GCC Code Coverage Report
Directory: . Exec Total Coverage
File: src/theory/arith/normal_form.h Lines: 375 382 98.2 %
Date: 2021-08-14 Branches: 421 1107 38.0 %

Line Exec Source
1
/******************************************************************************
2
 * Top contributors (to current version):
3
 *   Tim King, Morgan Deters, Gereon Kremer
4
 *
5
 * This file is part of the cvc5 project.
6
 *
7
 * Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
8
 * in the top-level source directory and their institutional affiliations.
9
 * All rights reserved.  See the file COPYING in the top-level source
10
 * directory for licensing information.
11
 * ****************************************************************************
12
 *
13
 * [[ Add one-line brief description here ]]
14
 *
15
 * [[ Add lengthier description here ]]
16
 * \todo document this file
17
 */
18
19
#include "cvc5_private.h"
20
21
#ifndef CVC5__THEORY__ARITH__NORMAL_FORM_H
22
#define CVC5__THEORY__ARITH__NORMAL_FORM_H
23
24
#include <algorithm>
25
26
#include "base/output.h"
27
#include "expr/node.h"
28
#include "expr/node_self_iterator.h"
29
#include "theory/arith/delta_rational.h"
30
#include "util/rational.h"
31
32
namespace cvc5 {
33
namespace theory {
34
namespace arith {
35
36
/***********************************************/
37
/***************** Normal Form *****************/
38
/***********************************************/
39
/***********************************************/
40
41
/**
42
 * Section 1: Languages
43
 * The normal form for arithmetic nodes is defined by the language
44
 * accepted by the following BNFs with some guard conditions.
45
 * (The guard conditions are in Section 3 for completeness.)
46
 *
47
 * variable := n
48
 *   where
49
 *     n.isVar() or is foreign
50
 *     n.getType() \in {Integer, Real}
51
 *
52
 * constant := n
53
 *   where
54
 *     n.getKind() == kind::CONST_RATIONAL
55
 *
56
 * var_list := variable | (* [variable])
57
 *   where
58
 *     len [variable] >= 2
59
 *     isSorted varOrder [variable]
60
 *
61
 * monomial := constant | var_list | (* constant' var_list')
62
 *   where
63
 *     \f$ constant' \not\in {0,1} \f$
64
 *
65
 * polynomial := monomial' | (+ [monomial])
66
 *   where
67
 *     len [monomial] >= 2
68
 *     isStrictlySorted monoOrder [monomial]
69
 *     forall (\x -> x != 0) [monomial]
70
 *
71
 * rational_cmp := (|><| qpolynomial constant)
72
 *   where
73
 *     |><| is GEQ, or GT
74
 *     not (exists constantMonomial (monomialList qpolynomial))
75
 *     (exists realMonomial (monomialList qpolynomial))
76
 *     abs(monomialCoefficient (head (monomialList qpolynomial))) == 1
77
 *
78
 * integer_cmp := (>= zpolynomial constant)
79
 *   where
80
 *     not (exists constantMonomial (monomialList zpolynomial))
81
 *     (forall integerMonomial (monomialList zpolynomial))
82
 *     the gcd of all numerators of coefficients is 1
83
 *     the denominator of all coefficients and the constant is 1
84
 *     the leading coefficient is positive
85
 *
86
 * rational_eq := (= qvarlist qpolynomial)
87
 *   where
88
 *     let allMonomials = (cons qvarlist (monomialList zpolynomial))
89
 *     let variableMonomials = (drop constantMonomial allMonomials)
90
 *     isStrictlySorted variableMonomials
91
 *     exists realMonomial variableMonomials
92
 *     is not empty qvarlist
93
 *
94
 * integer_eq := (= zmonomial zpolynomial)
95
 *   where
96
 *     let allMonomials = (cons zmonomial (monomialList zpolynomial))
97
 *     let variableMonomials = (drop constantMonomial allMonomials)
98
 *     not (constantMonomial zmonomial)
99
 *     (forall integerMonomial allMonomials)
100
 *     isStrictlySorted variableMonomials
101
 *     the gcd of all numerators of coefficients is 1
102
 *     the denominator of all coefficients and the constant is 1
103
 *     the coefficient of monomial is positive
104
 *     the value of the coefficient of monomial is minimal in variableMonomials
105
 *
106
 * comparison := TRUE | FALSE
107
 *   | rational_cmp | (not rational_cmp)
108
 *   | rational_eq | (not rational_eq)
109
 *   | integer_cmp | (not integer_cmp)
110
 *   | integer_eq | (not integer_eq)
111
 *
112
 * Normal Form for terms := polynomial
113
 * Normal Form for atoms := comparison
114
 */
115
116
/**
117
 * Section 2: Helper Classes
118
 * The langauges accepted by each of these defintions
119
 * roughly corresponds to one of the following helper classes:
120
 *  Variable
121
 *  Constant
122
 *  VarList
123
 *  Monomial
124
 *  Polynomial
125
 *  Comparison
126
 *
127
 * Each of the classes obeys the following contracts/design decisions:
128
 * -Calling isMember(Node node) on a node returns true iff that node is a
129
 *  a member of the language. Note: isMember is O(n).
130
 * -Calling isNormalForm() on a helper class object returns true iff that
131
 *  helper class currently represents a normal form object.
132
 * -If isNormalForm() is false, then this object must have been made
133
 *  using a mk*() factory function.
134
 * -If isNormalForm() is true, calling getNode() on all of these classes
135
 *  returns a node that would be accepted by the corresponding language.
136
 *  And if isNormalForm() is false, returns Node::null().
137
 * -Each of the classes is immutable.
138
 * -Public facing constuctors have a 1-to-1 correspondence with one of
139
 *  production rules in the above grammar.
140
 * -Public facing constuctors are required to fail in debug mode when the
141
 *  guards of the production rule are not strictly met.
142
 *  For example: Monomial(Constant(1),VarList(Variable(x))) must fail.
143
 * -When a class has a Class parseClass(Node node) function,
144
 *  if isMember(node) is true, the function is required to return an instance
145
 *  of the helper class, instance, s.t. instance.getNode() == node.
146
 *  And if isMember(node) is false, this throws an assertion failure in debug
147
 *  mode and has undefined behaviour if not in debug mode.
148
 * -Only public facing constructors, parseClass(node), and mk*() functions are
149
 *  considered privileged functions for the helper class.
150
 * -Only privileged functions may use private constructors, and access
151
 *  private data members.
