GCC Code Coverage Report
Directory: . Exec Total Coverage
File: src/prop/minisat/core/Solver.cc Lines: 855 1026 83.3 %
Date: 2021-08-20 Branches: 1177 2782 42.3 %

Line Exec Source
1
/***************************************************************************************[Solver.cc]
2
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
3
Copyright (c) 2007-2010, Niklas Sorensson
4
5
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
6
associated documentation files (the "Software"), to deal in the Software without restriction,
7
including without limitation the rights to use, copy, modify, merge, publish, distribute,
8
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
9
furnished to do so, subject to the following conditions:
10
11
The above copyright notice and this permission notice shall be included in all copies or
12
substantial portions of the Software.
13
14
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
15
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
16
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
17
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
18
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
**************************************************************************************************/
20
21
#include "prop/minisat/core/Solver.h"
22
23
#include <math.h>
24
25
#include <iostream>
26
#include <unordered_set>
27
28
#include "base/check.h"
29
#include "base/output.h"
30
#include "options/base_options.h"
31
#include "options/main_options.h"
32
#include "options/prop_options.h"
33
#include "options/smt_options.h"
34
#include "proof/clause_id.h"
35
#include "prop/minisat/minisat.h"
36
#include "prop/minisat/mtl/Sort.h"
37
#include "prop/theory_proxy.h"
38
39
using namespace cvc5::prop;
40
41
namespace cvc5 {
42
namespace Minisat {
43
44
namespace {
45
/*
46
 * Returns true if the solver should add all clauses at the current assertion
47
 * level.
48
 *
49
 * FIXME: This is a workaround. Currently, our resolution proofs do not
50
 * handle clauses with a lower-than-assertion-level correctly because the
51
 * resolution proofs get removed when popping the context but the SAT solver
52
 * keeps using them.
53
 */
54
12635759
bool assertionLevelOnly()
55
{
56
17515002
  return (options::produceProofs() || options::unsatCores())
57
20392285
         && options::incrementalSolving();
58
}
59
60
//=================================================================================================
61
// Helper functions for decision tree tracing
62
63
// Writes to Trace macro for decision tree tracing
64
static inline void dtviewDecisionHelper(size_t level,
65
                                        const Node& node,
66
                                        const char* decisiontype)
67
{
68
  Trace("dtview") << std::string(level - (options::incrementalSolving() ? 1 : 0), '*')
69
                  << " " << node << " :" << decisiontype << "-DECISION:" << std::endl;
70
}
71
72
// Writes to Trace macro for propagation tracing
73
static inline void dtviewPropagationHeaderHelper(size_t level)
74
{
75
  Trace("dtview::prop") << std::string(level + 1 - (options::incrementalSolving() ? 1 : 0),
76
                                       '*')
77
                        << " /Propagations/" << std::endl;
78
}
79
80
// Writes to Trace macro for propagation tracing
81
static inline void dtviewBoolPropagationHelper(size_t level,
82
                                               Lit& l,
83
                                               cvc5::prop::TheoryProxy* proxy)
84
{
85
  Trace("dtview::prop") << std::string(
86
      level + 1 - (options::incrementalSolving() ? 1 : 0), ' ')
87
                        << ":BOOL-PROP: "
88
                        << proxy->getNode(MinisatSatSolver::toSatLiteral(l))
89
                        << std::endl;
90
}
91
92
// Writes to Trace macro for conflict tracing
93
static inline void dtviewPropConflictHelper(size_t level,
94
                                            Clause& confl,
95
                                            cvc5::prop::TheoryProxy* proxy)
96
{
97
  Trace("dtview::conflict")
98
      << std::string(level + 1 - (options::incrementalSolving() ? 1 : 0), ' ')
99
      << ":PROP-CONFLICT: (or";
100
  for (int i = 0; i < confl.size(); i++)
101
  {
102
    Trace("dtview::conflict")
103
        << " " << proxy->getNode(MinisatSatSolver::toSatLiteral(confl[i]));
104
  }
105
  Trace("dtview::conflict") << ")" << std::endl;
106
}
107
108
}  // namespace
109
110
//=================================================================================================
111
// Options:
112
113
static const char* _cat = "CORE";
114
115
9786
static DoubleOption  opt_var_decay         (_cat, "var-decay",   "The variable activity decay factor",            0.95,     DoubleRange(0, false, 1, false));
116
9786
static DoubleOption  opt_clause_decay      (_cat, "cla-decay",   "The clause activity decay factor",              0.999,    DoubleRange(0, false, 1, false));
117
9786
static DoubleOption  opt_random_var_freq   (_cat, "rnd-freq",    "The frequency with which the decision heuristic tries to choose a random variable", 0, DoubleRange(0, true, 1, true));
118
9786
static DoubleOption  opt_random_seed       (_cat, "rnd-seed",    "Used by the random variable selection",         91648253, DoubleRange(0, false, HUGE_VAL, false));
119
9786
static IntOption     opt_ccmin_mode        (_cat, "ccmin-mode",  "Controls conflict clause minimization (0=none, 1=basic, 2=deep)", 2, IntRange(0, 2));
120
9786
static IntOption     opt_phase_saving      (_cat, "phase-saving", "Controls the level of phase saving (0=none, 1=limited, 2=full)", 2, IntRange(0, 2));
121
9786
static BoolOption    opt_rnd_init_act      (_cat, "rnd-init",    "Randomize the initial activity", false);
122
9786
static BoolOption    opt_luby_restart      (_cat, "luby",        "Use the Luby restart sequence", true);
123
9786
static IntOption     opt_restart_first     (_cat, "rfirst",      "The base restart interval", 25, IntRange(1, INT32_MAX));
124
9786
static DoubleOption  opt_restart_inc       (_cat, "rinc",        "Restart interval increase factor", 3, DoubleRange(1, false, HUGE_VAL, false));
125
9786
static DoubleOption  opt_garbage_frac      (_cat, "gc-frac",     "The fraction of wasted memory allowed before a garbage collection is triggered",  0.20, DoubleRange(0, false, HUGE_VAL, false));
126
127
//=================================================================================================
128
// Proof declarations
129
CRef Solver::TCRef_Undef = CRef_Undef;
130
CRef Solver::TCRef_Lazy = CRef_Lazy;
131
132
class ScopedBool
133
{
134
  bool& d_watch;
135
  bool d_oldValue;
136
137
 public:
138
3657392
  ScopedBool(bool& watch, bool newValue) : d_watch(watch), d_oldValue(watch)
139
  {
140
3657392
    watch = newValue;
141
3657392
  }
142
3657392
  ~ScopedBool() { d_watch = d_oldValue; }
143
};
144
145
//=================================================================================================
146
// Constructor/Destructor:
147
148
9923
Solver::Solver(cvc5::prop::TheoryProxy* proxy,
149
               cvc5::context::Context* context,
150
               cvc5::context::UserContext* userContext,
151
               ProofNodeManager* pnm,
152
9923
               bool enableIncremental)
153
    : d_proxy(proxy),
154
      d_context(context),
155
      assertionLevel(0),
156
      d_pfManager(nullptr),
157
      d_enable_incremental(enableIncremental),
158
      minisat_busy(false)
159
      // Parameters (user settable):
160
      //
161
      ,
162
      verbosity(0),
163
      var_decay(opt_var_decay),
164
      clause_decay(opt_clause_decay),
165
      random_var_freq(opt_random_var_freq),
166
      random_seed(opt_random_seed),
167
      luby_restart(opt_luby_restart),
168
      ccmin_mode(opt_ccmin_mode),
169
      phase_saving(opt_phase_saving),
170
      rnd_pol(false),
171
      rnd_init_act(opt_rnd_init_act),
172
      garbage_frac(opt_garbage_frac),
173
      restart_first(opt_restart_first),
174
      restart_inc(opt_restart_inc)
175
176
      // Parameters (the rest):
177
      //
178
      ,
179
      learntsize_factor(1),
180
      learntsize_inc(1.5)
181
182
      // Parameters (experimental):
183
      //
184
      ,
185
      learntsize_adjust_start_confl(100),
186
      learntsize_adjust_inc(1.5)
187
188
      // Statistics: (formerly in 'SolverStats')
189
      //
190
      ,
191
      solves(0),
192
      starts(0),
193
      decisions(0),
194
      rnd_decisions(0),
195
      propagations(0),
196
      conflicts(0),
197
      resources_consumed(0),
198
      dec_vars(0),
199
      clauses_literals(0),
200
      learnts_literals(0),
201
      max_literals(0),
202
      tot_literals(0)
203
204
      ,
205
      ok(true),
206
      cla_inc(1),
207
      var_inc(1),
208
19846
      watches(WatcherDeleted(ca)),
209
      qhead(0),
210
      simpDB_assigns(-1),
211
      simpDB_props(0),
212
19846
      order_heap(VarOrderLt(activity)),
213
      progress_estimate(0),
214
9923
      remove_satisfied(!enableIncremental)
215
216
      // Resource constraints:
217
      //
218
      ,
219
      conflict_budget(-1),
220
      propagation_budget(-1),
221
59538
      asynch_interrupt(false)
222
{
223
9923
  if (pnm)
224
  {
225
2510
    d_pfManager.reset(
226
1255
        new SatProofManager(this, proxy->getCnfStream(), userContext, pnm));
227
  }
228
229
  // Create the constant variables
230
9923
  varTrue = newVar(true, false, false);
231
9923
  varFalse = newVar(false, false, false);
