
    Assert(decisionLevel() == 0);
1757
1758
14980
    model.clear();
1759
14980
    d_conflict.clear();
1760
14980
    if (!ok){
1761
1371
      minisat_busy = false;
1762
1371
      return l_False;
1763
    }
1764
1765
13609
    solves++;
1766
1767
13609
    max_learnts               = nClauses() * learntsize_factor;
1768
13609
    learntsize_adjust_confl   = learntsize_adjust_start_confl;
1769
13609
    learntsize_adjust_cnt     = (int)learntsize_adjust_confl;
1770
13609
    lbool   status            = l_Undef;
1771
1772
13609
    if (verbosity >= 1){
1773
1
        printf("============================[ Search Statistics ]==============================\n");
1774
1
        printf("| Conflicts |          ORIGINAL         |          LEARNT          | Progress |\n");
1775
1
        printf("|           |    Vars  Clauses Literals |    Limit  Clauses Lit/Cl |          |\n");
1776
1
        printf("===============================================================================\n");
1777
    }
1778
1779
    // Search:
1780
13609
    int curr_restarts = 0;
1781
46143
    while (status == l_Undef){
1782
16283
        double rest_base = luby_restart ? luby(restart_inc, curr_restarts) : pow(restart_inc, curr_restarts);
1783
16283
        status = search(rest_base * restart_first);
1784
16267
        if (!withinBudget(Resource::SatConflictStep))
1785
          break;  // FIXME add restart option?
1786
16267
        curr_restarts++;
1787
    }
1788
1789
13593
    if (!withinBudget(Resource::SatConflictStep))
1790
      status = l_Undef;
1791
1792
13593
    if (verbosity >= 1)
1793
1
        printf("===============================================================================\n");
1794
1795
1796
13593
    if (status == l_True){
1797
        // Extend & copy model:
1798
7482
        model.growTo(nVars());
1799
616573
        for (int i = 0; i < nVars(); i++) {
1800
609091
          model[i] = value(i);
1801
609091
          Debug("minisat") << i << " = " << model[i] << std::endl;
1802
        }
1803
    }
1804
6111
    else if (status == l_False && d_conflict.size() == 0)
1805
3390
      ok = false;
1806
1807
13593
    return status;
1808
}
1809
1810
//=================================================================================================
1811
// Writing CNF to DIMACS:
1812
//
1813
// FIXME: this needs to be rewritten completely.
1814
1815
static Var mapVar(Var x, vec<Var>& map, Var& max)
1816
{
1817
    if (map.size() <= x || map[x] == -1){
1818
        map.growTo(x+1, -1);
1819
        map[x] = max++;
1820
    }
1821
    return map[x];
1822
}
1823
1824
1825
void Solver::toDimacs(FILE* f, Clause& c, vec<Var>& map, Var& max)
1826
{
1827
    if (satisfied(c)) return;
1828
1829
    for (int i = 0; i < c.size(); i++)
1830
        if (value(c[i]) != l_False)
1831
            fprintf(f, "%s%d ", sign(c[i]) ? "-" : "", mapVar(var(c[i]), map, max)+1);
1832
    fprintf(f, "0\n");
1833
}
1834
1835
1836
void Solver::toDimacs(const char *file, const vec<Lit>& assumps)
1837
{
1838
    FILE* f = fopen(file, "wr");
1839
    if (f == NULL)
1840
        fprintf(stderr, "could not open file %s\n", file), exit(1);
1841
    toDimacs(f, assumps);
1842
    fclose(f);
1843
}
1844
1845
1846
void Solver::toDimacs(FILE* f, const vec<Lit>& assumps)
1847
{
1848
    // Handle case when solver is in contradictory state:
1849
    if (!ok){
1850
        fprintf(f, "p cnf 1 2\n1 0\n-1 0\n");
1851
        return; }
1852
1853
    vec<Var> map; Var max = 0;
1854
1855
    // Cannot use removeClauses here because it is not safe
1856
    // to deallocate them at this point. Could be improved.