152
 * -All non-privileged functions are considered utility functions and
153
 *  must use a privileged function in order to create an instance of the class.
154
 */
155
156
/**
157
 * Section 3: Guard Conditions Misc.
158
 *
159
 *
160
 *  variable_order x y =
161
 *    if (meta_kind_variable x) and (meta_kind_variable y)
162
 *    then node_order x y
163
 *    else if (meta_kind_variable x)
164
 *    then false
165
 *    else if (meta_kind_variable y)
166
 *    then true
167
 *    else node_order x y
168
 *
169
 *  var_list_len vl =
170
 *    match vl with
171
 *       variable -> 1
172
 *     | (* [variable]) -> len [variable]
173
 *
174
 *  order res =
175
 *    match res with
176
 *       Empty -> (0,Node::null())
177
 *     | NonEmpty(vl) -> (var_list_len vl, vl)
178
 *
179
 *  var_listOrder a b = tuple_cmp (order a) (order b)
180
 *
181
 *  monomialVarList monomial =
182
 *    match monomial with
183
 *        constant -> Empty
184
 *      | var_list -> NonEmpty(var_list)
185
 *      | (* constant' var_list') -> NonEmpty(var_list')
186
 *
187
 *  monoOrder m0 m1 = var_listOrder (monomialVarList m0) (monomialVarList m1)
188
 *
189
 *  integerMonomial mono =
190
 *    forall varHasTypeInteger (monomialVarList mono)
191
 *
192
 *  realMonomial mono = not (integerMonomial mono)
193
 *
194
 *  constantMonomial monomial =
195
 *    match monomial with
196
 *        constant -> true
197
 *      | var_list -> false
198
 *      | (* constant' var_list') -> false
199
 *
200
 *  monomialCoefficient monomial =
201
 *    match monomial with
202
 *        constant -> constant
203
 *      | var_list -> Constant(1)
204
 *      | (* constant' var_list') -> constant'
205
 *
206
 *  monomialList polynomial =
207
 *    match polynomial with
208
 *        monomial -> monomial::[]
209
 *      | (+ [monomial]) -> [monomial]
210
 */
211
212
/**
213
 * A NodeWrapper is a class that is a thinly veiled container of a Node object.
214
 */
215
2206948773
class NodeWrapper {
216
private:
217
  Node node;
218
public:
219
877350182
  NodeWrapper(Node n) : node(n) {}
220
4772110463
  const Node& getNode() const { return node; }
221
};/* class NodeWrapper */
222
223
224
76986491
class Variable : public NodeWrapper {
225
public:
226
59586107
 Variable(Node n) : NodeWrapper(n) { Assert(isMember(getNode())); }
227
228
 // TODO: check if it's a theory leaf also
229
211807102
 static bool isMember(Node n)
230
 {
231
211807102
   Kind k = n.getKind();
232
211807102
   switch (k)
233
   {
234
587265
     case kind::CONST_RATIONAL: return false;
235
153041
     case kind::INTS_DIVISION:
236
     case kind::INTS_MODULUS:
237
     case kind::DIVISION:
238
     case kind::INTS_DIVISION_TOTAL:
239
     case kind::INTS_MODULUS_TOTAL:
240
153041
     case kind::DIVISION_TOTAL: return isDivMember(n);
241
342537
     case kind::IAND: return isIAndMember(n);
242
55499
     case kind::POW2: return isPow2Member(n);
243
2681423
     case kind::EXPONENTIAL:
244
     case kind::SINE:
245
     case kind::COSINE:
246
     case kind::TANGENT:
247
     case kind::COSECANT:
248
     case kind::SECANT:
249
     case kind::COTANGENT:
250
     case kind::ARCSINE:
251
     case kind::ARCCOSINE:
252
     case kind::ARCTANGENT:
253
     case kind::ARCCOSECANT:
254
     case kind::ARCSECANT:
255
     case kind::ARCCOTANGENT:
256
     case kind::SQRT:
257
2681423
     case kind::PI: return isTranscendentalMember(n);
258
33569
     case kind::ABS:
259
     case kind::TO_INTEGER:
260
       // Treat to_int as a variable; it is replaced in early preprocessing
261
       // by a variable.
262
33569
       return true;
263
207953768
     default: return isLeafMember(n);
264
   }
265
 }
266
267
  static bool isLeafMember(Node n);
268
  static bool isIAndMember(Node n);
269
  static bool isPow2Member(Node n);
270
  static bool isDivMember(Node n);
271
  bool isDivLike() const{
272
    return isDivMember(getNode());
273
  }
274
  static bool isTranscendentalMember(Node n);
275
276
  bool isNormalForm() { return isMember(getNode()); }
277
278
32024143
  bool isIntegral() const {
279
32024143
    return getNode().getType().isInteger();
280
  }
281
282
  bool isMetaKindVariable() const {
283
    return getNode().isVar();
284
  }
285
286
13728093
  bool operator<(const Variable& v) const {
287
    VariableNodeCmp cmp;
288
13728093
    return cmp(this->getNode(), v.getNode());
289
  }
290
291
  struct VariableNodeCmp {
292
104201590
    static inline int cmp(const Node& n, const Node& m) {
293
104201590
      if ( n == m ) { return 0; }
294
295
      // this is now slightly off of the old variable order.