232
233
  // Assert the constants
234
9923
  uncheckedEnqueue(mkLit(varTrue, false));
235
9923
  uncheckedEnqueue(mkLit(varFalse, true));
236
9923
}
237
238
239
9923
Solver::~Solver()
240
{
241
9923
}
242
243
244
//=================================================================================================
245
// Minor methods:
246
247
248
// Creates a new SAT variable in the solver. If 'decision_var' is cleared, variable will not be
249
// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
250
//
251
1291963
Var Solver::newVar(bool sign, bool dvar, bool isTheoryAtom, bool preRegister, bool canErase)
252
{
253
1291963
    int v = nVars();
254
255
1291963
    watches  .init(mkLit(v, false));
256
1291963
    watches  .init(mkLit(v, true ));
257
1291963
    assigns  .push(l_Undef);
258
1291963
    vardata  .push(VarData(CRef_Undef, -1, -1, assertionLevel, -1));
259
1291963
    activity .push(rnd_init_act ? drand(random_seed) * 0.00001 : 0);
260
1291963
    seen     .push(0);
261
1291963
    polarity .push(sign);
262
1291963
    decision .push();
263
1291963
    trail    .capacity(v+1);
264
    // push whether it corresponds to a theory atom
265
1291963
    theory.push(isTheoryAtom);
266
267
1291963
    setDecisionVar(v, dvar);
268
269
1291963
    Debug("minisat") << "new var " << v << std::endl;
270
271
    // If the variable is introduced at non-zero level, we need to reintroduce it on backtracks
272
1291963
    if (preRegister)
273
    {
274
1188868
      Debug("minisat") << "  To register at level " << decisionLevel()
275
594434
                       << std::endl;
276
594434
      variables_to_register.push(VarIntroInfo(v, decisionLevel()));
277
    }
278
279
1291963
    return v;
280
}
281
282
4869
void Solver::resizeVars(int newSize) {
283
4869
  Assert(d_enable_incremental);
284
4869
  Assert(decisionLevel() == 0);
285
4869
  Assert(newSize >= 2) << "always keep true/false";
286
4869
  if (newSize < nVars()) {
287
3069
    int shrinkSize = nVars() - newSize;
288
289
    // Resize watches up to the negated last literal
290
3069
    watches.resizeTo(mkLit(newSize-1, true));
291
292
    // Resize all info arrays
293
3069
    assigns.shrink(shrinkSize);
294
3069
    vardata.shrink(shrinkSize);
295
3069
    activity.shrink(shrinkSize);
296
3069
    seen.shrink(shrinkSize);
297
3069
    polarity.shrink(shrinkSize);
298
3069
    decision.shrink(shrinkSize);
299
3069
    theory.shrink(shrinkSize);
300
  }
301
302
4869
  if (Debug.isOn("minisat::pop")) {
303
    for (int i = 0; i < trail.size(); ++ i) {
304
      Assert(var(trail[i]) < nVars());
305
    }
306
  }
307
4869
}
308
309
174669709
CRef Solver::reason(Var x) {
310
174669709
  Trace("pf::sat") << "Solver::reason(" << x << ")" << std::endl;
311
312
  // If we already have a reason, just return it
313
174669709
  if (vardata[x].d_reason != CRef_Lazy)
314
  {
315
174630960
    if (Trace.isOn("pf::sat"))
316
    {
317
      Trace("pf::sat") << "  Solver::reason: " << vardata[x].d_reason << ", ";
318
      if (vardata[x].d_reason == CRef_Undef)
319
      {
320
        Trace("pf::sat") << "CRef_Undef";
321
      }
322
      else
323
      {
324
        for (unsigned i = 0, size = ca[vardata[x].d_reason].size(); i < size;
325
             ++i)
326
        {
327
          Trace("pf::sat") << ca[vardata[x].d_reason][i] << " ";
328
        }
329
      }
330
      Trace("pf::sat") << "\n";
331
    }
332
174630960
    return vardata[x].d_reason;
333
  }
334
  // What's the literal we are trying to explain
335
38749
  Lit l = mkLit(x, value(x) != l_True);
336
337
  // Get the explanation from the theory
338
77498
  SatClause explanation_cl;
339
  // FIXME: at some point return a tag with the theory that spawned you
340
38749
  d_proxy->explainPropagation(MinisatSatSolver::toSatLiteral(l),
341
                              explanation_cl);
342
77498
  vec<Lit> explanation;
343
38749
  MinisatSatSolver::toMinisatClause(explanation_cl, explanation);
344
345
77498
  Trace("pf::sat") << "Solver::reason: explanation_cl = " << explanation_cl
346
38749
                   << std::endl;
347
348
  // Sort the literals by trail index level
349
38749
  lemma_lt lt(*this);
350
38749
  sort(explanation, lt);
351
38749
  Assert(explanation[0] == l);
352
353
  // Compute the assertion level for this clause
354
38749
  int explLevel = 0;
355
38749
  if (assertionLevelOnly())
356
  {
357
1559
    explLevel = assertionLevel;
358
    }
359
    else
360
    {
361
      int i, j;
362
37190
      Lit prev = lit_Undef;
363
278548
      for (i = 0, j = 0; i < explanation.size(); ++i)
364
      {
365
        // This clause is valid theory propagation, so its level is the level of
366
        // the top literal
367
241358
        explLevel = std::max(explLevel, intro_level(var(explanation[i])));
368
369
241358
        Assert(value(explanation[i]) != l_Undef);
370
241358
        Assert(i == 0
371
               || trail_index(var(explanation[0]))
372
                      > trail_index(var(explanation[i])));
373
374
        // Always keep the first literal
375
278548
        if (i == 0)
376
        {
377
37190
          prev = explanation[j++] = explanation[i];
378
37190
          continue;
379
        }
380
        // Ignore duplicate literals
381
204168
        if (explanation[i] == prev)
382
        {
383
          continue;
384
        }
385
        // Ignore zero level literals
386
408336
        if (level(var(explanation[i])) == 0
387
204168
            && user_level(var(explanation[i]) == 0))
388
        {
389
          continue;
390
        }
391
        // Keep this literal
392
204168
        prev = explanation[j++] = explanation[i];
393
      }
394
37190
      explanation.shrink(i - j);
395
396
37190
      Trace("pf::sat") << "Solver::reason: explanation = ";
397
278548
      for (int k = 0; k < explanation.size(); ++k)
398
      {
399
241358
        Trace("pf::sat") << explanation[k] << " ";
400
      }
401
37190
      Trace("pf::sat") << std::endl;
402
403
      // We need an explanation clause so we add a fake literal
404
37190
      if (j == 1)
405
      {
406
        // Add not TRUE to the clause
407
        explanation.push(mkLit(varTrue, true));
408
      }
409
    }
410
411
    // Construct the reason
412
38749
    CRef real_reason = ca.alloc(explLevel, explanation, true);
413
38749
    vardata[x] = VarData(real_reason, level(x), user_level(x), intro_level(x), trail_index(x));
414
38749
    clauses_removable.push(real_reason);
415
38749
    attachClause(real_reason);
416
417
38749
    return real_reason;
418
}
419
420
3945293
bool Solver::addClause_(vec<Lit>& ps, bool removable, ClauseId& id)
421
{
422
3945293
    if (!ok) return false;
423
424
    // Check if clause is satisfied and remove false/duplicate literals:
425
3945293
    sort(ps);
426
    Lit p; int i, j;
427
428
    // Which user-level to assert this clause at
429
3945293
    int clauseLevel = (removable && !assertionLevelOnly()) ? 0 : assertionLevel;
430
431
    // Check the clause for tautologies and similar
432
3945293
    int falseLiteralsCount = 0;
433
15683988
    for (i = j = 0, p = lit_Undef; i < ps.size(); i++) {
434
      // Update the level
435
23839094
      clauseLevel = assertionLevelOnly()
436
23220840
                        ? assertionLevel
437
23220840
                        : std::max(clauseLevel, intro_level(var(ps[i])));
438
      // Tautologies are ignored
439
11919547
      if (ps[i] == ~p) {
440
17710
        id = ClauseIdUndef;
441
        // Clause can be ignored
442
17710
        return true;
443
      }
444
      // Clauses with 0-level true literals are also ignored
445
11901837
      if (value(ps[i]) == l_True && level(var(ps[i])) == 0 && user_level(var(ps[i])) == 0) {
446
163142
        id = ClauseIdUndef;
447
163142
        return true;
448
      }
449
      // Ignore repeated literals
450
11738695
      if (ps[i] == p) {
451
19237
        continue;
452
      }
453
      // If a literal is false at 0 level (both sat and user level) we also
454
      // ignore it, unless we are tracking the SAT solver's reasoning
455
11719458
      if (value(ps[i]) == l_False) {
456
7108728
        if (!options::unsatCores() && !needProof() && level(var(ps[i])) == 0
457
3529348
            && user_level(var(ps[i])) == 0)
458
        {
459
753423
          continue;
460
        }
461
        else
462
        {
463
          // If we decide to keep it, we count it into the false literals
464
2001895
          falseLiteralsCount++;
465
        }
466
      }
467
      // This literal is a keeper
468
10966035
      ps[j++] = p = ps[i];
469
    }
470
471
    // Fit to size
472
3764441
    ps.shrink(i - j);
473
474
    // If we are in solve_ or propagate
475
3764441
    if (minisat_busy)
476
    {
477
2123291
      Trace("pf::sat") << "Add clause adding a new lemma: ";
478
8703338
      for (int k = 0; k < ps.size(); ++k) {
479
6580047
        Trace("pf::sat") << ps[k] << " ";
480
      }
481
2123291
      Trace("pf::sat") << std::endl;
482
483
2123291
      lemmas.push();
484
2123291
      ps.copyTo(lemmas.last());
485
2123291
      lemmas_removable.push(removable);
486
    } else {
487
1641150
      Assert(decisionLevel() == 0);
488
489
      // If all false, we're in conflict
490
1641150
      if (ps.size() == falseLiteralsCount) {
491
1323
        if (options::unsatCores() || needProof())
492
        {
493
          // Take care of false units here; otherwise, we need to
494
          // construct the clause below to give to the proof manager
495
          // as the final conflict.
