GCC Code Coverage Report
Directory: . Exec Total Coverage
File: src/prop/minisat/core/Solver.cc Lines: 855 1026 83.3 %
Date: 2021-09-04 Branches: 1177 2782 42.3 %

Line Exec Source
1
/***************************************************************************************[Solver.cc]
2
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
3
Copyright (c) 2007-2010, Niklas Sorensson
4
5
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
6
associated documentation files (the "Software"), to deal in the Software without restriction,
7
including without limitation the rights to use, copy, modify, merge, publish, distribute,
8
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
9
furnished to do so, subject to the following conditions:
10
11
The above copyright notice and this permission notice shall be included in all copies or
12
substantial portions of the Software.
13
14
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
15
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
16
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
17
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
18
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
**************************************************************************************************/
20
21
#include "prop/minisat/core/Solver.h"
22
23
#include <math.h>
24
25
#include <iostream>
26
#include <unordered_set>
27
28
#include "base/check.h"
29
#include "base/output.h"
30
#include "options/base_options.h"
31
#include "options/main_options.h"
32
#include "options/prop_options.h"
33
#include "options/smt_options.h"
34
#include "proof/clause_id.h"
35
#include "prop/minisat/minisat.h"
36
#include "prop/minisat/mtl/Sort.h"
37
#include "prop/theory_proxy.h"
38
39
using namespace cvc5::prop;
40
41
namespace cvc5 {
42
namespace Minisat {
43
44
namespace {
45
/*
46
 * Returns true if the solver should add all clauses at the current assertion
47
 * level.
48
 *
49
 * FIXME: This is a workaround. Currently, our resolution proofs do not
50
 * handle clauses with a lower-than-assertion-level correctly because the
51
 * resolution proofs get removed when popping the context but the SAT solver
52
 * keeps using them.
53
 */
54
12325839
bool assertionLevelOnly()
55
{
56
17326741
  return (options::produceProofs() || options::unsatCores())
57
19650786
         && options::incrementalSolving();
58
}
59
60
//=================================================================================================
61
// Helper functions for decision tree tracing
62
63
// Writes to Trace macro for decision tree tracing
64
static inline void dtviewDecisionHelper(size_t level,
65
                                        const Node& node,
66
                                        const char* decisiontype)
67
{
68
  Trace("dtview") << std::string(level - (options::incrementalSolving() ? 1 : 0), '*')
69
                  << " " << node << " :" << decisiontype << "-DECISION:" << std::endl;
70
}
71
72
// Writes to Trace macro for propagation tracing
73
static inline void dtviewPropagationHeaderHelper(size_t level)
74
{
75
  Trace("dtview::prop") << std::string(level + 1 - (options::incrementalSolving() ? 1 : 0),
76
                                       '*')
77
                        << " /Propagations/" << std::endl;
78
}
79
80
// Writes to Trace macro for propagation tracing
81
static inline void dtviewBoolPropagationHelper(size_t level,
82
                                               Lit& l,
83
                                               cvc5::prop::TheoryProxy* proxy)
84
{
85
  Trace("dtview::prop") << std::string(
86
      level + 1 - (options::incrementalSolving() ? 1 : 0), ' ')
87
                        << ":BOOL-PROP: "
88
                        << proxy->getNode(MinisatSatSolver::toSatLiteral(l))
89
                        << std::endl;
90
}
91
92
// Writes to Trace macro for conflict tracing
93
static inline void dtviewPropConflictHelper(size_t level,
94
                                            Clause& confl,
95
                                            cvc5::prop::TheoryProxy* proxy)
96
{
97
  Trace("dtview::conflict")
98
      << std::string(level + 1 - (options::incrementalSolving() ? 1 : 0), ' ')
99
      << ":PROP-CONFLICT: (or";
100
  for (int i = 0; i < confl.size(); i++)
101
  {
102
    Trace("dtview::conflict")
103
        << " " << proxy->getNode(MinisatSatSolver::toSatLiteral(confl[i]));
104
  }
105
  Trace("dtview::conflict") << ")" << std::endl;
106
}
107
108
}  // namespace
109
110
//=================================================================================================