296
297
95378585
      bool nIsInteger = n.getType().isInteger();
298
95378585
      bool mIsInteger = m.getType().isInteger();
299
300
95378585
      if(nIsInteger == mIsInteger){
301
94386458
        bool nIsVariable = n.isVar();
302
94386458
        bool mIsVariable = m.isVar();
303
304
94386458
        if(nIsVariable == mIsVariable){
305
83517027
          if(n < m){
306
46768347
            return -1;
307
          }else{
308
36748680
            Assert(n != m);
309
36748680
            return 1;
310
          }
311
        }else{
312
10869431
          if(nIsVariable){
313
5409015
            return -1; // nIsVariable => !mIsVariable
314
          }else{
315
5460416
            return 1; // !nIsVariable => mIsVariable
316
          }
317
        }
318
      }else{
319
992127
        Assert(nIsInteger != mIsInteger);
320
992127
        if(nIsInteger){
321
830596
          return 1; // nIsInteger => !mIsInteger
322
        }else{
323
161531
          return -1; // !nIsInteger => mIsInteger
324
        }
325
      }
326
    }
327
328
19149136
    bool operator()(const Node& n, const Node& m) const {
329
19149136
      return VariableNodeCmp::cmp(n,m) < 0;
330
    }
331
  };
332
333
  bool operator==(const Variable& v) const { return getNode() == v.getNode();}
334
335
  size_t getComplexity() const;
336
};/* class Variable */
337
338
339
705691182
class Constant : public NodeWrapper {
340
public:
341
255941161
 Constant(Node n) : NodeWrapper(n) { Assert(isMember(getNode())); }
342
343
258730127
 static bool isMember(Node n) { return n.getKind() == kind::CONST_RATIONAL; }
344
345
 bool isNormalForm() { return isMember(getNode()); }
346
347
2208347
 static Constant mkConstant(Node n)
348
 {
349
2208347
   Assert(n.getKind() == kind::CONST_RATIONAL);
350
2208347
   return Constant(n);
351
 }
352
353
  static Constant mkConstant(const Rational& rat);
354
355
824642
  static Constant mkZero() {
356
824642
    return mkConstant(Rational(0));
357
  }
358
359
  static Constant mkOne() {
360
    return mkConstant(Rational(1));
361
  }
362
363
562684650
  const Rational& getValue() const {
364
562684650
    return getNode().getConst<Rational>();
365
  }
366
367
  static int absCmp(const Constant& a, const Constant& b);
368
19875269
  bool isIntegral() const { return getValue().isIntegral(); }
369
370
254380402
  int sgn() const { return getValue().sgn(); }
371
372
247166347
  bool isZero() const { return sgn() == 0; }
373
321903
  bool isNegative() const { return sgn() < 0; }
374
6892152
  bool isPositive() const { return sgn() > 0; }
375
376
215101326
  bool isOne() const { return getValue() == 1; }
377
378
8130988
  Constant operator*(const Rational& other) const {
379
8130988
    return mkConstant(getValue() * other);
380
  }
381
382
2366796
  Constant operator*(const Constant& other) const {
383
2366796
    return mkConstant(getValue() * other.getValue());
384
  }
385
35544
  Constant operator+(const Constant& other) const {
386
35544
    return mkConstant(getValue() + other.getValue());
387
  }
388
610866
  Constant operator-() const {
389
610866
    return mkConstant(-getValue());
390
  }
391
392
371902
  Constant inverse() const{
393
371902
    Assert(!isZero());
394
371902
    return mkConstant(getValue().inverse());
395
  }
396
397
  bool operator<(const Constant& other) const {
398
    return getValue() < other.getValue();
399
  }
400
401
22540
  bool operator==(const Constant& other) const {
402
    //Rely on node uniqueness.
403
22540
    return getNode() == other.getNode();
404
  }
405
406
257530
  Constant abs() const {
407
257530
    if(isNegative()){
408
135036
      return -(*this);
409
    }else{
410
122494
      return (*this);
411
    }
412
  }
413
414
274780
  uint32_t length() const{
415
274780
    Assert(isIntegral());
416
274780
    return getValue().getNumerator().length();
417
  }
418
419
  size_t getComplexity() const;
420
421
};/* class Constant */
422
423
424
template <class GetNodeIterator>
425
7209901
inline Node makeNode(Kind k, GetNodeIterator start, GetNodeIterator end) {
426
14419802
  NodeBuilder nb(k);
427
428
44595121
  while(start != end) {
429
18692610
    nb << (*start).getNode();
430
18692610
    ++start;
431
  }
432
433
14419802
  return Node(nb);
434
}/* makeNode<GetNodeIterator>(Kind, iterator, iterator) */
435
436
/**
437
 * A VarList is a sorted list of variables representing a product.
438
 * If the VarList is empty, it represents an empty product or 1.
439
 * If the VarList has size 1, it represents a single variable.
440
 *
441
 * A non-sorted VarList can never be successfully made in debug mode.
442
 */
443
857924921
class VarList : public NodeWrapper {
444
private:
445
446
  static Node multList(const std::vector<Variable>& list) {
447
    Assert(list.size() >= 2);
448
449
    return makeNode(kind::NONLINEAR_MULT, list.begin(), list.end());
450
  }
451
452
47131617
  VarList() : NodeWrapper(Node::null()) {}
453
454
  VarList(Node n);
455
456
  typedef expr::NodeSelfIterator internal_iterator;
457
458
238343704
  internal_iterator internalBegin() const {
459
238343704
    if(singleton()){
460
208892837
      return expr::NodeSelfIterator::self(getNode());
461
    }else{
462
29450867
      return getNode().begin();
463
    }
464
  }
465
466
238320599
  internal_iterator internalEnd() const {
467
238320599
    if(singleton()){
468
208869732
      return expr::NodeSelfIterator::selfEnd(getNode());
469
    }else{
470
29450867
      return getNode().end();
471
    }
472
  }
473
474
public:
475
476
4057287972
  class iterator : public std::iterator<std::input_iterator_tag, Variable> {
477
  private:
478
    internal_iterator d_iter;
479
480
  public:
481
458894787
    explicit iterator(internal_iterator i) : d_iter(i) {}
482
483
59577784
    inline Variable operator*() {
484
59577784
      return Variable(*d_iter);
485
    }
486
487
382720620
    bool operator==(const iterator& i) {
488
382720620
      return d_iter == i.d_iter;
489
    }
490
491
272069411
    bool operator!=(const iterator& i) {
492
272069411
      return d_iter != i.d_iter;
493
    }
494
495
233993880
    iterator operator++() {
496
233993880
      ++d_iter;
497
233993880
      return *this;
498
    }
499
500
    iterator operator++(int) {
501
      return iterator(d_iter++);
502
    }
503
  };
504
505
229458946
  iterator begin() const {
506
229458946
    return iterator(internalBegin());
507
  }
508
509
229435841
  iterator end() const {
510
229435841
    return iterator(internalEnd());