496
490
          if(falseLiteralsCount == 1) {
497
471
            if (needProof())
498
            {
499
471
              d_pfManager->finalizeProof(ps[0], true);
500
            }
501
84336
            return ok = false;
502
          }
503
        }
504
        else
505
        {
506
833
          return ok = false;
507
        }
508
      }
509
510
1639846
      CRef cr = CRef_Undef;
511
512
      // If not unit, add the clause
513
1639846
      if (ps.size() > 1) {
514
515
1560926
        lemma_lt lt(*this);
516
1560926
        sort(ps, lt);
517
518
1560926
        cr = ca.alloc(clauseLevel, ps, false);
519
1560926
        clauses_persistent.push(cr);
520
1560926
        attachClause(cr);
521
522
1560926
        if (options::unsatCores() || needProof())
523
        {
524
817896
          if (ps.size() == falseLiteralsCount)
525
          {
526
19
            if (needProof())
527
            {
528
19
              d_pfManager->finalizeProof(ca[cr], true);
529
            }
530
19
            return ok = false;
531
          }
532
        }
533
      }
534
535
      // Check if it propagates
536
1639827
      if (ps.size() == falseLiteralsCount + 1) {
537
82542
        if(assigns[var(ps[0])] == l_Undef) {
538
80200
          Assert(assigns[var(ps[0])] != l_False);
539
80200
          uncheckedEnqueue(ps[0], cr);
540
160400
          Debug("cores") << "i'm registering a unit clause, maybe input"
541
80200
                         << std::endl;
542
80200
          if (ps.size() == 1)
543
          {
544
            // We need to do this so that the closedness check, if being done,
545
            // goes through when we have unit assumptions whose literal has
546
            // already been registered, as the ProofCnfStream will not register
547
            // them and as they are not the result of propagation will be left
548
            // hanging in assumptions accumulator
549
77404
            if (needProof())
550
            {
551
23845
              d_pfManager->registerSatLitAssumption(ps[0]);
552
            }
553
          }
554
80200
          CRef confl = propagate(CHECK_WITHOUT_THEORY);
555
80200
          if(! (ok = (confl == CRef_Undef)) ) {
556
38
            if (needProof())
557
            {
558
13
              if (ca[confl].size() == 1)
559
              {
560
                d_pfManager->finalizeProof(ca[confl][0]);
561
              }
562
              else
563
              {
564
13
                d_pfManager->finalizeProof(ca[confl]);
565
              }
566
            }
567
          }
568
80200
          return ok;
569
        } else {
570
2342
          return ok;
571
        }
572
      }
573
    }
574
575
3680576
    return true;
576
}
577
578
579
4046924
void Solver::attachClause(CRef cr) {
580
4046924
    const Clause& c = ca[cr];
581
4046924
    if (Debug.isOn("minisat"))
582
    {
583
      Debug("minisat") << "Solver::attachClause(" << c << "): ";
584
      for (unsigned i = 0, size = c.size(); i < size; ++i)
585
      {
586
        Debug("minisat") << c[i] << " ";
587
      }
588
      Debug("minisat") << ", level " << c.level() << "\n";
589
    }
590
4046924
    Assert(c.size() > 1);
591
4046924
    watches[~c[0]].push(Watcher(cr, c[1]));
592
4046924
    watches[~c[1]].push(Watcher(cr, c[0]));
593
4046924
    if (c.removable()) learnts_literals += c.size();
594
3523417
    else            clauses_literals += c.size();
595
4046924
}
596
597
598
825908
void Solver::detachClause(CRef cr, bool strict) {
599
825908
    const Clause& c = ca[cr];
600
825908
    Debug("minisat") << "Solver::detachClause(" << c << ")" << std::endl;
601
825908
    if (Debug.isOn("minisat"))
602
    {
603
      Debug("minisat") << "Solver::detachClause(" << c << "), CRef " << cr
604
                       << ", clause ";
605
      for (unsigned i = 0, size = c.size(); i < size; ++i)
606
      {
607
        Debug("minisat") << c[i] << " ";
608
      }
609
610
      Debug("minisat") << "\n";
611
    }
612
825908
    Assert(c.size() > 1);
613
614
825908
    if (strict){
615
89052
        remove(watches[~c[0]], Watcher(cr, c[1]));
616
89052
        remove(watches[~c[1]], Watcher(cr, c[0]));
617
    }else{
618
        // Lazy detaching: (NOTE! Must clean all watcher lists before garbage collecting this clause)
619
736856
        watches.smudge(~c[0]);
620
736856
        watches.smudge(~c[1]);
621
    }
622
623
825908
    if (c.removable()) learnts_literals -= c.size();
624
582040
    else            clauses_literals -= c.size(); }
625
626
627
736856
void Solver::removeClause(CRef cr) {
628
736856
    Clause& c = ca[cr];
629
736856
    if (Debug.isOn("minisat"))
630
    {
631
      Debug("minisat") << "Solver::removeClause(" << c << "), CRef " << cr
632
                       << ", clause ";
633
      for (unsigned i = 0, size = c.size(); i < size; ++i)
634
      {
635
        Debug("minisat") << c[i] << " ";
636
      }
637
      Debug("minisat") << "\n";
638
    }
639
736856
    detachClause(cr);
640
    // Don't leave pointers to free'd memory!
641
736856
    if (locked(c))
642
    {
643
      // a locked clause c is one whose first literal c[0] is true and is
644
      // propagated by c itself, i.e. vardata[var(c[0])].d_reason == c. Because
645
      // of this if we need to justify the propagation of c[0], via
646
      // Solver::reason, if it appears in a resolution chain built lazily we
647
      // will be unable to do so after the step below. Thus we eagerly justify
648
      // this propagation here.
649
10801
      if (needProof())
650
      {
651
2074
        Trace("pf::sat")
652
1037
            << "Solver::removeClause: eagerly compute propagation of " << c[0]
653
1037
            << "\n";
654
1037
        d_pfManager->startResChain(c);
655
4142
        for (unsigned i = 1, size = c.size(); i < size; ++i)
656
        {
657
3105
          d_pfManager->addResolutionStep(c[i]);
658
        }
659
1037
        d_pfManager->endResChain(c[0]);
660
      }
661
10801
      vardata[var(c[0])].d_reason = CRef_Undef;
662
    }
663
736856
    c.mark(1);
664
736856
    ca.free(cr);
665
736856
}
666
667
668
452783
bool Solver::satisfied(const Clause& c) const {
669
21464208
    for (int i = 0; i < c.size(); i++)
670
21055902
        if (value(c[i]) == l_True)
671
44477
            return true;
672
408306
    return false; }
673
674
675
// Revert to the state at given level (keeping all assignment at 'level' but not beyond).
676
//
677
578071
void Solver::cancelUntil(int level) {
678
578071
    Debug("minisat") << "minisat::cancelUntil(" << level << ")" << std::endl;
679
680
578071
    if (decisionLevel() > level){
681
        // Pop the SMT context
682
3544895
        for (int l = trail_lim.size() - level; l > 0; --l) {
683
3086855
          d_context->pop();
684
        }
685
116677397
        for (int c = trail.size()-1; c >= trail_lim[level]; c--){
686
116219357
            Var      x  = var(trail[c]);
687
116219357
            assigns [x] = l_Undef;
688
116219357
            vardata[x].d_trail_index = -1;
689
232438714
            if ((phase_saving > 1 ||
690
                 ((phase_saving == 1) && c > trail_lim.last())
691
232438714
                 ) && ((polarity[x] & 0x2) == 0)) {
692
115323199
              polarity[x] = sign(trail[c]);
693
            }
694
116219357
            insertVarOrder(x);
695
        }
696
458040
        qhead = trail_lim[level];
697
458040
        trail.shrink(trail.size() - trail_lim[level]);
698
458040
        trail_lim.shrink(trail_lim.size() - level);
699
458040
        flipped.shrink(flipped.size() - level);
700
701
        // Register variables that have not been registered yet
702
458040
        int currentLevel = decisionLevel();
703
889712
        for (int i = variables_to_register.size() - 1;
704
889712
             i >= 0 && variables_to_register[i].d_level > currentLevel;
705
             --i)
706
        {
707
431672
          variables_to_register[i].d_level = currentLevel;
708
863344
          d_proxy->variableNotify(
709
431672
              MinisatSatSolver::toSatVariable(variables_to_register[i].d_var));
710
        }
711
    }
712
578071
}
713
714
15191
void Solver::resetTrail() { cancelUntil(0); }
715
716
//=================================================================================================
717
// Major methods:
718
719
720
2811807
Lit Solver::pickBranchLit()
721
{
722
    Lit nextLit;
723
724
    // Theory requests
725
2811805
    nextLit =
726
2811807
        MinisatSatSolver::toMinisatLit(d_proxy->getNextTheoryDecisionRequest());
727
2832517
    while (nextLit != lit_Undef) {
728
60450
      if(value(var(nextLit)) == l_Undef) {
729
100188
        Debug("theoryDecision")
730
50094
            << "getNextTheoryDecisionRequest(): now deciding on " << nextLit
731
50094
            << std::endl;
732
50094
        decisions++;
733
734
        // org-mode tracing -- theory decision
735
50094
        if (Trace.isOn("dtview"))
736
        {
737
          dtviewDecisionHelper(
738
              d_context->getLevel(),
739
              d_proxy->getNode(MinisatSatSolver::toSatLiteral(nextLit)),
740
              "THEORY");
741
        }
742
743
50094
        if (Trace.isOn("dtview::prop"))
744
        {
745
          dtviewPropagationHeaderHelper(d_context->getLevel());
746
        }
747
748
50094
        return nextLit;
749
      } else {
750
20712
        Debug("theoryDecision")
751
10356
            << "getNextTheoryDecisionRequest(): would decide on " << nextLit
752
10356
            << " but it already has an assignment" << std::endl;
753
      }
754
10356
      nextLit = MinisatSatSolver::toMinisatLit(
755
10356
          d_proxy->getNextTheoryDecisionRequest());
756
    }
757
5523422
    Debug("theoryDecision")
758
2761711
        << "getNextTheoryDecisionRequest(): decide on another literal"
759
2761711
        << std::endl;
760
761
    // DE requests
762
2761711
    bool stopSearch = false;
763
2761711
    nextLit = MinisatSatSolver::toMinisatLit(
764
2761711
        d_proxy->getNextDecisionEngineRequest(stopSearch));
765
2761711
    if(stopSearch) {
766
51315
      return lit_Undef;
767
    }
768
2710396
    if(nextLit != lit_Undef) {
769
1126722
      Assert(value(var(nextLit)) == l_Undef)
770
          << "literal to decide already has value";
771
1126722
      decisions++;
772
1126722
      Var next = var(nextLit);
773
1126722
      if(polarity[next] & 0x2) {
774
207532
        nextLit = mkLit(next, polarity[next] & 0x1);
775
      }
776
777
      // org-mode tracing -- decision engine decision
778
1126722
      if (Trace.isOn("dtview"))
779
      {
780
        dtviewDecisionHelper(
781
            d_context->getLevel(),
782
            d_proxy->getNode(MinisatSatSolver::toSatLiteral(nextLit)),
783
            "DE");
784
      }
785
786
1126722
      if (Trace.isOn("dtview::prop"))
787
      {
788
        dtviewPropagationHeaderHelper(d_context->getLevel());
789
      }
790
791
1126722
      return nextLit;
792
    }
793
794
1583674
    Var next = var_Undef;
795
796
    // Random decision:
797
1583674
    if (drand(random_seed) < random_var_freq && !order_heap.empty()){
798
        next = order_heap[irand(random_seed,order_heap.size())];
799
        if (value(next) == l_Undef && decision[next])
800
            rnd_decisions++; }
801
802
    // Activity based decision:
803
11888256
    while (next >= nVars() || next == var_Undef || value(next) != l_Undef || !decision[next]) {
804
5172694
        if (order_heap.empty()){
805
20403
            next = var_Undef;
806
20403
            break;
807
        }else {
808
5152291
            next = order_heap.removeMin();
809
        }
810
811
5152291
        if(!decision[next]) continue;
812
        // Check with decision engine about relevancy
813
10279278
        if (d_proxy->isDecisionRelevant(MinisatSatSolver::toSatVariable(next))
814
5139639
            == false)
815
        {
816
          next = var_Undef;
817
        }
818
    }
819
820
1583674
    if(next == var_Undef) {
821
20403
      return lit_Undef;
822
    } else {
823
1563271
      decisions++;
824
      // Check with decision engine if it can tell polarity
825
      lbool dec_pol = MinisatSatSolver::toMinisatlbool(
826
1563271
          d_proxy->getDecisionPolarity(MinisatSatSolver::toSatVariable(next)));
827
      Lit decisionLit;
828
1563271
      if(dec_pol != l_Undef) {
829
        Assert(dec_pol == l_True || dec_pol == l_False);
830
        decisionLit = mkLit(next, (dec_pol == l_True));
831
      }
832
      else
833
      {
834
        // If it can't use internal heuristic to do that
835
1563271
        decisionLit = mkLit(
836
1563271
            next, rnd_pol ? drand(random_seed) < 0.5 : (polarity[next] & 0x1));
837
      }
838
839
      // org-mode tracing -- decision engine decision
840
1563271
      if (Trace.isOn("dtview"))
841
      {
842
        dtviewDecisionHelper(
843
            d_context->getLevel(),
844
            d_proxy->getNode(MinisatSatSolver::toSatLiteral(decisionLit)),
845
            "DE");
846
      }
847
848
1563271
      if (Trace.isOn("dtview::prop"))
849
      {
850
        dtviewPropagationHeaderHelper(d_context->getLevel());
851
      }
852
853
1563271
      return decisionLit;
854
    }
855
}
856
857
858
/*_________________________________________________________________________________________________
859
|
860
|  analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&)  ->  [void]
861
|
862
|  Description:
863
|    Analyze conflict and produce a reason clause.