1857
    int cnt = 0;
1858
    for (int i = 0; i < clauses_persistent.size(); i++)
1859
        if (!satisfied(ca[clauses_persistent[i]]))
1860
            cnt++;
1861
1862
    for (int i = 0; i < clauses_persistent.size(); i++)
1863
        if (!satisfied(ca[clauses_persistent[i]])){
1864
            Clause& c = ca[clauses_persistent[i]];
1865
            for (int j = 0; j < c.size(); j++)
1866
                if (value(c[j]) != l_False)
1867
                    mapVar(var(c[j]), map, max);
1868
        }
1869
1870
    // Assumptions are added as unit clauses:
1871
    cnt += assumptions.size();
1872
1873
    fprintf(f, "p cnf %d %d\n", max, cnt);
1874
1875
    for (int i = 0; i < assumptions.size(); i++){
1876
      Assert(value(assumptions[i]) != l_False);
1877
      fprintf(f,
1878
              "%s%d 0\n",
1879
              sign(assumptions[i]) ? "-" : "",
1880
              mapVar(var(assumptions[i]), map, max) + 1);
1881
    }
1882
1883
    for (int i = 0; i < clauses_persistent.size(); i++)
1884
        toDimacs(f, ca[clauses_persistent[i]], map, max);
1885
1886
    if (verbosity > 0)
1887
        printf("Wrote %d clauses with %d variables.\n", cnt, max);
1888
}
1889
1890
1891
//=================================================================================================
1892
// Garbage Collection methods:
1893
1894
2768
void Solver::relocAll(ClauseAllocator& to)
1895
{
1896
    // All watchers:
1897
    //
1898
    // for (int i = 0; i < watches.size(); i++)
1899
2768
    watches.cleanAll();
1900
847854
    for (int v = 0; v < nVars(); v++)
1901
2535258
        for (int s = 0; s < 2; s++){
1902
1690172
            Lit p = mkLit(v, s);
1903
            // printf(" >>> RELOCING: %s%d\n", sign(p)?"-":"", var(p)+1);
1904
1690172
            vec<Watcher>& ws = watches[p];
1905
5252372
            for (int j = 0; j < ws.size(); j++)
1906
            {
1907
3562200
              ca.reloc(ws[j].cref, to);
1908
            }
1909
        }
1910
1911
    // All reasons:
1912
    //
1913
178992
    for (int i = 0; i < trail.size(); i++){
1914
176224
        Var v = var(trail[i]);
1915
1916
352448
        if (hasReasonClause(v)
1917
176224
            && (ca[reason(v)].reloced() || locked(ca[reason(v)])))
1918
        {
1919
37010
          ca.reloc(vardata[v].d_reason, to);
1920
        }
1921
    }
1922
    // All learnt:
1923
    //
1924
183430
    for (int i = 0; i < clauses_removable.size(); i++)
1925
    {
1926
180662
      ca.reloc(clauses_removable[i], to);
1927
    }
1928
    // All original:
1929
    //
1930
1603206
    for (int i = 0; i < clauses_persistent.size(); i++)
1931
    {
1932
1600438
      ca.reloc(clauses_persistent[i], to);
1933
    }
1934
2768
}
1935
1936
1937
void Solver::garbageCollect()
1938
{
1939
    // Initialize the next region to a size corresponding to the estimated utilization degree. This
1940
    // is not precise but should avoid some unnecessary reallocations for the new region:
1941
    ClauseAllocator to(ca.size() - ca.wasted());
1942
1943
    relocAll(to);
1944
    if (verbosity >= 2)
1945
        printf("|  Garbage collection:   %12d bytes => %12d bytes             |\n",
1946
               ca.size()*ClauseAllocator::Unit_Size, to.size()*ClauseAllocator::Unit_Size);
1947
    to.moveTo(ca);
1948
}
1949
1950
4869