511
  }
512
513
23105
  Variable getHead() const {
514
23105
    Assert(!empty());
515
23105
    return *(begin());
516
  }
517
518
4336583
  VarList(Variable v) : NodeWrapper(v.getNode()) {
519
4336583
    Assert(isSorted(begin(), end()));
520
4336583
  }
521
522
  VarList(const std::vector<Variable>& l) : NodeWrapper(multList(l)) {
523
    Assert(l.size() >= 2);
524
    Assert(isSorted(begin(), end()));
525
  }
526
527
  static bool isMember(Node n);
528
529
  bool isNormalForm() const {
530
    return !empty();
531
  }
532
533
47131617
  static VarList mkEmptyVarList() {
534
47131617
    return VarList();
535
  }
536
537
538
  /** There are no restrictions on the size of l */
539
  static VarList mkVarList(const std::vector<Variable>& l) {
540
    if(l.size() == 0) {
541
      return mkEmptyVarList();
542
    } else if(l.size() == 1) {
543
      return VarList((*l.begin()).getNode());
544
    } else {
545
      return VarList(l);
546
    }
547
  }
548
549
1344336260
  bool empty() const { return getNode().isNull(); }
550
814160445
  bool singleton() const {
551
814160445
    return !empty() && getNode().getKind() != kind::NONLINEAR_MULT;
552
  }
553
554
337274216
  int size() const {
555
337274216
    if(singleton())
556
278067530
      return 1;
557
    else
558
59206686
      return getNode().getNumChildren();
559
  }
560
561
  static VarList parseVarList(Node n);
562
563
  VarList operator*(const VarList& vl) const;
564
565
  int cmp(const VarList& vl) const;
566
567
598229
  bool operator<(const VarList& vl) const { return cmp(vl) < 0; }
568
569
24108823
  bool operator==(const VarList& vl) const { return cmp(vl) == 0; }
570
571
38007378
  bool isIntegral() const {
572
66838505
    for(iterator i = begin(), e=end(); i != e; ++i ){
573
60855270
      Variable var = *i;
574
32024143
      if(!var.isIntegral()){
575
3193016
        return false;
576
      }
577
    }
578
34814362
    return true;
579
  }
580
  size_t getComplexity() const;
581
582
private:
583
  bool isSorted(iterator start, iterator end);
584
585
};/* class VarList */
586
587
588
/** Constructors have side conditions. Use the static mkMonomial functions instead. */
589
454033583
class Monomial : public NodeWrapper {
590
private:
591
  Constant constant;
592
  VarList varList;
593
  Monomial(Node n, const Constant& c, const VarList& vl):
594
    NodeWrapper(n), constant(c), varList(vl)
595
  {
596
    Assert(!c.isZero() || vl.empty());
597
    Assert(c.isZero() || !vl.empty());
598
599
    Assert(!c.isOne() || !multStructured(n));
600
  }
601
602
70149991
  static Node makeMultNode(const Constant& c, const VarList& vl) {
603
70149991
    Assert(!c.isZero());
604
70149991
    Assert(!c.isOne());
605
70149991
    Assert(!vl.empty());
606
70149991
    return NodeManager::currentNM()->mkNode(kind::MULT, c.getNode(), vl.getNode());
607
  }
608
609
395796790
  static bool multStructured(Node n) {
610
719203582
    return n.getKind() ==  kind::MULT &&
611
1510797162
      n[0].getKind() == kind::CONST_RATIONAL &&
612
953296976
      n.getNumChildren() == 2;
613
  }
614
615
47131617
  Monomial(const Constant& c):
616
47131617
    NodeWrapper(c.getNode()), constant(c), varList(VarList::mkEmptyVarList())
617
47131617
  { }
618
619
123310787
  Monomial(const VarList& vl):
620
123310787
    NodeWrapper(vl.getNode()), constant(Constant::mkConstant(1)), varList(vl)
621
  {
622
123310787
    Assert(!varList.empty());
623
123310787
  }
624
625
70149991
  Monomial(const Constant& c, const VarList& vl):
626
70149991
    NodeWrapper(makeMultNode(c,vl)), constant(c), varList(vl)
627
  {
628
70149991
    Assert(!c.isZero());
629
70149991
    Assert(!c.isOne());
630
70149991
    Assert(!varList.empty());
631
632
70149991
    Assert(multStructured(getNode()));
633
70149991
  }
634
public:
635
  static bool isMember(TNode n);
636
637
  /** Makes a monomial with no restrictions on c and vl. */
638
  static Monomial mkMonomial(const Constant& c, const VarList& vl);
639
640
  /** If vl is empty, this make one. */
641
  static Monomial mkMonomial(const VarList& vl);
642
643
862324
  static Monomial mkMonomial(const Constant& c){
644
862324
    return Monomial(c);
645
  }
646
647
36216
  static Monomial mkMonomial(const Variable& v){
648
36216
    return Monomial(VarList(v));
649
  }
650
651
  static Monomial parseMonomial(Node n);
652
653
4061738
  static Monomial mkZero() {
654
4061738
    return Monomial(Constant::mkConstant(0));
655
  }
656
546621
  static Monomial mkOne() {
657
546621
    return Monomial(Constant::mkConstant(1));
658
  }
659
107450716
  const Constant& getConstant() const { return constant; }
660
302848931
  const VarList& getVarList() const { return varList; }
661
662
27732548
  bool isConstant() const {
663
27732548
    return varList.empty();
664
  }
665
666
8164380
  bool isZero() const {
667
8164380
    return constant.isZero();
668
  }
669
670
2508505
  bool coefficientIsOne() const {
671
2508505
    return constant.isOne();
672
  }
673
674
1937459
  bool absCoefficientIsOne() const {
675
1937459
    return coefficientIsOne() || constant.getValue() == -1;
676
  }
677
678
  bool constantIsPositive() const {
679
    return getConstant().isPositive();
680
  }
681
682
  Monomial operator*(const Rational& q) const;
683
  Monomial operator*(const Constant& c) const;
684
  Monomial operator*(const Monomial& mono) const;
685
686
807705
  Monomial operator-() const{
687
807705
    return (*this) * Rational(-1);
688
  }
689
690
691
103481774
  int cmp(const Monomial& mono) const {
692
103481774
    return getVarList().cmp(mono.getVarList());
693
  }
694
695
81900615
  bool operator<(const Monomial& vl) const {
696
81900615
    return cmp(vl) < 0;
697
  }
698
699
21581159
  bool operator==(const Monomial& vl) const {
700
21581159
    return cmp(vl) == 0;
701
  }
702
703
33763049
  static bool isSorted(const std::vector<Monomial>& m) {
704
33763049
    return std::is_sorted(m.begin(), m.end());
705
  }
706
707
21740134
  static bool isStrictlySorted(const std::vector<Monomial>& m) {
708
21740134
    return isSorted(m) && std::adjacent_find(m.begin(),m.end()) == m.end();
709
  }
710
711
  static void sort(std::vector<Monomial>& m);
712
  static void combineAdjacentMonomials(std::vector<Monomial>& m);
713
714
  /**
715
   * The variable product
716
   */
717
38005967
  bool integralVariables() const {
718
38005967
    return getVarList().isIntegral();
719
  }
720
721
  /**
722
   * The coefficient of the monomial is integral.