864
|
865
|    Pre-conditions:
866
|      * 'out_learnt' is assumed to be cleared.
867
|      * Current decision level must be greater than root level.
868
|
869
|    Post-conditions:
870
|      * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
871
|      * If out_learnt.size() > 1 then 'out_learnt[1]' has the greatest decision level of the
872
|        rest of literals. There may be others from the same level though.
873
|      * returns the maximal level of the resolved clauses
874
|
875
|________________________________________________________________________________________________@*/
876
303750
int Solver::analyze(CRef confl, vec<Lit>& out_learnt, int& out_btlevel)
877
{
878
607500
  Trace("pf::sat") << "Solver::analyze: starting with " << confl
879
303750
                   << " with decision level " << decisionLevel() << "\n";
880
881
303750
  int pathC = 0;
882
303750
  Lit p = lit_Undef;
883
884
  // Generate conflict clause:
885
  //
886
303750
  out_learnt.push();  // (leave room for the asserting literal)
887
303750
  int index = trail.size() - 1;
888
889
303750
  int max_resolution_level = 0;  // Maximal level of the resolved clauses
890
891
303750
    if (needProof())
892
    {
893
22711
      d_pfManager->startResChain(ca[confl]);
894
    }
895
33450300
    do{
896
33754050
      Assert(confl != CRef_Undef);  // (otherwise should be UIP)
897
898
      {
899
        // ! IMPORTANT !
900
        // It is not safe to use c after this block of code because
901
        // resolveOutUnit() below may lead to clauses being allocated, which
902
        // in turn may lead to reallocations that invalidate c.
903
33754050
        Clause& c = ca[confl];
904
33754050
        max_resolution_level = std::max(max_resolution_level, c.level());
905
906
33754050
        if (c.removable()) claBumpActivity(c);
907
      }
908
909
33754050
        if (Trace.isOn("pf::sat"))
910
        {
911
          Trace("pf::sat") << "Solver::analyze: conflict clause ";
912
          for (unsigned i = 0, size = ca[confl].size(); i < size; ++i)
913
          {
914
            Trace("pf::sat") << ca[confl][i] << " ";
915
          }
916
          Trace("pf::sat") << "\n";
917
        }
918
919
33754050
        Trace("pf::sat") << cvc5::push;
920
231411552
        for (int j = (p == lit_Undef) ? 0 : 1, size = ca[confl].size();
921
231411552
             j < size;
922
             j++)
923
        {
924
197657502
          Lit q = ca[confl][j];
925
926
395315004
          Trace("pf::sat") << "Lit " << q
927
395315004
                           << " seen/level: " << (seen[var(q)] ? 1 : 0) << " / "
928
197657502
                           << level(var(q)) << "\n";
929
197657502
          if (!seen[var(q)] && level(var(q)) > 0)
930
          {
931
60966345
            varBumpActivity(var(q));
932
60966345
            seen[var(q)] = 1;
933
60966345
            if (level(var(q)) >= decisionLevel())
934
33754050
              pathC++;
935
            else
936
27212295
              out_learnt.push(q);
937
          }
938
          else
939
          {
940
            // We could be resolving a literal propagated by a clause/theory
941
            // using information from a higher level
942
136691157
            if (!seen[var(q)] && level(var(q)) == 0)
943
            {
944
394183
              max_resolution_level =
945
788366
                  std::max(max_resolution_level, user_level(var(q)));
946
            }
947
948
            // FIXME: can we do it lazily if we actually need the proof?
949
136691157
            if (level(var(q)) == 0 && needProof())
950
            {
951
139629
              d_pfManager->addResolutionStep(q);
952
            }
953
          }
954
        }
955
33754050
        Trace("pf::sat") << cvc5::pop;
956
957
        // Select next clause to look at:
958
93811992
        while (!seen[var(trail[index--])]);
959
33754050
        p     = trail[index+1];
960
33754050
        confl = reason(var(p));
961
33754050
        seen[var(p)] = 0;
962
33754050
        pathC--;
963
964
33754050
        if (pathC > 0 && confl != CRef_Undef && needProof())
965
        {
966
297016
          d_pfManager->addResolutionStep(ca[confl], p);
967
        }
968
969
33754050
    } while (pathC > 0);
970
303750
    out_learnt[0] = ~p;
971
303750
    if (Debug.isOn("newproof::sat"))
972
    {
973
      Debug("newproof::sat") << "finished with learnt clause ";
974
      for (unsigned i = 0, size = out_learnt.size(); i < size; ++i)
975
      {
976
        prop::SatLiteral satLit = toSatLiteral<Minisat::Solver>(out_learnt[i]);
977
        Debug("newproof::sat") << satLit << " ";
978
      }
979
      Debug("newproof::sat") << "\n";
980
    }
981
982
    // Simplify conflict clause:
983
    int i, j;
984
303750
    out_learnt.copyTo(analyze_toclear);
985
303750
    if (ccmin_mode == 2){
986
303750
        uint32_t abstract_level = 0;
987
27516045
        for (i = 1; i < out_learnt.size(); i++)
988
27212295
            abstract_level |= abstractLevel(var(out_learnt[i])); // (maintain an abstraction of levels involved in conflict)
989
990
27516045
        for (i = j = 1; i < out_learnt.size(); i++) {
991
27212295
            if (reason(var(out_learnt[i])) == CRef_Undef) {
992
4593410
                out_learnt[j++] = out_learnt[i];
993
            } else {
994
              // Check if the literal is redundant
995
22618885
              if (!litRedundant(out_learnt[i], abstract_level)) {
996
                // Literal is not redundant
997
20206345
                out_learnt[j++] = out_learnt[i];
998
              } else {
999
2412540
                if (needProof())
1000
                {
1001
73040
                  Debug("newproof::sat")
1002
36520
                      << "Solver::analyze: redundant lit "
1003
36520
                      << toSatLiteral<Minisat::Solver>(out_learnt[i]) << "\n";
1004
36520
                  d_pfManager->addResolutionStep(out_learnt[i], true);
1005
                }
1006
                // Literal is redundant, to be safe, mark the level as current assertion level
1007
                // TODO: maybe optimize
1008
2412540
                max_resolution_level = std::max(max_resolution_level, user_level(var(out_learnt[i])));
1009
              }
1010
            }
1011
        }
1012
1013
    }else if (ccmin_mode == 1){
1014
        Unreachable();
1015
        for (i = j = 1; i < out_learnt.size(); i++){
1016
            Var x = var(out_learnt[i]);
1017
1018
            if (reason(x) == CRef_Undef)
1019
                out_learnt[j++] = out_learnt[i];
1020
            else{
1021
                Clause& c = ca[reason(var(out_learnt[i]))];
1022
                for (int k = 1; k < c.size(); k++)
1023
                    if (!seen[var(c[k])] && level(var(c[k])) > 0){
1024
                        out_learnt[j++] = out_learnt[i];
1025
                        break; }
1026
            }
1027
        }
1028
    }else
1029
        i = j = out_learnt.size();
1030
1031
303750
    max_literals += out_learnt.size();
1032
303750
    out_learnt.shrink(i - j);
1033
303750
    tot_literals += out_learnt.size();
1034
1035
    // Find correct backtrack level:
1036
    //
1037
303750
    if (out_learnt.size() == 1)
1038
6054
        out_btlevel = 0;
1039
    else{
1040
297696
        int max_i = 1;
1041
        // Find the first literal assigned at the next-highest level:
1042
24799755
        for (int k = 2; k < out_learnt.size(); k++)
1043
24502059
          if (level(var(out_learnt[k])) > level(var(out_learnt[max_i])))
1044
677101
            max_i = k;
1045
        // Swap-in this literal at index 1:
1046
297696
        Lit p2 = out_learnt[max_i];
1047
297696
        out_learnt[max_i] = out_learnt[1];
1048
297696
        out_learnt[1] = p2;
1049
297696
        out_btlevel = level(var(p2));
1050
    }
1051
1052
30350741
    for (int k = 0; k < analyze_toclear.size(); k++)
1053
30046991
      seen[var(analyze_toclear[k])] = 0;  // ('seen[]' is now cleared)
1054
1055
    // Return the maximal resolution level
1056
303750
    return max_resolution_level;
1057
}
1058
1059
1060
// Check if 'p' can be removed. 'abstract_levels' is used to abort early if the algorithm is
1061
// visiting literals at levels that cannot be removed later.
1062
22618885
bool Solver::litRedundant(Lit p, uint32_t abstract_levels)
1063
{
1064
22618885
    analyze_stack.clear(); analyze_stack.push(p);
1065
22618885
    int top = analyze_toclear.size();
1066
62339201
    while (analyze_stack.size() > 0){
1067
40066503
        CRef c_reason = reason(var(analyze_stack.last()));
1068
40066503
        Assert(c_reason != CRef_Undef);
1069
40066503
        Clause& c = ca[c_reason];
1070
40066503
        int c_size = c.size();
1071
40066503
        analyze_stack.pop();
1072
1073
        // Since calling reason might relocate to resize, c is not necesserily the right reference, we must
1074
        // use the allocator each time
1075
155224471
        for (int i = 1; i < c_size; i++){
1076
135364313
          Lit p2 = ca[c_reason][i];
1077
135364313
          if (!seen[var(p2)] && level(var(p2)) > 0)
1078
          {
1079
146843646
            if (reason(var(p2)) != CRef_Undef
1080
73421823
                && (abstractLevel(var(p2)) & abstract_levels) != 0)
1081
            {
1082
53215478
              seen[var(p2)] = 1;
1083
53215478
              analyze_stack.push(p2);
1084
53215478
              analyze_toclear.push(p2);
1085
            }
1086
            else
1087
            {
1088
70890877
              for (int j = top; j < analyze_toclear.size(); j++)
1089
50684532
                seen[var(analyze_toclear[j])] = 0;
1090
20206345
              analyze_toclear.shrink(analyze_toclear.size() - top);
1091
20206345
              return false;
1092
            }
1093
          }
1094
        }
1095
    }
1096
1097
2412540
    return true;
1098
}
1099
1100
1101
/*_________________________________________________________________________________________________
1102
|
1103
|  analyzeFinal : (p : Lit)  ->  [void]
1104
|
1105
|  Description:
1106
|    Specialized analysis procedure to express the final conflict in terms of assumptions.
1107
|    Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
1108
|    stores the result in 'out_conflict'.