void Solver::push()
1951
{
1952
4869
  Assert(d_enable_incremental);
1953
4869
  Assert(decisionLevel() == 0);
1954
1955
4869
  ++assertionLevel;
1956
4869
  Debug("minisat") << "in user push, increasing assertion level to " << assertionLevel << std::endl;
1957
4869
  trail_ok.push(ok);
1958
4869
  assigns_lim.push(assigns.size());
1959
1960
4869
  d_context->push();  // SAT context for cvc5
1961
1962
4869
  Debug("minisat") << "MINISAT PUSH assertionLevel is " << assertionLevel << ", trail.size is " << trail.size() << std::endl;
1963
4869
}
1964
1965
4869
void Solver::pop()
1966
{
1967
4869
  Assert(d_enable_incremental);
1968
1969
4869
  Assert(decisionLevel() == 0);
1970
1971
  // Pop the trail below the user level
1972
4869
  --assertionLevel;
1973
9738
  Debug("minisat") << "in user pop, decreasing assertion level to "
1974
4869
                   << assertionLevel << "\n"
1975
4869
                   << cvc5::push;
1976
  while (true) {
1977
57119
    Debug("minisat") << "== unassigning " << trail.last() << std::endl;
1978
57119
    Var      x  = var(trail.last());
1979
57119
    if (user_level(x) > assertionLevel) {
1980
52250
      assigns[x] = l_Undef;
1981
52250
      vardata[x] = VarData(CRef_Undef, -1, -1, intro_level(x), -1);
1982
52250
      if(phase_saving >= 1 && (polarity[x] & 0x2) == 0)
1983
51126
        polarity[x] = sign(trail.last());
1984
52250
      insertVarOrder(x);
1985
52250
      trail.pop();
1986
    } else {
1987
4869
      break;
1988
    }
1989
52250
  }
1990
1991
  // The head should be at the trail top
1992
4869
  qhead = trail.size();
1993
1994
  // Remove the clauses
1995
4869
  removeClausesAboveLevel(clauses_persistent, assertionLevel);
1996
4869
  removeClausesAboveLevel(clauses_removable, assertionLevel);
1997
4869
  Debug("minisat") << cvc5::pop;
1998
  // Pop the SAT context to notify everyone
1999
4869
  d_context->pop();  // SAT context for cvc5
2000
2001
9738
  Debug("minisat") << "MINISAT POP assertionLevel is " << assertionLevel
2002
4869
                   << ", trail.size is " << trail.size() << "\n";
2003
  // Pop the created variables
2004
4869
  resizeVars(assigns_lim.last());
2005
4869
  assigns_lim.pop();
2006
4869
  variables_to_register.clear();
2007
2008
  // Pop the OK
2009
4869
  ok = trail_ok.last();
2010
4869
  trail_ok.pop();
2011
4869
}
2012
2013
251897
CRef Solver::updateLemmas() {
2014
2015
251897
  Debug("minisat::lemmas") << "Solver::updateLemmas() begin" << std::endl;
2016
2017
  // Avoid adding lemmas indefinitely without resource-out
2018
251897
  d_proxy->spendResource(Resource::LemmaStep);
2019
2020
251897
  CRef conflict = CRef_Undef;
2021
2022
  // Decision level to backtrack to
2023
251897
  int backtrackLevel = decisionLevel();
2024
2025
  // We use this comparison operator
2026
251897
  lemma_lt lt(*this);
2027
2028
  // Check for propagation and level to backtrack to
2029
251897
  int i = 0;
2030
755821
  while (i < lemmas.size()) {
2031
    // We need this loop as when we backtrack, due to registration more lemmas could be added
2032
4504710
    for (; i < lemmas.size(); ++ i)
2033
    {
2034
      // The current lemma
2035
2126374
      vec<Lit>& lemma = lemmas[i];
2036
2037
2126374
      Trace("pf::sat") << "Solver::updateLemmas: working on lemma: ";
2038
8679291