723
   */
724
17795335
  bool integralCoefficient() const {
725
17795335
    return getConstant().isIntegral();
726
  }
727
728
  /**
729
   * A Monomial is an "integral" monomial if the constant is integral.
730
   */
731
17795335
  bool isIntegral() const {
732
17795335
    return integralCoefficient() && integralVariables();
733
  }
734
735
  /** Returns true if the VarList is a product of at least 2 Variables.*/
736
74331
  bool isNonlinear() const {
737
74331
    return getVarList().size() >= 2;
738
  }
739
740
  /**
741
   * Given a sorted list of monomials, this function transforms this
742
   * into a strictly sorted list of monomials that does not contain zero.
743
   */
744
  //static std::vector<Monomial> sumLikeTerms(const std::vector<Monomial>& monos);
745
746
8787026
  int absCmp(const Monomial& other) const{
747
8787026
    return getConstant().getValue().absCmp(other.getConstant().getValue());
748
  }
749
  // bool absLessThan(const Monomial& other) const{
750
  //   return getConstant().abs() < other.getConstant().abs();
751
  // }
752
753
186812
  uint32_t coefficientLength() const{
754
186812
    return getConstant().length();
755
  }
756
757
  void print() const;
758
  static void printList(const std::vector<Monomial>& list);
759
760
  size_t getComplexity() const;
761
};/* class Monomial */
762
763
class SumPair;
764
class Comparison;;
765
766
102478147
class Polynomial : public NodeWrapper {
767
private:
768
  bool d_singleton;
769
770
53301645
  Polynomial(TNode n) : NodeWrapper(n), d_singleton(Monomial::isMember(n)) {
771
53301645
    Assert(isMember(getNode()));
772
53301645
  }
773
774
7209901
  static Node makePlusNode(const std::vector<Monomial>& m) {
775
7209901
    Assert(m.size() >= 2);
776
777
7209901
    return makeNode(kind::PLUS, m.begin(), m.end());
778
  }
779
780
  typedef expr::NodeSelfIterator internal_iterator;
781
782
123183612
  internal_iterator internalBegin() const {
783
123183612
    if(singleton()){
784
83069924
      return expr::NodeSelfIterator::self(getNode());
785
    }else{
786
40113688
      return getNode().begin();
787
    }
788
  }
789
790
83830355
  internal_iterator internalEnd() const {
791
83830355
    if(singleton()){
792
54080120
      return expr::NodeSelfIterator::selfEnd(getNode());
793
    }else{
794
29750235
      return getNode().end();
795
    }
796
  }
797
798
236185997
  bool singleton() const { return d_singleton; }
799
800
public:
801
  static bool isMember(TNode n);
802
803
952064701
  class iterator : public std::iterator<std::input_iterator_tag, Monomial> {
804
  private:
805
    internal_iterator d_iter;
806
807
  public:
808
207013967
    explicit iterator(internal_iterator i) : d_iter(i) {}
809
810
177953828
    inline Monomial operator*() {
811
177953828
      return Monomial::parseMonomial(*d_iter);
812
    }
813
814
180690
    bool operator==(const iterator& i) {
815
180690
      return d_iter == i.d_iter;
816
    }
817
818
197605869
    bool operator!=(const iterator& i) {
819
197605869
      return d_iter != i.d_iter;
820
    }
821
822
99288848
    iterator operator++() {
823
99288848
      ++d_iter;
824
99288848
      return *this;
825
    }
826
827
    iterator operator++(int) {
828
      return iterator(d_iter++);
829
    }
830
  };
831
832
123183612
  iterator begin() const { return iterator(internalBegin()); }
833
83830355
  iterator end() const {  return iterator(internalEnd()); }
834
835
15791087
  Polynomial(const Monomial& m):
836
15791087
    NodeWrapper(m.getNode()), d_singleton(true)
837
15791087
  {}
838
839
7209901
  Polynomial(const std::vector<Monomial>& m):
840
7209901
    NodeWrapper(makePlusNode(m)), d_singleton(false)
841
  {
842
7209901
    Assert(m.size() >= 2);
843
7209901
    Assert(Monomial::isStrictlySorted(m));
844
7209901
  }
845
846
862324
  static Polynomial mkPolynomial(const Constant& c){
847
862324
    return Polynomial(Monomial::mkMonomial(c));
848
  }
849
850
36216
  static Polynomial mkPolynomial(const Variable& v){
851
36216
    return Polynomial(Monomial::mkMonomial(v));
852
  }
853
854
17700696
  static Polynomial mkPolynomial(const std::vector<Monomial>& m) {
855
17700696
    if(m.size() == 0) {
856
1754982
      return Polynomial(Monomial::mkZero());
857
15945714
    } else if(m.size() == 1) {
858
8735813
      return Polynomial((*m.begin()));
859
    } else {
860
7209901
      return Polynomial(m);
861
    }
862
  }
863
864
53301645
  static Polynomial parsePolynomial(Node n) {
865
53301645
    return Polynomial(n);
866
  }
867
868
2306756
  static Polynomial mkZero() {
869
2306756
    return Polynomial(Monomial::mkZero());
870
  }
871
546621
  static Polynomial mkOne() {
872
546621
    return Polynomial(Monomial::mkOne());
873
  }
874
8317373
  bool isZero() const {
875
8317373
    return singleton() && (getHead().isZero());
876
  }
877
878
12921375
  bool isConstant() const {
879
12921375
    return singleton() && (getHead().isConstant());
880
  }
881
882
12462164
  bool containsConstant() const {
883
12462164
    return getHead().isConstant();
884
  }
885
886
1508
  uint32_t size() const{
887
1508
    if(singleton()){
888
1166
      return 1;
889
    }else{
890
342
      Assert(getNode().getKind() == kind::PLUS);
891
342
      return getNode().getNumChildren();
892
    }
893
  }
894
895
44986452
  Monomial getHead() const {
896
44986452
    return *(begin());
897
  }
898
899
2041265
  Polynomial getTail() const {
900
2041265
    Assert(!singleton());
901
902
4082530
    iterator tailStart = begin();
903
2041265
    ++tailStart;
904
4082530
    std::vector<Monomial> subrange;
905
2041265
    std::copy(tailStart, end(), std::back_inserter(subrange));
906
4082530
    return mkPolynomial(subrange);
907
  }
908
909
  Monomial minimumVariableMonomial() const;
910
  bool variableMonomialAreStrictlyGreater(const Monomial& m) const;
911
912
  void printList() const {
913
    if(Debug.isOn("normal-form")){
914