1109
|________________________________________________________________________________________________@*/
1110
2725
void Solver::analyzeFinal(Lit p, vec<Lit>& out_conflict)
1111
{
1112
2725
    out_conflict.clear();
1113
2725
    out_conflict.push(p);
1114
1115
2725
    if (decisionLevel() == 0)
1116
916
        return;
1117
1118
1809
    seen[var(p)] = 1;
1119
1120
132087
    for (int i = trail.size()-1; i >= trail_lim[0]; i--){
1121
130278
        Var x = var(trail[i]);
1122
130278
        if (seen[x]){
1123
28630
            if (reason(x) == CRef_Undef){
1124
10579
              Assert(level(x) > 0);
1125
10579
              out_conflict.push(~trail[i]);
1126
            }else{
1127
18051
                Clause& c = ca[reason(x)];
1128
57503
                for (int j = 1; j < c.size(); j++)
1129
39452
                    if (level(var(c[j])) > 0)
1130
38426
                        seen[var(c[j])] = 1;
1131
            }
1132
28630
            seen[x] = 0;
1133
        }
1134
    }
1135
1136
1809
    seen[var(p)] = 0;
1137
}
1138
1139
116556877
void Solver::uncheckedEnqueue(Lit p, CRef from)
1140
{
1141
116556877
  if (Debug.isOn("minisat"))
1142
  {
1143
    Debug("minisat") << "unchecked enqueue of " << p << " ("
1144
                     << trail_index(var(p)) << ") trail size is "
1145
                     << trail.size() << " cap is " << trail.capacity()
1146
                     << ", reason is " << from << ", ";
1147
    if (from == CRef_Lazy)
1148
    {
1149
      Debug("minisat") << "CRef_Lazy";
1150
    }
1151
    else if (from == CRef_Undef)
1152
    {
1153
      Debug("minisat") << "CRef_Undef";
1154
    }
1155
    else
1156
    {
1157
      for (unsigned i = 0, size = ca[from].size(); i < size; ++i)
1158
      {
1159
        Debug("minisat") << ca[from][i] << " ";
1160
      }
1161
    }
1162
    Debug("minisat") << "\n";
1163
  }
1164
116556877
  Assert(value(p) == l_Undef);
1165
116556877
  Assert(var(p) < nVars());
1166
116556877
  assigns[var(p)] = lbool(!sign(p));
1167
116556877
  vardata[var(p)] = VarData(
1168
      from, decisionLevel(), assertionLevel, intro_level(var(p)), trail.size());
1169
116556877
  trail.push_(p);
1170
116556877
  if (theory[var(p)])
1171
  {
1172
    // Enqueue to the theory
1173
17363657
    d_proxy->enqueueTheoryLiteral(MinisatSatSolver::toSatLiteral(p));
1174
  }
1175
116556877
}
1176
1177
3642407
CRef Solver::propagate(TheoryCheckType type)
1178
{
1179
3642407
    CRef confl = CRef_Undef;
1180
3642407
    recheck = false;
1181
3642407
    theoryConflict = false;
1182
1183
7284814
    ScopedBool scoped_bool(minisat_busy, true);
1184
1185
    // Add lemmas that we're left behind
1186
3642407
    if (lemmas.size() > 0) {
1187
145
      confl = updateLemmas();
1188
145
      if (confl != CRef_Undef) {
1189
        return confl;
1190
      }
1191
    }
1192
1193
    // If this is the final check, no need for Boolean propagation and
1194
    // theory propagation
1195
3642407
    if (type == CHECK_FINAL) {
1196
      // Do the theory check
1197
77301
      theoryCheck(cvc5::theory::Theory::EFFORT_FULL);
1198
      // Pick up the theory propagated literals (there could be some,
1199
      // if new lemmas are added)
1200
77290
      propagateTheory();
1201
      // If there are lemmas (or conflicts) update them
1202
77290
      if (lemmas.size() > 0) {
1203
61022
        recheck = true;
1204
61022
        confl = updateLemmas();
1205
61022
        return confl;
1206
      } else {
1207
16268
        recheck = d_proxy->theoryNeedCheck();
1208
16268
        return confl;
1209
      }
1210
    }
1211
1212
    // Keep running until we have checked everything, we
1213
    // have no conflict and no new literals have been asserted
1214
922055
    do {
1215
        // Propagate on the clauses
1216
4487161
        confl = propagateBool();
1217
        // If no conflict, do the theory check
1218
4487161
        if (confl == CRef_Undef && type != CHECK_WITHOUT_THEORY) {
1219
            // Do the theory check
1220
4101415
            if (type == CHECK_FINAL_FAKE) {
1221
              theoryCheck(cvc5::theory::Theory::EFFORT_FULL);
1222
            } else {
1223
4101415
              theoryCheck(cvc5::theory::Theory::EFFORT_STANDARD);
1224
            }
1225
            // Pick up the theory propagated literals
1226
4101412
            propagateTheory();
1227
            // If there are lemmas (or conflicts) update them
1228
8202824
            if (lemmas.size() > 0) {
1229
195198
              confl = updateLemmas();
1230
            }
1231
        } else {
1232
          // if dumping decision tree, print the conflict
1233
385746
          if (Trace.isOn("dtview::conflict"))
1234
          {
1235
            if (confl != CRef_Undef)
1236
            {
1237
              dtviewPropConflictHelper(decisionLevel(), ca[confl], d_proxy);
1238
            }
1239
          }
1240
          // Even though in conflict, we still need to discharge the lemmas
1241
385746
          if (lemmas.size() > 0) {
1242
            // Remember the trail size
1243
            int oldLevel = decisionLevel();
1244
            // Update the lemmas
1245
            CRef lemmaConflict = updateLemmas();
1246
            // If we get a conflict, we prefer it since it's earlier in the trail
1247
            if (lemmaConflict != CRef_Undef) {
1248
              // Lemma conflict takes precedence, since it's earlier in the trail
1249
              confl = lemmaConflict;
1250
            } else {
1251
              // Otherwise, the Boolean conflict is canceled in the case we popped the trail
1252
              if (oldLevel > decisionLevel()) {
1253
                confl = CRef_Undef;
1254
              }
1255
            }
1256
          }
1257
        }
1258
4487158
    } while (confl == CRef_Undef && qhead < trail.size());
1259
3565103
    return confl;
1260
}
1261
1262
4178702
void Solver::propagateTheory() {
1263
8357404
  SatClause propagatedLiteralsClause;
1264
  // Doesn't actually call propagate(); that's done in theoryCheck() now that combination
1265
  // is online.  This just incorporates those propagations previously discovered.
1266
4178702
  d_proxy->theoryPropagate(propagatedLiteralsClause);
1267
1268
8357404
  vec<Lit> propagatedLiterals;
1269
4178702
  MinisatSatSolver::toMinisatClause(propagatedLiteralsClause, propagatedLiterals);
1270
1271
4178702
  int oldTrailSize = trail.size();
1272
4178702
  Debug("minisat") << "old trail size is " << oldTrailSize << ", propagating " << propagatedLiterals.size() << " lits..." << std::endl;
1273
10947884
  for (unsigned i = 0, i_end = propagatedLiterals.size(); i < i_end; ++ i) {
1274
6769182
    Debug("minisat") << "Theory propagated: " << propagatedLiterals[i] << std::endl;
1275
    // multiple theories can propagate the same literal
1276
6769182
    Lit p = propagatedLiterals[i];
1277
6769182
    if (value(p) == l_Undef) {
1278
3265434
      uncheckedEnqueue(p, CRef_Lazy);
1279
    } else {
1280
3503748
      if (value(p) == l_False) {
1281
72364
        Debug("minisat") << "Conflict in theory propagation" << std::endl;
1282
144728
        SatClause explanation_cl;
1283
72364
        d_proxy->explainPropagation(MinisatSatSolver::toSatLiteral(p),
1284
                                    explanation_cl);
1285
144728
        vec<Lit> explanation;
1286
72364
        MinisatSatSolver::toMinisatClause(explanation_cl, explanation);
1287
        ClauseId id; // FIXME: mark it as explanation here somehow?
1288
72364
        addClause(explanation, true, id);
1289
      }
1290
    }
1291
  }
1292
4178702
}
1293
1294
/*_________________________________________________________________________________________________
1295
|
1296
|  theoryCheck: [void]  ->  [Clause*]
1297
|
1298
|  Description:
1299
|    Checks all enqueued theory facts for satisfiability. If a conflict arises, the conflicting
1300
|    clause is returned, otherwise NULL.
1301
|
1302
|    Note: the propagation queue might be NOT empty
1303
|________________________________________________________________________________________________@*/
1304
4178716
void Solver::theoryCheck(cvc5::theory::Theory::Effort effort)
1305
{
1306
4178716
  d_proxy->theoryCheck(effort);
1307
4178702
}
1308
1309
/*_________________________________________________________________________________________________
1310
|
1311
|  propagateBool : [void]  ->  [Clause*]
1312
|
1313
|  Description:
1314
|    Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
1315
|    otherwise CRef_Undef.
1316
|
1317
|    Post-conditions:
1318
|      * the propagation queue is empty, even if there was a conflict.
1319
|________________________________________________________________________________________________@*/
1320
4487161
CRef Solver::propagateBool()
1321
{
1322
4487161
    CRef    confl     = CRef_Undef;
1323
4487161
    int     num_props = 0;
1324
4487161
    watches.cleanAll();
1325
1326
226058163
    while (qhead < trail.size()){
1327
110785501
        Lit            p   = trail[qhead++];     // 'p' is enqueued fact to propagate.
1328
110785501
        vec<Watcher>&  ws  = watches[p];
1329
        Watcher        *i, *j, *end;
1330
110785501
        num_props++;
1331
1332
        // if propagation tracing enabled, print boolean propagation
1333
110785501
        if (Trace.isOn("dtview::prop"))
1334
        {
1335
          dtviewBoolPropagationHelper(decisionLevel(), p, d_proxy);
1336
        }
1337
1338
911477032
        for (i = j = (Watcher*)ws, end = i + ws.size();  i != end;){
1339
            // Try to avoid inspecting the clause:
1340
800691531
            Lit blocker = i->blocker;
1341
1303369638
            if (value(blocker) == l_True){
1342
1534020330
                *j++ = *i++; continue; }
1343
1344
            // Make sure the false literal is data[1]:
1345
298013424
            CRef     cr        = i->cref;
1346
298013424
            Clause&  c         = ca[cr];
1347
298013424
            Lit      false_lit = ~p;
1348
298013424
            if (c[0] == false_lit)
1349
85932267
                c[0] = c[1], c[1] = false_lit;
1350
298013424
            Assert(c[1] == false_lit);
1351
298013424
            i++;
1352
1353
            // If 0th watch is true, then clause is already satisfied.