      for (int k = 0; k < lemma.size(); ++k) {
2039
6552917
        Trace("pf::sat") << lemma[k] << " ";
2040
      }
2041
2126374
      Trace("pf::sat") << std::endl;
2042
2043
      // If it's an empty lemma, we have a conflict at zero level
2044
2127589
      if (lemma.size() == 0) {
2045
1215
        Assert(!options::unsatCores() && !needProof());
2046
1215
        conflict = CRef_Lazy;
2047
1215
        backtrackLevel = 0;
2048
1215
        Debug("minisat::lemmas") << "Solver::updateLemmas(): found empty clause" << std::endl;
2049
1215
        continue;
2050
      }
2051
      // Sort the lemma to be able to attach
2052
2125159
      sort(lemma, lt);
2053
      // See if the lemma propagates something
2054
2125159
      if (lemma.size() == 1 || value(lemma[1]) == l_False) {
2055
448800
        Debug("minisat::lemmas") << "found unit " << lemma.size() << std::endl;
2056
        // This lemma propagates, see which level we need to backtrack to
2057
448800
        int currentBacktrackLevel = lemma.size() == 1 ? 0 : level(var(lemma[1]));
2058
        // Even if the first literal is true, we should propagate it at this level (unless it's set at a lower level)
2059
448800
        if (value(lemma[0]) != l_True || level(var(lemma[0])) > currentBacktrackLevel) {
2060
433220
          if (currentBacktrackLevel < backtrackLevel) {
2061
147828
            backtrackLevel = currentBacktrackLevel;
2062
          }
2063
        }
2064
      }
2065
    }
2066
2067
    // Pop so that propagation would be current
2068
251962
    Debug("minisat::lemmas") << "Solver::updateLemmas(): backtracking to " << backtrackLevel << " from " << decisionLevel() << std::endl;
2069
251962
    cancelUntil(backtrackLevel);
2070
  }
2071
2072
  // Last index in the trail
2073
251897
  int backtrack_index = trail.size();
2074
2075
  // Attach all the clauses and enqueue all the propagations
2076
2378271
  for (int j = 0; j < lemmas.size(); ++j)
2077
  {
2078
    // The current lemma
2079
2126374
    vec<Lit>& lemma = lemmas[j];
2080
2126374
    bool removable = lemmas_removable[j];
2081
2082
    // Attach it if non-unit
2083
2126374
    CRef lemma_ref = CRef_Undef;
2084
2126374
    if (lemma.size() > 1) {
2085
      // If the lemmas is removable, we can compute its level by the level
2086
2063246
      int clauseLevel = assertionLevel;
2087
2063246
      if (removable && !assertionLevelOnly())
2088
      {
2089
174979
        clauseLevel = 0;
2090
1481935
        for (int k = 0; k < lemma.size(); ++k)
2091
        {
2092
1306956
          clauseLevel = std::max(clauseLevel, intro_level(var(lemma[k])));
2093
        }
2094
      }
2095
2096
2063246
      lemma_ref = ca.alloc(clauseLevel, lemma, removable);
2097
2063246
      if (removable) {
2098
183152
        clauses_removable.push(lemma_ref);
2099
      } else {
2100
1880094
        clauses_persistent.push(lemma_ref);
2101
      }
2102
2063246
      attachClause(lemma_ref);
2103
    }
2104
2105
    // If the lemma is propagating enqueue its literal (or set the conflict)
2106
2126374
    if (conflict == CRef_Undef && value(lemma[0]) != l_True) {
2107
2042532
      if (lemma.size() == 1 || (value(lemma[1]) == l_False && trail_index(var(lemma[1])) < backtrack_index)) {
2108
670306
        Trace("pf::sat") << "Solver::updateLemmas: unit theory lemma: "