      Debug("normal-form") << "start list" << std::endl;
915
      for(iterator i = begin(), oend = end(); i != oend; ++i) {
916
        const Monomial& m =*i;
917
        m.print();
918
      }
919
      Debug("normal-form") << "end list" << std::endl;
920
    }
921
  }
922
923
  /** A Polynomial is an "integral" polynomial if all of the monomials are integral. */
924
14624144
  bool allIntegralVariables() const {
925
33582780
    for(iterator i = begin(), e=end(); i!=e; ++i){
926
20212030
      if(!(*i).integralVariables()){
927
1253394
        return false;
928
      }
929
    }
930
13370750
    return true;
931
  }
932
933
  /**
934
   * A Polynomial is an "integral" polynomial if all of the monomials are integral
935
   * and all of the coefficients are Integral. */
936
12338136
  bool isIntegral() const {
937
28193144
    for(iterator i = begin(), e=end(); i!=e; ++i){
938
17795335
      if(!(*i).isIntegral()){
939
1940327
        return false;
940
      }
941
    }
942
10397809
    return true;
943
  }
944
945
  static Polynomial sumPolynomials(const std::vector<Polynomial>& polynomials);
946
947
  /** Returns true if the polynomial contains a non-linear monomial.*/
948
  bool isNonlinear() const;
949
950
  /** Check whether this polynomial is only a single variable. */
951
620
  bool isVariable() const
952
  {
953
1696
    return singleton() && getHead().getVarList().singleton()
954
2114
           && getHead().coefficientIsOne();
955
  }
956
  /** Return the variable, given that isVariable() holds. */
957
  Variable getVariable() const
958
  {
959
    Assert(isVariable());
960
    return getHead().getVarList().getHead();
961
  }
962
963
  /**
964
   * Selects a minimal monomial in the polynomial by the absolute value of
965
   * the coefficient.
966
   */
967
  Monomial selectAbsMinimum() const;
968
969
  /** Returns true if the absolute value of the head coefficient is one. */
970
  bool leadingCoefficientIsAbsOne() const;
971
  bool leadingCoefficientIsPositive() const;
972
  bool denominatorLCMIsOne() const;
973
  bool numeratorGCDIsOne() const;
974
975
3461233
  bool signNormalizedReducedSum() const {
976
3461233
    return leadingCoefficientIsPositive() && denominatorLCMIsOne() && numeratorGCDIsOne();
977
  }
978
979
  /**
980
   * Returns the Least Common Multiple of the denominators of the coefficients
981
   * of the monomials.
982
   */
983
  Integer denominatorLCM() const;
984
985
  /**
986
   * Returns the GCD of the numerators of the monomials.
987
   * Requires this to be an isIntegral() polynomial.
988
   */
989
  Integer numeratorGCD() const;
990
991
  /**
992
   * Returns the GCD of the coefficients of the monomials.
993
   * Requires this to be an isIntegral() polynomial.
994
   */
995
  Integer gcd() const;
996
997
  /** z must divide all of the coefficients of the polynomial. */
998
  Polynomial exactDivide(const Integer& z) const;
999
1000
  Polynomial operator+(const Polynomial& vl) const;
1001
  Polynomial operator-(const Polynomial& vl) const;
1002
902626
  Polynomial operator-() const{
1003
902626
    return (*this) * Rational(-1);
1004
  }
1005
1006
  Polynomial operator*(const Rational& q) const;
1007
  Polynomial operator*(const Constant& c) const;
1008
  Polynomial operator*(const Monomial& mono) const;
1009
1010
  Polynomial operator*(const Polynomial& poly) const;
1011
1012
  /**
1013
   * Viewing the integer polynomial as a list [(* coeff_i mono_i)]
1014
   * The quotient and remainder of p divided by the non-zero integer z is:
1015
   *   q := [(* floor(coeff_i/z) mono_i )]
1016
   *   r := [(* rem(coeff_i/z) mono_i)]
1017
   * computeQR(p,z) returns the node (+ q r).
1018
   *
1019
   * q and r are members of the Polynomial class.
1020
   * For example:
1021
   * computeQR( p = (+ 5 (* 3 x) (* 8 y)) , z = 2) returns
1022
   *   (+ (+ 2 x (* 4 y)) (+ 1 x))
1023
   */
1024
  static Node computeQR(const Polynomial& p, const Integer& z);
1025
1026
  /** Returns the coefficient associated with the VarList in the polynomial. */
1027
  Constant getCoefficient(const VarList& vl) const;
1028
1029
87968
  uint32_t maxLength() const{
1030
175936
    iterator i = begin(), e=end();
1031
87968
    if( i == e){
1032
      return 1;
1033
    }else{
1034
87968
      uint32_t max = (*i).coefficientLength();
1035
87968
      ++i;
1036
285656
      for(; i!=e; ++i){
1037
98844
        uint32_t curr = (*i).coefficientLength();
1038
98844
        if(curr > max){
1039
20440
          max = curr;
1040
        }
1041
      }
1042
87968
      return max;
1043
    }
1044
  }
1045
1046
5999474
  uint32_t numMonomials() const {
1047
5999474
    if( getNode().getKind() == kind::PLUS ){
1048
29192
      return getNode().getNumChildren();
1049
5970282
    }else if(isZero()){
1050
      return 0;
1051
    }else{
1052
5970282
      return 1;
1053
    }
1054
  }
1055
1056
301861
  const Rational& asConstant() const{
1057
301861
    Assert(isConstant());
1058
301861
    return getNode().getConst<Rational>();
1059
    //return getHead().getConstant().getValue();
1060
  }
1061
1062
3975547
  bool isVarList() const {
1063
3975547
    if(singleton()){
1064
3614365
      return VarList::isMember(getNode());
1065
    }else{
1066
361182
      return false;
1067
    }
1068
  }
1069
1070
1198682
  VarList asVarList() const {
1071
1198682
    Assert(isVarList());
1072
1198682
    return getHead().getVarList();
1073
  }
1074
1075
  size_t getComplexity() const;
1076
1077
  friend class SumPair;
1078
  friend class Comparison;
1079
1080
  /** Returns a node that if asserted ensures v is the abs of this polynomial.*/
1081
  Node makeAbsCondition(Variable v){
1082
    return makeAbsCondition(v, *this);
1083
  }
1084
1085
  /** Returns a node that if asserted ensures v is the abs of p.*/
1086
  static Node makeAbsCondition(Variable v, Polynomial p);
1087
1088
};/* class Polynomial */
1089
1090
1091
/**
1092
 * SumPair is a utility class that extends polynomials for use in computations.