111
// Options:
112
113
static const char* _cat = "CORE";
114
115
9835
static DoubleOption  opt_var_decay         (_cat, "var-decay",   "The variable activity decay factor",            0.95,     DoubleRange(0, false, 1, false));
116
9835
static DoubleOption  opt_clause_decay      (_cat, "cla-decay",   "The clause activity decay factor",              0.999,    DoubleRange(0, false, 1, false));
117
9835
static DoubleOption  opt_random_var_freq   (_cat, "rnd-freq",    "The frequency with which the decision heuristic tries to choose a random variable", 0, DoubleRange(0, true, 1, true));
118
9835
static DoubleOption  opt_random_seed       (_cat, "rnd-seed",    "Used by the random variable selection",         91648253, DoubleRange(0, false, HUGE_VAL, false));
119
9835
static IntOption     opt_ccmin_mode        (_cat, "ccmin-mode",  "Controls conflict clause minimization (0=none, 1=basic, 2=deep)", 2, IntRange(0, 2));
120
9835
static IntOption     opt_phase_saving      (_cat, "phase-saving", "Controls the level of phase saving (0=none, 1=limited, 2=full)", 2, IntRange(0, 2));
121
9835
static BoolOption    opt_rnd_init_act      (_cat, "rnd-init",    "Randomize the initial activity", false);
122
9835
static BoolOption    opt_luby_restart      (_cat, "luby",        "Use the Luby restart sequence", true);
123
9835
static IntOption     opt_restart_first     (_cat, "rfirst",      "The base restart interval", 25, IntRange(1, INT32_MAX));
124
9835
static DoubleOption  opt_restart_inc       (_cat, "rinc",        "Restart interval increase factor", 3, DoubleRange(1, false, HUGE_VAL, false));
125
9835
static DoubleOption  opt_garbage_frac      (_cat, "gc-frac",     "The fraction of wasted memory allowed before a garbage collection is triggered",  0.20, DoubleRange(0, false, HUGE_VAL, false));
126
127
//=================================================================================================
128
// Proof declarations
129
CRef Solver::TCRef_Undef = CRef_Undef;
130
CRef Solver::TCRef_Lazy = CRef_Lazy;
131
132
class ScopedBool
133
{
134
  bool& d_watch;
135
  bool d_oldValue;
136
137
 public:
138
3524676
  ScopedBool(bool& watch, bool newValue) : d_watch(watch), d_oldValue(watch)
139
  {
140
3524676
    watch = newValue;
141
3524676
  }
142
3524676
  ~ScopedBool() { d_watch = d_oldValue; }
143
};
144
145
//=================================================================================================
146
// Constructor/Destructor:
147
148
9994
Solver::Solver(cvc5::prop::TheoryProxy* proxy,
149
               cvc5::context::Context* context,
150
               cvc5::context::UserContext* userContext,
151
               ProofNodeManager* pnm,
152
9994
               bool enableIncremental)
153
    : d_proxy(proxy),
154
      d_context(context),
155
      assertionLevel(0),
156
      d_pfManager(nullptr),
157
      d_enable_incremental(enableIncremental),
158
      minisat_busy(false)
159
      // Parameters (user settable):
160
      //
161
      ,
162
      verbosity(0),
163
      var_decay(opt_var_decay),
164
      clause_decay(opt_clause_decay),
165
      random_var_freq(opt_random_var_freq),
166
      random_seed(opt_random_seed),
167
      luby_restart(opt_luby_restart),
168
      ccmin_mode(opt_ccmin_mode),
169
      phase_saving(opt_phase_saving),
170
      rnd_pol(false),
171
      rnd_init_act(opt_rnd_init_act),
172
      garbage_frac(opt_garbage_frac),
173
      restart_first(opt_restart_first),
174
      restart_inc(opt_restart_inc)
175
176
      // Parameters (the rest):
177
      //
178
      ,
179
      learntsize_factor(1),
180
      learntsize_inc(1.5)
181
182
      // Parameters (experimental):
183
      //
184
      ,
185
      learntsize_adjust_start_confl(100),
186
      learntsize_adjust_inc(1.5)
187
188
      // Statistics: (formerly in 'SolverStats')
189
      //
190
      ,
191
      solves(0),
192
      starts(0),
193
      decisions(0),
194
      rnd_decisions(0),
195
      propagations(0),
196
      conflicts(0),
197
      resources_consumed(0),
198
      dec_vars(0),
199
      clauses_literals(0),
200
      learnts_literals(0),
201
      max_literals(0),
202
      tot_literals(0)
203
204
      ,
205
      ok(true),
206
      cla_inc(1),
207
      var_inc(1),
208
19988
      watches(WatcherDeleted(ca)),
209
      qhead(0),
210
      simpDB_assigns(-1),
211
      simpDB_props(0),
212
19988
      order_heap(VarOrderLt(activity)),
213
      progress_estimate(0),
214
9994
      remove_satisfied(!enableIncremental)
215
216
      // Resource constraints:
217
      //
218
      ,
219