1354
298013424
            Lit     first = c[0];
1355
298013424
            Watcher w     = Watcher(cr, first);
1356
323999433
            if (first != blocker && value(first) == l_True){
1357
51972018
                *j++ = w; continue; }
1358
1359
            // Look for new watch:
1360
272027415
            Assert(c.size() >= 2);
1361
1275404118
            for (int k = 2; k < c.size(); k++)
1362
1165607137
                if (value(c[k]) != l_False){
1363
162230434
                    c[1] = c[k]; c[k] = false_lit;
1364
162230434
                    watches[~c[1]].push(w);
1365
162230434
                    goto NextClause; }
1366
1367
            // Did not find watch -- clause is unit under assignment:
1368
109796981
            *j++ = w;
1369
109796981
            if (value(first) == l_False){
1370
251856
                confl = cr;
1371
251856
                qhead = trail.size();
1372
                // Copy the remaining watches:
1373
6152280
                while (i < end)
1374
2950212
                    *j++ = *i++;
1375
            }else
1376
109545125
                uncheckedEnqueue(first, cr);
1377
1378
272027415
        NextClause:;
1379
        }
1380
110785501
        ws.shrink(i - j);
1381
    }
1382
4487161
    propagations += num_props;
1383
4487161
    simpDB_props -= num_props;
1384
1385
4487161
    return confl;
1386
}
1387
1388
1389
/*_________________________________________________________________________________________________
1390
|
1391
|  reduceDB : ()  ->  [void]
1392
|
1393
|  Description:
1394
|    Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
1395
|    clauses are clauses that are reason to some assignment. Binary clauses are never removed.
1396
|________________________________________________________________________________________________@*/
1397
struct reduceDB_lt {
1398
    ClauseAllocator& ca;
1399
3490
    reduceDB_lt(ClauseAllocator& ca_) : ca(ca_) {}
1400
4613193
    bool operator () (CRef x, CRef y) {
1401
4613193
        return ca[x].size() > 2 && (ca[y].size() == 2 || ca[x].activity() < ca[y].activity()); }
1402
};
1403
3490
void Solver::reduceDB()
1404
{
1405
    int     i, j;
1406
3490
    double  extra_lim = cla_inc / clauses_removable.size();    // Remove any clause below this activity
1407
1408
3490
    sort(clauses_removable, reduceDB_lt(ca));
1409
    // Don't delete binary or locked clauses. From the rest, delete clauses from the first half
1410
    // and clauses with activity smaller than 'extra_lim':
1411
426533
    for (i = j = 0; i < clauses_removable.size(); i++){
1412
423043
        Clause& c = ca[clauses_removable[i]];
1413
423043
        if (c.size() > 2 && !locked(c) && (i < clauses_removable.size() / 2 || c.activity() < extra_lim))
1414
190422
            removeClause(clauses_removable[i]);
1415
        else
1416
232621
            clauses_removable[j++] = clauses_removable[i];
1417
    }
1418
3490
    clauses_removable.shrink(i - j);
1419
3490
    checkGarbage();
1420
3490
}
1421
1422
1423
18064
void Solver::removeSatisfied(vec<CRef>& cs)
1424
{
1425
    int i, j;
1426
470847
    for (i = j = 0; i < cs.size(); i++){
1427
452783
        Clause& c = ca[cs[i]];
1428
452783
        if (satisfied(c)) {
1429
44477
          removeClause(cs[i]);
1430
        }
1431
        else
1432
        {
1433
408306
          cs[j++] = cs[i];
1434
        }
1435
    }
1436
18064
    cs.shrink(i - j);
1437
18064
}
1438
1439
9738
void Solver::removeClausesAboveLevel(vec<CRef>& cs, int level)
1440
{
1441
    int i, j;
1442
835135
    for (i = j = 0; i < cs.size(); i++){
1443
825397
        Clause& c = ca[cs[i]];
1444
825397
        if (c.level() > level) {
1445
248467
          Assert(!locked(c));
1446
248467
          removeClause(cs[i]);
1447
        } else {
1448
576930
            cs[j++] = cs[i];
1449
        }
1450
    }
1451
9738
    cs.shrink(i - j);
1452
9738
}
1453
1454
18064
void Solver::rebuildOrderHeap()
1455
{
1456
36128
    vec<Var> vs;
1457
2732360
    for (Var v = 0; v < nVars(); v++)
1458
2714296
        if (decision[v] && value(v) == l_Undef)
1459
2063772
            vs.push(v);
1460
18064
    order_heap.build(vs);
1461
18064
}
1462
1463
1464
/*_________________________________________________________________________________________________
1465
|
1466
|  simplify : [void]  ->  [bool]
1467
|
1468
|  Description:
1469
|    Simplify the clause database according to the current top-level assigment. Currently, the only
1470
|    thing done here is the removal of satisfied clauses, but more things can be put here.
1471
|________________________________________________________________________________________________@*/
1472
44894
bool Solver::simplify()
1473
{
1474
44894
  Assert(decisionLevel() == 0);
1475
1476
44894
  if (!ok || propagate(CHECK_WITHOUT_THEORY) != CRef_Undef) return ok = false;
1477
1478
44678
  if (nAssigns() == simpDB_assigns || (simpDB_props > 0)) return true;
1479
1480
  // Remove satisfied clauses:
1481
18064
  removeSatisfied(clauses_removable);
1482
18064
  if (remove_satisfied)  // Can be turned off.
1483
    removeSatisfied(clauses_persistent);
1484
18064
  checkGarbage();
1485
18064
  rebuildOrderHeap();
1486
1487
18064
  simpDB_assigns = nAssigns();
1488
18064
  simpDB_props =
1489
18064
      clauses_literals + learnts_literals;  // (shouldn't depend on stats
1490
                                            // really, but it will do for now)
1491
1492
18064
  return true;
1493
}
1494
1495
1496
/*_________________________________________________________________________________________________
1497
|
1498
|  search : (nof_conflicts : int) (params : const SearchParams&)  ->  [lbool]
1499
|
1500
|  Description:
1501
|    Search for a model the specified number of conflicts.
1502
|    NOTE! Use negative value for 'nof_conflicts' indicate infinity.
1503
|
1504
|  Output:
1505
|    'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If
1506
|    all variables are decision variables, this means that the clause set is satisfiable. 'l_False'
1507
|    if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached.
1508
|________________________________________________________________________________________________@*/
1509
16310
lbool Solver::search(int nof_conflicts)
1510
{
1511
16310
  Assert(ok);
1512
  int backtrack_level;
1513
16310
  int conflictC = 0;
1514
32620
  vec<Lit> learnt_clause;
1515
16310
  starts++;
1516
1517
16310
  TheoryCheckType check_type = CHECK_WITH_THEORY;
1518
  for (;;)
1519
  {
1520
    // Propagate and call the theory solvers
1521
3508476
    CRef confl = propagate(check_type);
1522
3508462
    Assert(lemmas.size() == 0);
1523
1524
3508462
    if (confl != CRef_Undef)
1525
    {
1526
307140
      conflicts++;
1527
307140
      conflictC++;
1528
1529
307140
      if (decisionLevel() == 0)
1530
      {
1531
3390
        if (needProof())
1532
        {
1533
860
          if (confl == CRef_Lazy)
1534
          {
1535
49
            d_pfManager->finalizeProof();
1536
          }
1537
          else
1538
          {
1539
811
            d_pfManager->finalizeProof(ca[confl]);
1540
          }
1541
        }
1542
3390
        return l_False;
1543
      }
1544
1545
      // Analyze the conflict
1546
303750
      learnt_clause.clear();
1547
303750
      int max_level = analyze(confl, learnt_clause, backtrack_level);
1548
303750
      cancelUntil(backtrack_level);
1549
1550
      // Assert the conflict clause and the asserting literal
1551
303750
      if (learnt_clause.size() == 1)
1552
      {
1553
6054
        uncheckedEnqueue(learnt_clause[0]);
1554
6054
        if (needProof())
1555
        {
1556
1528
          d_pfManager->endResChain(learnt_clause[0]);
1557
        }
1558
      }
1559
      else
1560
      {
1561
297696
        CRef cr = ca.alloc(assertionLevelOnly() ? assertionLevel : max_level,
1562
                           learnt_clause,
1563
297696
                           true);
1564
297696
        clauses_removable.push(cr);
1565
297696
        attachClause(cr);
1566
297696
        claBumpActivity(ca[cr]);
1567
297696
        uncheckedEnqueue(learnt_clause[0], cr);
1568
297696
        if (needProof())
1569
        {
1570
21183
          d_pfManager->endResChain(ca[cr]);
1571
        }
1572
      }
1573
1574
303750
      varDecayActivity();
1575
303750
      claDecayActivity();
1576
1577
303750
      if (--learntsize_adjust_cnt == 0)
1578
      {
1579
575
        learntsize_adjust_confl *= learntsize_adjust_inc;
1580
575
        learntsize_adjust_cnt = (int)learntsize_adjust_confl;
1581
575
        max_learnts *= learntsize_inc;
1582
1583
575
        if (verbosity >= 1)
1584
          printf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |\n",
1585
                 (int)conflicts,
1586
                 (int)dec_vars
1587
                     - (trail_lim.size() == 0 ? trail.size() : trail_lim[0]),
1588
                 nClauses(),
1589
                 (int)clauses_literals,
1590
                 (int)max_learnts,
1591
                 nLearnts(),
1592
                 (double)learnts_literals / nLearnts(),
1593
                 progressEstimate() * 100);
1594
      }
1595
1596
303750
      if (theoryConflict && options::sat_refine_conflicts())
1597
      {
1598
        check_type = CHECK_FINAL_FAKE;
1599
      }
1600
      else
1601
      {
1602
303750
        check_type = CHECK_WITH_THEORY;
1603
      }
1604
    }
1605
    else
1606
    {
1607
      // If this was a final check, we are satisfiable
1608
3201322
      if (check_type == CHECK_FINAL)
1609
      {
1610
        // Note that we are done making decisions when there are no pending decisions
1611
        // on assumptions, and the decision engine indicates it is done.