1093
 * A SumPair is always a combination of (+ p c) where
1094
 *  c is a constant and p is a polynomial such that p = 0 or !p.containsConstant().
1095
 *
1096
 * These are a useful utility for representing the equation p = c as (+ p -c) where the pair
1097
 * is known to implicitly be equal to 0.
1098
 *
1099
 * SumPairs do not have unique representations due to the potential for p = 0.
1100
 * This makes them inappropriate for normal forms.
1101
 */
1102
1989054
class SumPair : public NodeWrapper {
1103
private:
1104
1604142
  static Node toNode(const Polynomial& p, const Constant& c){
1105
1604142
    return NodeManager::currentNM()->mkNode(kind::PLUS, p.getNode(), c.getNode());
1106
  }
1107
1108
668
  SumPair(TNode n) : NodeWrapper(n) { Assert(isNormalForm()); }
1109
1110
 public:
1111
334
  SumPair(const Polynomial& p):
1112
334
    NodeWrapper(toNode(p, Constant::mkConstant(0)))
1113
  {
1114
334
    Assert(isNormalForm());
1115
334
  }
1116
1117
1603808
  SumPair(const Polynomial& p, const Constant& c):
1118
1603808
    NodeWrapper(toNode(p, c))
1119
  {
1120
1603808
    Assert(isNormalForm());
1121
1603808
  }
1122
1123
1604810
  static bool isMember(TNode n) {
1124
1604810
    if(n.getKind() == kind::PLUS && n.getNumChildren() == 2){
1125
1604810
      if(Constant::isMember(n[1])){
1126
1604810
        if(Polynomial::isMember(n[0])){
1127
3209620
          Polynomial p = Polynomial::parsePolynomial(n[0]);
1128
1604810
          return p.isZero() || (!p.containsConstant());
1129
        }else{
1130
          return false;
1131
        }
1132
      }else{
1133
        return false;
1134
      }
1135
    }else{
1136
      return false;
1137
    }
1138
  }
1139
1140
1604810
  bool isNormalForm() const {
1141
1604810
    return isMember(getNode());
1142
  }
1143
1144
7208169
  Polynomial getPolynomial() const {
1145
7208169
    return Polynomial::parsePolynomial(getNode()[0]);
1146
  }
1147
1148
2208347
  Constant getConstant() const {
1149
2208347
    return Constant::mkConstant((getNode())[1]);
1150
  }
1151
1152
35544
  SumPair operator+(const SumPair& other) const {
1153
71088
    return SumPair(getPolynomial() + other.getPolynomial(),
1154
106632
                   getConstant() + other.getConstant());
1155
  }
1156
1157
94280
  SumPair operator*(const Constant& c) const {
1158
94280
    return SumPair(getPolynomial() * c, getConstant() * c);
1159
  }
1160
1161
334
  SumPair operator-(const SumPair& other) const {
1162
334
    return (*this) + (other * Constant::mkConstant(-1));
1163
  }
1164
1165
  static SumPair mkSumPair(const Polynomial& p);
1166
1167
334
  static SumPair mkSumPair(const Variable& var){
1168
334
    return SumPair(Polynomial::mkPolynomial(var));
1169
  }
1170
1171
668
  static SumPair parseSumPair(TNode n){
1172
668
    return SumPair(n);
1173
  }
1174
1175
284818
  bool isIntegral() const{
1176
284818
    return getConstant().isIntegral() && getPolynomial().isIntegral();
1177
  }
1178
1179
476085
  bool isConstant() const {
1180
476085
    return getPolynomial().isZero();
1181
  }
1182
1183
2217
  bool isZero() const {
1184
2217
    return getConstant().isZero() && isConstant();
1185
  }
1186
1187
  uint32_t size() const{
1188
    return getPolynomial().size();
1189
  }
1190
1191
37619
  bool isNonlinear() const{
1192
37619
    return getPolynomial().isNonlinear();
1193
  }
1194
1195
  /**
1196
   * Returns the greatest common divisor of gcd(getPolynomial()) and getConstant().
1197
   * The SumPair must be integral.
1198
   */
1199
172656
  Integer gcd() const {
1200
172656
    Assert(isIntegral());
1201
172656
    return (getPolynomial().gcd()).gcd(getConstant().getValue().getNumerator());
1202
  }
1203
1204
87968
  uint32_t maxLength() const {
1205
87968
    Assert(isIntegral());
1206
87968
    return std::max(getPolynomial().maxLength(), getConstant().length());
1207
  }
1208
1209
445
  static SumPair mkZero() {
1210
445
    return SumPair(Polynomial::mkZero(), Constant::mkConstant(0));
1211
  }
1212
1213
  static Node computeQR(const SumPair& sp, const Integer& div);
1214
1215
};/* class SumPair */
1216
1217
/* class OrderedPolynomialPair { */
1218
/* private: */
1219
/*   Polynomial d_first; */
1220
/*   Polynomial d_second; */
1221
/* public: */
1222
/*   OrderedPolynomialPair(const Polynomial& f, const Polynomial& s) */
1223
/*     : d_first(f), */
1224
/*       d_second(s) */
1225
/*   {} */
1226
1227
/*   /\** Returns the first part of the pair. *\/ */
1228
/*   const Polynomial& getFirst() const { */
1229
/*     return d_first; */
1230
/*   } */
1231
1232
/*   /\** Returns the second part of the pair. *\/ */
1233
/*   const Polynomial& getSecond() const { */
1234
/*     return d_second; */
1235
/*   } */
1236
1237
/*   OrderedPolynomialPair operator*(const Constant& c) const; */
1238
/*   OrderedPolynomialPair operator+(const Polynomial& p) const; */
1239
1240
/*   /\** Returns true if both of the polynomials are constant. *\/ */
1241
/*   bool isConstant() const; */
1242
1243
/*   /\** */
1244
/*    * Evaluates an isConstant() ordered pair as if */
1245
/*    *   (k getFirst() getRight()) */
1246
/*    *\/ */
1247
/*   bool evaluateConstant(Kind k) const; */
1248
1249
/*   /\** */
1250
/*    * Returns the Least Common Multiple of the monomials */
1251
/*    * on the lefthand side and the constant on the right. */
1252
/*    *\/ */
1253
/*   Integer denominatorLCM() const; */
1254
1255
/*   /\** Constructs a SumPair. *\/ */
1256
/*   SumPair toSumPair() const; */
1257
1258
1259
/*   OrderedPolynomialPair divideByGCD() const; */
1260
/*   OrderedPolynomialPair multiplyConstant(const Constant& c) const; */
1261
1262
/*   /\** */
1263
/*    * Returns true if all of the variables are integers, */
1264
/*    * and the coefficients are integers. */
1265
/*    *\/ */
1266
/*   bool isIntegral() const; */
1267
1268
/*   /\** Returns true if all of the variables are integers. *\/ */
1269
/*   bool allIntegralVariables() const { */
1270
/*     return getFirst().allIntegralVariables() && getSecond().allIntegralVariables(); */
1271
/*   } */
1272
/* }; */
1273
1274
7845395
class Comparison : public NodeWrapper {
1275
private:
1276
1277
  static Node toNode(Kind k, const Polynomial& l, const Constant& c);
1278
  static Node toNode(Kind k, const Polynomial& l, const Polynomial& r);
1279
1280
  Comparison(TNode n);
1281
1282
  /**
1283
   * Creates a node in normal form equivalent to (= l 0).