2109
335153
                         << lemma[0] << std::endl;
2110
335153
        if (value(lemma[0]) == l_False) {
2111
          // We have a conflict
2112
53051
          if (lemma.size() > 1) {
2113
52483
            Debug("minisat::lemmas") << "Solver::updateLemmas(): conflict" << std::endl;
2114
52483
            conflict = lemma_ref;
2115
          } else {
2116
568
            Debug("minisat::lemmas") << "Solver::updateLemmas(): unit conflict or empty clause" << std::endl;
2117
568
            conflict = CRef_Lazy;
2118
568
            if (needProof())
2119
            {
2120
49
              d_pfManager->storeUnitConflict(lemma[0]);
2121
            }
2122
          }
2123
        } else {
2124
282102
          Debug("minisat::lemmas") << "lemma size is " << lemma.size() << std::endl;
2125
282102
          Debug("minisat::lemmas") << "lemma ref is " << lemma_ref << std::endl;
2126
282102
          uncheckedEnqueue(lemma[0], lemma_ref);
2127
        }
2128
      }
2129
    }
2130
  }
2131
2132
  // Clear the lemmas
2133
251897
  lemmas.clear();
2134
251897
  lemmas_removable.clear();
2135
2136
251897
  if (conflict != CRef_Undef) {
2137
54177
    theoryConflict = true;
2138
  }
2139
2140
251897
  Debug("minisat::lemmas") << "Solver::updateLemmas() end" << std::endl;
2141
2142
251897
  return conflict;
2143
}
2144
2145
6020354
void ClauseAllocator::reloc(CRef& cr, ClauseAllocator& to)
2146
{
2147
6020354
  Debug("minisat") << "ClauseAllocator::reloc: cr " << cr << std::endl;
2148
  // FIXME what is this CRef_lazy
2149
6020354
  if (cr == CRef_Lazy) return;
2150
2151
6020354
  Clause& c = operator[](cr);
2152
6020354
  if (c.reloced()) { cr = c.relocation(); return; }
2153
2154
1781775
  cr = to.alloc(c.level(), c, c.removable());
2155
1781775
  c.relocate(cr);
2156
  // Copy extra data-fields:
2157
  // (This could be cleaned-up. Generalize Clause-constructor to be applicable here instead?)
2158
1781775
  to[cr].mark(c.mark());
2159
1781775
  if (to[cr].removable())         to[cr].activity() = c.activity();
2160
1601113
  else if (to[cr].has_extra()) to[cr].calcAbstraction();
2161
}
2162
2163
3026911
inline bool Solver::withinBudget(Resource r) const
2164
{
2165
3026911
  Assert(d_proxy);
2166
  // spendResource sets async_interrupt or throws UnsafeInterruptException
2167
  // depending on whether hard-limit is enabled
2168
3026911
  d_proxy->spendResource(r);
2169
2170
3026911
  bool within_budget =
2171
6053822
      !asynch_interrupt && (conflict_budget < 0 || conflicts < conflict_budget)
2172
6053822
      && (propagation_budget < 0 || propagations < propagation_budget);
2173
3026911
  return within_budget;
2174
}
2175
2176
2508
SatProofManager* Solver::getProofManager()
2177
{
2178
2508
  return isProofEnabled() ? d_pfManager.get() : nullptr;
2179
}
2180
2181
2811
std::shared_ptr<ProofNode> Solver::getProof()
2182
{
2183
2811
  return isProofEnabled() ? d_pfManager->getProof() : nullptr;
2184
}
2185
2186
39286175
bool Solver::isProofEnabled() const { return d_pfManager != nullptr; }
2187
2188
39280856
bool Solver::needProof() const
2189
{
2190
39280856
  return isProofEnabled()
2191
39280856
         && options::unsatCoresMode() != options::UnsatCoresMode::ASSUMPTIONS;
2192
}
2193
2194
}  // namespace Minisat
2195
29337
}  // namespace cvc5