1612
66879
        bool decisionEngineDone = (decisionLevel() >= assumptions.size())
1613
66879
                                  && d_proxy->isDecisionEngineDone();
1614
        // Unless a lemma has added more stuff to the queues
1615
187573
        if (!decisionEngineDone
1616
66879
            && (!order_heap.empty() || qhead < trail.size()))
1617
        {
1618
53815
          check_type = CHECK_WITH_THEORY;
1619
184931
          continue;
1620
        }
1621
13064
        else if (recheck)
1622
        {
1623
          // There some additional stuff added, so we go for another
1624
          // full-check
1625
5583
          continue;
1626
        }
1627
        else
1628
        {
1629
          // Yes, we're truly satisfiable
1630
7481
          return l_True;
1631
        }
1632
      }
1633
3134443
      else if (check_type == CHECK_FINAL_FAKE)
1634
      {
1635
        check_type = CHECK_WITH_THEORY;
1636
      }
1637
1638
6268886
      if ((nof_conflicts >= 0 && conflictC >= nof_conflicts)
1639
6266188
          || !withinBudget(Resource::SatConflictStep))
1640
      {
1641
        // Reached bound on number of conflicts:
1642
2698
        progress_estimate = progressEstimate();
1643
2698
        cancelUntil(0);
1644
        // [mdeters] notify theory engine of restarts for deferred
1645
        // theory processing
1646
2698
        d_proxy->notifyRestart();
1647
2698
        return l_Undef;
1648
      }
1649
1650
      // Simplify the set of problem clauses:
1651
3131745
      if (decisionLevel() == 0 && !simplify())
1652
      {
1653
        return l_False;
1654
      }
1655
1656
3131745
      if (clauses_removable.size() - nAssigns() >= max_learnts)
1657
      {
1658
        // Reduce the set of learnt clauses:
1659
3490
        reduceDB();
1660
      }
1661
1662
3131745
      Lit next = lit_Undef;
1663
3191039
      while (decisionLevel() < assumptions.size())
1664
      {
1665
        // Perform user provided assumption:
1666
349585
        Lit p = assumptions[decisionLevel()];
1667
349585
        if (value(p) == l_True)
1668
        {
1669
          // Dummy decision level:
1670
29647
          newDecisionLevel();
1671
        }
1672
319938
        else if (value(p) == l_False)
1673
        {
1674
2725
          analyzeFinal(~p, d_conflict);
1675
2725
          return l_False;
1676
        }
1677
        else
1678
        {
1679
317213
          next = p;
1680
317213
          break;
1681
        }
1682
      }
1683
1684
3129020
      if (next == lit_Undef)
1685
      {
1686
        // New variable decision:
1687
2811807
        next = pickBranchLit();
1688
1689
2883523
        if (next == lit_Undef)
1690
        {
1691
          // We need to do a full theory check to confirm
1692
143436
          Debug("minisat::search")
1693
71718
              << "Doing a full theory check..." << std::endl;
1694
71718
          check_type = CHECK_FINAL;
1695
71718
          continue;
1696
        }
1697
      }
1698
1699
      // Increase decision level and enqueue 'next'
1700
3057300
      newDecisionLevel();
1701
3057300
      uncheckedEnqueue(next);
1702
    }
1703
3492166
  }
1704
}
1705
1706
1707
2698
double Solver::progressEstimate() const
1708
{
1709
2698
    double  progress = 0;
1710
2698
    double  F = 1.0 / nVars();
1711
1712
192252
    for (int i = 0; i <= decisionLevel(); i++){
1713
189554
        int beg = i == 0 ? 0 : trail_lim[i - 1];
1714
189554
        int end = i == decisionLevel() ? trail.size() : trail_lim[i];
1715
189554
        progress += pow(F, i) * (end - beg);
1716
    }
1717
1718
2698
    return progress / nVars();
1719
}
1720
1721
/*
1722
  Finite subsequences of the Luby-sequence:
1723
1724
  0: 1
1725
  1: 1 1 2
1726
  2: 1 1 2 1 1 2 4
1727
  3: 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8
1728
  ...
1729
1730
1731
 */
1732
1733
16310
static double luby(double y, int x){
1734
1735
    // Find the finite subsequence that contains index 'x', and the
1736
    // size of that subsequence:
1737
    int size, seq;
1738
16310
    for (size = 1, seq = 0; size < x+1; seq++, size = 2*size+1);
1739
1740
27834
    while (size-1 != x){
1741
5762
        size = (size-1)>>1;
1742
5762
        seq--;
1743
5762
        x = x % size;
1744
    }
1745
1746
16310
    return pow(y, seq);
1747
}
1748
1749
// NOTE: assumptions passed in member-variable 'assumptions'.
1750
14985
lbool Solver::solve_()
1751
{
1752
14985
    Debug("minisat") << "nvars = " << nVars() << std::endl;
1753
1754
29970
    ScopedBool scoped_bool(minisat_busy, true);
1755
1756
14985
    Assert(decisionLevel() == 0);
1757
1758
14985
    model.clear();
1759
14985
    d_conflict.clear();
1760
14985
    if (!ok){
1761
1373
      minisat_busy = false;
1762
1373
      return l_False;
1763
    }
1764
1765
13612
    solves++;
1766
1767
13612
    max_learnts               = nClauses() * learntsize_factor;
1768
13612
    learntsize_adjust_confl   = learntsize_adjust_start_confl;
1769
13612
    learntsize_adjust_cnt     = (int)learntsize_adjust_confl;
1770
13612
    lbool   status            = l_Undef;
1771
1772
13612
    if (verbosity >= 1){
1773
1
        printf("============================[ Search Statistics ]==============================\n");
1774
1
        printf("| Conflicts |          ORIGINAL         |          LEARNT          | Progress |\n");
1775
1
        printf("|           |    Vars  Clauses Literals |    Limit  Clauses Lit/Cl |          |\n");
1776
1
        printf("===============================================================================\n");
1777
    }
1778
1779
    // Search:
1780
13612
    int curr_restarts = 0;
1781
46200
    while (status == l_Undef){
1782
16310
        double rest_base = luby_restart ? luby(restart_inc, curr_restarts) : pow(restart_inc, curr_restarts);
1783
16310
        status = search(rest_base * restart_first);
1784
16294
        if (!withinBudget(Resource::SatConflictStep))
1785
          break;  // FIXME add restart option?
1786
16294
        curr_restarts++;
1787
    }
1788
1789
13596
    if (!withinBudget(Resource::SatConflictStep))
1790
      status = l_Undef;
1791
1792
13596
    if (verbosity >= 1)
1793
1
        printf("===============================================================================\n");
1794
1795
1796
13596
    if (status == l_True){
1797
        // Extend & copy model:
1798
7481
        model.growTo(nVars());
1799
616538
        for (int i = 0; i < nVars(); i++) {
1800
609057
          model[i] = value(i);
1801
609057
          Debug("minisat") << i << " = " << model[i] << std::endl;
1802
        }
1803
    }
1804
6115
    else if (status == l_False && d_conflict.size() == 0)
1805
3390
      ok = false;
1806
1807
13596
    return status;
1808
}
1809
1810
//=================================================================================================
1811
// Writing CNF to DIMACS:
1812
//
1813
// FIXME: this needs to be rewritten completely.
1814
1815
static Var mapVar(Var x, vec<Var>& map, Var& max)
1816
{
1817
    if (map.size() <= x || map[x] == -1){
1818
        map.growTo(x+1, -1);
1819
        map[x] = max++;
1820
    }
1821
    return map[x];
1822
}
1823
1824
1825
void Solver::toDimacs(FILE* f, Clause& c, vec<Var>& map, Var& max)
1826
{
1827
    if (satisfied(c)) return;
1828
1829
    for (int i = 0; i < c.size(); i++)
1830
        if (value(c[i]) != l_False)
1831
            fprintf(f, "%s%d ", sign(c[i]) ? "-" : "", mapVar(var(c[i]), map, max)+1);
1832
    fprintf(f, "0\n");
1833
}
1834
1835
1836
void Solver::toDimacs(const char *file, const vec<Lit>& assumps)
1837
{
1838
    FILE* f = fopen(file, "wr");
1839
    if (f == NULL)
1840
        fprintf(stderr, "could not open file %s\n", file), exit(1);
1841
    toDimacs(f, assumps);
1842
    fclose(f);
1843
}
1844
1845
1846
void Solver::toDimacs(FILE* f, const vec<Lit>& assumps)
1847
{
1848
    // Handle case when solver is in contradictory state:
1849
    if (!ok){
1850
        fprintf(f, "p cnf 1 2\n1 0\n-1 0\n");
1851
        return; }
1852
1853
    vec<Var> map; Var max = 0;
1854
1855
    // Cannot use removeClauses here because it is not safe
1856
    // to deallocate them at this point. Could be improved.
1857
    int cnt = 0;
1858
    for (int i = 0; i < clauses_persistent.size(); i++)
1859
        if (!satisfied(ca[clauses_persistent[i]]))
1860
            cnt++;
1861
1862
    for (int i = 0; i < clauses_persistent.size(); i++)
1863
        if (!satisfied(ca[clauses_persistent[i]])){
1864
            Clause& c = ca[clauses_persistent[i]];
1865
            for (int j = 0; j < c.size(); j++)
1866
                if (value(c[j]) != l_False)
1867
                    mapVar(var(c[j]), map, max);
1868
        }
1869
1870
    // Assumptions are added as unit clauses:
1871
    cnt += assumptions.size();
1872
1873
    fprintf(f, "p cnf %d %d\n", max, cnt);
1874
1875
    for (int i = 0; i < assumptions.size(); i++){
1876
      Assert(value(assumptions[i]) != l_False);
1877
      fprintf(f,
1878
              "%s%d 0\n",
1879
              sign(assumptions[i]) ? "-" : "",
1880
              mapVar(var(assumptions[i]), map, max) + 1);
1881
    }
1882
1883
    for (int i = 0; i < clauses_persistent.size(); i++)
1884
        toDimacs(f, ca[clauses_persistent[i]], map, max);
1885
1886
    if (verbosity > 0)
1887
        printf("Wrote %d clauses with %d variables.\n", cnt, max);
1888
}
1889
1890
1891
//=================================================================================================
1892
// Garbage Collection methods:
1893
1894
2774
void Solver::relocAll(ClauseAllocator& to)
1895
{
1896
    // All watchers:
1897
    //
1898
    // for (int i = 0; i < watches.size(); i++)
1899
2774
    watches.cleanAll();
1900
849970
    for (int v = 0; v < nVars(); v++)
1901
2541588
        for (int s = 0; s < 2; s++){
1902
1694392
            Lit p = mkLit(v, s);
1903
            // printf(" >>> RELOCING: %s%d\n", sign(p)?"-":"", var(p)+1);
1904
1694392
            vec<Watcher>& ws = watches[p];
1905
5276810
            for (int j = 0; j < ws.size(); j++)
1906
            {
1907
3582418
              ca.reloc(ws[j].cref, to);
1908
            }
1909
        }
1910
1911
    // All reasons:
1912
    //
1913
179833
    for (int i = 0; i < trail.size(); i++){
1914
177059
        Var v = var(trail[i]);
1915
1916
354118
        if (hasReasonClause(v)
1917
177059
            && (ca[reason(v)].reloced() || locked(ca[reason(v)])))
1918
        {
1919
37673
          ca.reloc(vardata[v].d_reason, to);
1920
        }
1921
    }
1922
    // All learnt:
1923
    //
1924
187739
    for (int i = 0; i < clauses_removable.size(); i++)
1925
    {
1926
184965
      ca.reloc(clauses_removable[i], to);
1927
    }
1928