1284
   * All variables in l are integral.
1285
   */
1286
  static Node mkIntEquality(const Polynomial& l);
1287
1288
  /**
1289
   * Creates a comparison equivalent to (k l 0).
1290
   * k is either GT or GEQ.
1291
   * All variables in l are integral.
1292
   */
1293
  static Node mkIntInequality(Kind k, const Polynomial& l);
1294
1295
  /**
1296
   * Creates a node equivalent to (= l 0).
1297
   * It is not the case that all variables in l are integral.
1298
   */
1299
  static Node mkRatEquality(const Polynomial& l);
1300
1301
  /**
1302
   * Creates a comparison equivalent to (k l 0).
1303
   * k is either GT or GEQ.
1304
   * It is not the case that all variables in l are integral.
1305
   */
1306
  static Node mkRatInequality(Kind k, const Polynomial& l);
1307
1308
public:
1309
1310
301535
  Comparison(bool val) :
1311
301535
    NodeWrapper(NodeManager::currentNM()->mkConst(val))
1312
301535
  { }
1313
1314
  /**
1315
   * Given a literal to TheoryArith return a single kind to
1316
   * to indicate its underlying structure.
1317
   * The function returns the following in each case:
1318
   * - (K left right)           -> K where is either EQUAL, GT, or GEQ
1319
   * - (CONST_BOOLEAN b)        -> CONST_BOOLEAN
1320
   * - (NOT (EQUAL left right)) -> DISTINCT
1321
   * - (NOT (GT left right))    -> LEQ
1322
   * - (NOT (GEQ left right))   -> LT
1323
   * If none of these match, it returns UNDEFINED_KIND.
1324
   */
1325
  static Kind comparisonKind(TNode literal);
1326
1327
34587955
  Kind comparisonKind() const { return comparisonKind(getNode()); }
1328
1329
  static Comparison mkComparison(Kind k, const Polynomial& l, const Polynomial& r);
1330
1331
  /** Returns true if the comparison is a boolean constant. */
1332
  bool isBoolean() const;
1333
1334
  /**
1335
   * Returns true if the comparison is either a boolean term,
1336
   * in integer normal form or mixed normal form.
1337
   */
1338
  bool isNormalForm() const;
1339
1340
private:
1341
  bool isNormalGT() const;
1342
  bool isNormalGEQ() const;
1343
1344
  bool isNormalLT() const;
1345
  bool isNormalLEQ() const;
1346
1347
  bool isNormalEquality() const;
1348
  bool isNormalDistinct() const;
1349
  bool isNormalEqualityOrDisequality() const;
1350
1351
5947388
  bool allIntegralVariables() const {
1352
5947388
    return getLeft().allIntegralVariables() && getRight().allIntegralVariables();
1353
  }
1354
  bool rightIsConstant() const;
1355
1356
public:
1357
  Polynomial getLeft() const;
1358
  Polynomial getRight() const;
1359
1360
  /* /\** Normal form check if at least one variable is real. *\/ */
1361
  /* bool isMixedCompareNormalForm() const; */
1362
1363
  /* /\** Normal form check if at least one variable is real. *\/ */
1364
  /* bool isMixedEqualsNormalForm() const; */
1365
1366
  /* /\** Normal form check is all variables are integer.*\/ */
1367
  /* bool isIntegerCompareNormalForm() const; */
1368
1369
  /* /\** Normal form check is all variables are integer.*\/ */
1370
  /* bool isIntegerEqualsNormalForm() const; */
1371
1372
1373
  /**
1374
   * Returns true if all of the variables are integers, the coefficients are integers,
1375
   * and the right hand coefficient is an integer.
1376
   */
1377
  bool debugIsIntegral() const;
1378
1379
  static Comparison parseNormalForm(TNode n);
1380
1381
798586
  inline static bool isNormalAtom(TNode n){
1382
1597172
    Comparison parse = Comparison::parseNormalForm(n);
1383
1597172
    return parse.isNormalForm();
1384
  }
1385
1386
  size_t getComplexity() const;
1387
1388
  SumPair toSumPair() const;
1389
1390
  Polynomial normalizedVariablePart() const;
1391
  DeltaRational normalizedDeltaRational() const;
1392
1393
  /**
1394
   * Transforms a Comparison object into a stronger normal form:
1395
   *    Polynomial ~Kind~ Constant
1396
   *
1397
   * From the comparison, this method resolved a negation (if present) and
1398
   * moves everything to the left side.
1399
   * If split_constant is false, the constant is always zero.
1400
   * If split_constant is true, the polynomial has no constant term and is
1401
   * normalized to have leading coefficient one.
1402
   */
1403
  std::tuple<Polynomial, Kind, Constant> decompose(
1404
      bool split_constant = false) const;
1405
1406
};/* class Comparison */
1407
1408
}  // namespace arith
1409
}  // namespace theory
1410
}  // namespace cvc5
1411
1412
#endif /* CVC5__THEORY__ARITH__NORMAL_FORM_H */