    // All original:
1929
    //
1930
1609018
    for (int i = 0; i < clauses_persistent.size(); i++)
1931
    {
1932
1606244
      ca.reloc(clauses_persistent[i], to);
1933
    }
1934
2774
}
1935
1936
1937
void Solver::garbageCollect()
1938
{
1939
    // Initialize the next region to a size corresponding to the estimated utilization degree. This
1940
    // is not precise but should avoid some unnecessary reallocations for the new region:
1941
    ClauseAllocator to(ca.size() - ca.wasted());
1942
1943
    relocAll(to);
1944
    if (verbosity >= 2)
1945
        printf("|  Garbage collection:   %12d bytes => %12d bytes             |\n",
1946
               ca.size()*ClauseAllocator::Unit_Size, to.size()*ClauseAllocator::Unit_Size);
1947
    to.moveTo(ca);
1948
}
1949
1950
4869
void Solver::push()
1951
{
1952
4869
  Assert(d_enable_incremental);
1953
4869
  Assert(decisionLevel() == 0);
1954
1955
4869
  ++assertionLevel;
1956
4869
  Debug("minisat") << "in user push, increasing assertion level to " << assertionLevel << std::endl;
1957
4869
  trail_ok.push(ok);
1958
4869
  assigns_lim.push(assigns.size());
1959
1960
4869
  d_context->push();  // SAT context for cvc5
1961
1962
4869
  Debug("minisat") << "MINISAT PUSH assertionLevel is " << assertionLevel << ", trail.size is " << trail.size() << std::endl;
1963
4869
}
1964
1965
4869
void Solver::pop()
1966
{
1967
4869
  Assert(d_enable_incremental);
1968
1969
4869
  Assert(decisionLevel() == 0);
1970
1971
  // Pop the trail below the user level
1972
4869
  --assertionLevel;
1973
9738
  Debug("minisat") << "in user pop, decreasing assertion level to "
1974
4869
                   << assertionLevel << "\n"
1975
4869
                   << cvc5::push;
1976
  while (true) {
1977
57170
    Debug("minisat") << "== unassigning " << trail.last() << std::endl;
1978
57170
    Var      x  = var(trail.last());
1979
57170
    if (user_level(x) > assertionLevel) {
1980
52301
      assigns[x] = l_Undef;
1981
52301
      vardata[x] = VarData(CRef_Undef, -1, -1, intro_level(x), -1);
1982
52301
      if(phase_saving >= 1 && (polarity[x] & 0x2) == 0)
1983
51175
        polarity[x] = sign(trail.last());
1984
52301
      insertVarOrder(x);
1985
52301
      trail.pop();
1986
    } else {
1987
4869
      break;
1988
    }
1989
52301
  }
1990
1991
  // The head should be at the trail top
1992
4869
  qhead = trail.size();
1993
1994
  // Remove the clauses
1995
4869
  removeClausesAboveLevel(clauses_persistent, assertionLevel);
1996
4869
  removeClausesAboveLevel(clauses_removable, assertionLevel);
1997
4869
  Debug("minisat") << cvc5::pop;
1998
  // Pop the SAT context to notify everyone
1999
4869
  d_context->pop();  // SAT context for cvc5
2000
2001
9738
  Debug("minisat") << "MINISAT POP assertionLevel is " << assertionLevel
2002
4869
                   << ", trail.size is " << trail.size() << "\n";
2003
  // Pop the created variables
2004
4869
  resizeVars(assigns_lim.last());
2005
4869
  assigns_lim.pop();
2006
4869
  variables_to_register.clear();
2007
2008
  // Pop the OK
2009
4869
  ok = trail_ok.last();
2010
4869
  trail_ok.pop();
2011
4869
}
2012
2013
256365
CRef Solver::updateLemmas() {
2014
2015
256365
  Debug("minisat::lemmas") << "Solver::updateLemmas() begin" << std::endl;
2016
2017
  // Avoid adding lemmas indefinitely without resource-out
2018
256365
  d_proxy->spendResource(Resource::LemmaStep);
2019
2020
256365
  CRef conflict = CRef_Undef;
2021
2022
  // Decision level to backtrack to
2023
256365
  int backtrackLevel = decisionLevel();
2024
2025
  // We use this comparison operator
2026
256365
  lemma_lt lt(*this);
2027
2028
  // Check for propagation and level to backtrack to
2029
256365
  int i = 0;
2030
769229
  while (i < lemmas.size()) {
2031
    // We need this loop as when we backtrack, due to registration more lemmas could be added
2032
4502960
    for (; i < lemmas.size(); ++ i)
2033
    {
2034
      // The current lemma
2035
2123264
      vec<Lit>& lemma = lemmas[i];
2036
2037
2123264
      Trace("pf::sat") << "Solver::updateLemmas: working on lemma: ";
2038
8703272
      for (int k = 0; k < lemma.size(); ++k) {
2039
6580008
        Trace("pf::sat") << lemma[k] << " ";
2040
      }
2041
2123264
      Trace("pf::sat") << std::endl;
2042
2043
      // If it's an empty lemma, we have a conflict at zero level
2044
2124478
      if (lemma.size() == 0) {
2045
1214
        Assert(!options::unsatCores() && !needProof());
2046
1214
        conflict = CRef_Lazy;
2047
1214
        backtrackLevel = 0;
2048
1214
        Debug("minisat::lemmas") << "Solver::updateLemmas(): found empty clause" << std::endl;
2049
1214
        continue;
2050
      }
2051
      // Sort the lemma to be able to attach
2052
2122050
      sort(lemma, lt);
2053
      // See if the lemma propagates something
2054
2122050
      if (lemma.size() == 1 || value(lemma[1]) == l_False) {
2055
453066
        Debug("minisat::lemmas") << "found unit " << lemma.size() << std::endl;
2056
        // This lemma propagates, see which level we need to backtrack to
2057
453066
        int currentBacktrackLevel = lemma.size() == 1 ? 0 : level(var(lemma[1]));
2058
        // Even if the first literal is true, we should propagate it at this level (unless it's set at a lower level)
2059
453066
        if (value(lemma[0]) != l_True || level(var(lemma[0])) > currentBacktrackLevel) {
2060
437401
          if (currentBacktrackLevel < backtrackLevel) {
2061
151605
            backtrackLevel = currentBacktrackLevel;
2062
          }
2063
        }
2064
      }
2065
    }
2066
2067
    // Pop so that propagation would be current
2068
256432
    Debug("minisat::lemmas") << "Solver::updateLemmas(): backtracking to " << backtrackLevel << " from " << decisionLevel() << std::endl;
2069
256432
    cancelUntil(backtrackLevel);
2070
  }
2071
2072
  // Last index in the trail
2073
256365
  int backtrack_index = trail.size();
2074
2075
  // Attach all the clauses and enqueue all the propagations
2076
2379629
  for (int j = 0; j < lemmas.size(); ++j)
2077
  {
2078
    // The current lemma
2079
2123264
    vec<Lit>& lemma = lemmas[j];
2080
2123264
    bool removable = lemmas_removable[j];
2081
2082
    // Attach it if non-unit
2083
2123264
    CRef lemma_ref = CRef_Undef;
2084
2123264
    if (lemma.size() > 1) {
2085
      // If the lemmas is removable, we can compute its level by the level
2086
2060501
      int clauseLevel = assertionLevel;
2087
2060501
      if (removable && !assertionLevelOnly())
2088
      {
2089
178996
        clauseLevel = 0;
2090
1534799
        for (int k = 0; k < lemma.size(); ++k)
2091
        {
2092
1355803
          clauseLevel = std::max(clauseLevel, intro_level(var(lemma[k])));
2093
        }
2094
      }
2095
2096
2060501
      lemma_ref = ca.alloc(clauseLevel, lemma, removable);
2097
2060501
      if (removable) {
2098
187062
        clauses_removable.push(lemma_ref);
2099
      } else {
2100
1873439
        clauses_persistent.push(lemma_ref);
2101
      }
2102
2060501
      attachClause(lemma_ref);
2103
    }
2104
2105
    // If the lemma is propagating enqueue its literal (or set the conflict)
2106
2123264
    if (conflict == CRef_Undef && value(lemma[0]) != l_True) {
2107
2039251
      if (lemma.size() == 1 || (value(lemma[1]) == l_False && trail_index(var(lemma[1])) < backtrack_index)) {
2108
677810
        Trace("pf::sat") << "Solver::updateLemmas: unit theory lemma: "
2109
338905
                         << lemma[0] << std::endl;
2110
338905
        if (value(lemma[0]) == l_False) {
2111
          // We have a conflict
2112
54199
          if (lemma.size() > 1) {
2113
53630
            Debug("minisat::lemmas") << "Solver::updateLemmas(): conflict" << std::endl;
2114
53630
            conflict = lemma_ref;
2115
          } else {
2116
569
            Debug("minisat::lemmas") << "Solver::updateLemmas(): unit conflict or empty clause" << std::endl;
2117
569
            conflict = CRef_Lazy;
2118
569
            if (needProof())
2119
            {
2120
49
              d_pfManager->storeUnitConflict(lemma[0]);
2121
            }
2122
          }
2123
        } else {
2124
284706
          Debug("minisat::lemmas") << "lemma size is " << lemma.size() << std::endl;
2125
284706
          Debug("minisat::lemmas") << "lemma ref is " << lemma_ref << std::endl;
2126
284706
          uncheckedEnqueue(lemma[0], lemma_ref);
2127
        }
2128
      }
2129
    }
2130
  }
2131
2132
  // Clear the lemmas
2133
256365
  lemmas.clear();
2134
256365
  lemmas_removable.clear();
2135
2136
256365
  if (conflict != CRef_Undef) {
2137
55325
    theoryConflict = true;
2138
  }
2139
2140
256365
  Debug("minisat::lemmas") << "Solver::updateLemmas() end" << std::endl;
2141
2142
256365
  return conflict;
2143
}
2144
2145
6051344
void ClauseAllocator::reloc(CRef& cr, ClauseAllocator& to)
2146
{
2147
6051344
  Debug("minisat") << "ClauseAllocator::reloc: cr " << cr << std::endl;
2148
  // FIXME what is this CRef_lazy
2149
6051344
  if (cr == CRef_Lazy) return;
2150
2151
6051344
  Clause& c = operator[](cr);
2152
6051344
  if (c.reloced()) { cr = c.relocation(); return; }
2153
2154
1791884
  cr = to.alloc(c.level(), c, c.removable());
2155
1791884
  c.relocate(cr);
2156
  // Copy extra data-fields:
2157
  // (This could be cleaned-up. Generalize Clause-constructor to be applicable here instead?)
2158
1791884
  to[cr].mark(c.mark());
2159
1791884
  if (to[cr].removable())         to[cr].activity() = c.activity();
2160
1606919
  else if (to[cr].has_extra()) to[cr].calcAbstraction();
2161
}
2162
2163
3161635
inline bool Solver::withinBudget(Resource r) const
2164
{
2165
3161635
  Assert(d_proxy);
2166
  // spendResource sets async_interrupt or throws UnsafeInterruptException
2167
  // depending on whether hard-limit is enabled
2168
3161635
  d_proxy->spendResource(r);
2169
2170
3161635
  bool within_budget =
2171
6323270
      !asynch_interrupt && (conflict_budget < 0 || conflicts < conflict_budget)
2172
6323270
      && (propagation_budget < 0 || propagations < propagation_budget);
2173
3161635
  return within_budget;
2174
}
2175
2176
2510
SatProofManager* Solver::getProofManager()
2177
{
2178
2510
  return isProofEnabled() ? d_pfManager.get() : nullptr;
2179
}
2180
2181
2813
std::shared_ptr<ProofNode> Solver::getProof()
2182
{
2183
2813
  return isProofEnabled() ? d_pfManager->getProof() : nullptr;
2184
}
2185
2186
39305707
bool Solver::isProofEnabled() const { return d_pfManager != nullptr; }
2187
2188
39300384
bool Solver::needProof() const
2189
{
2190
39300384
  return isProofEnabled()
2191
39300384
         && options::unsatCoresMode() != options::UnsatCoresMode::ASSUMPTIONS;
2192
}
2193
2194
}  // namespace Minisat
2195
29358
}  // namespace cvc5