      conflict_budget(-1),
220
      propagation_budget(-1),
221
59964
      asynch_interrupt(false)
222
{
223
9994
  if (pnm)
224
  {
225
2504
    d_pfManager.reset(
226
1252
        new SatProofManager(this, proxy->getCnfStream(), userContext, pnm));
227
  }
228
229
  // Create the constant variables
230
9994
  varTrue = newVar(true, false, false);
231
9994
  varFalse = newVar(false, false, false);
232
233
  // Assert the constants
234
9994
  uncheckedEnqueue(mkLit(varTrue, false));
235
9994
  uncheckedEnqueue(mkLit(varFalse, true));
236
9994
}
237
238
239
9991
Solver::~Solver()
240
{
241
9991
}
242
243
244
//=================================================================================================
245
// Minor methods:
246
247
248
// Creates a new SAT variable in the solver. If 'decision_var' is cleared, variable will not be
249
// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
250
//
251
1292005
Var Solver::newVar(bool sign, bool dvar, bool isTheoryAtom, bool preRegister, bool canErase)
252
{
253
1292005
    int v = nVars();
254
255
1292005
    watches  .init(mkLit(v, false));
256
1292005
    watches  .init(mkLit(v, true ));
257
1292005
    assigns  .push(l_Undef);
258
1292005
    vardata  .push(VarData(CRef_Undef, -1, -1, assertionLevel, -1));
259
1292005
    activity .push(rnd_init_act ? drand(random_seed) * 0.00001 : 0);
260
1292005
    seen     .push(0);
261
1292005
    polarity .push(sign);
262
1292005
    decision .push();
263
1292005
    trail    .capacity(v+1);
264
    // push whether it corresponds to a theory atom
265
1292005
    theory.push(isTheoryAtom);
266
267
1292005
    setDecisionVar(v, dvar);
268
269
1292005
    Debug("minisat") << "new var " << v << std::endl;
270
271
    // If the variable is introduced at non-zero level, we need to reintroduce it on backtracks
272
1292005
    if (preRegister)
273
    {
274
1203762
      Debug("minisat") << "  To register at level " << decisionLevel()
275
601881
                       << std::endl;
276
601881
      variables_to_register.push(VarIntroInfo(v, decisionLevel()));
277
    }
278
279
1292005
    return v;
280
}
281
282
4869
void Solver::resizeVars(int newSize) {
283
4869
  Assert(d_enable_incremental);
284
4869
  Assert(decisionLevel() == 0);
285
4869
  Assert(newSize >= 2) << "always keep true/false";
286
4869
  if (newSize < nVars()) {
287
3067
    int shrinkSize = nVars() - newSize;
288
289
    // Resize watches up to the negated last literal
290
3067
    watches.resizeTo(mkLit(newSize-1, true));
291
292
    // Resize all info arrays
293
3067
    assigns.shrink(shrinkSize);
294
3067
    vardata.shrink(shrinkSize);
295
3067
    activity.shrink(shrinkSize);
296
3067
    seen.shrink(shrinkSize);
297
3067
    polarity.shrink(shrinkSize);
298
3067
    decision.shrink(shrinkSize);
299
3067
    theory.shrink(shrinkSize);
300
  }
301
302
4869
  if (Debug.isOn("minisat::pop")) {
303
    for (int i = 0; i < trail.size(); ++ i) {
304
      Assert(var(trail[i]) < nVars());
305
    }
306
  }
307
4869
}
308
309
169563178
CRef Solver::reason(Var x) {
310
169563178
  Trace("pf::sat") << "Solver::reason(" << x << ")" << std::endl;
311
312
  // If we already have a reason, just return it
313
169563178
  if (vardata[x].d_reason != CRef_Lazy)
314
  {
315
169523064
    if (Trace.isOn("pf::sat"))
316
    {
317
      Trace("pf::sat") << "  Solver::reason: " << vardata[x].d_reason << ", ";
318
      if (vardata[x].d_reason == CRef_Undef)
319
      {
320
        Trace("pf::sat") << "CRef_Undef";
321
      }
322
      else
323
      {
324
        for (unsigned i = 0, size = ca[vardata[x].d_reason].size(); i < size;
325
             ++i)
326
        {
327
          Trace("pf::sat") << ca[vardata[x].d_reason][i] << " ";
328
        }
329
      }
330
      Trace("pf::sat") << "\n";
331
    }
332
169523064
    return vardata[x].d_reason;
333
  }
334
  // What's the literal we are trying to explain
335
40114
  Lit l = mkLit(x, value(x) != l_True);
336
337
  // Get the explanation from the theory
338
80228
  SatClause explanation_cl;
339
  // FIXME: at some point return a tag with the theory that spawned you
340
40114
  d_proxy->explainPropagation(MinisatSatSolver::toSatLiteral(l),
341
                              explanation_cl);
342
80228
  vec<Lit> explanation;
343
40114
  MinisatSatSolver::toMinisatClause(explanation_cl, explanation);
344
345
80228
  Trace("pf::sat") << "Solver::reason: explanation_cl = " << explanation_cl
346
40114
                   << std::endl;
347
348
  // Sort the literals by trail index level
349
40114
  lemma_lt lt(*this);
350
40114
  sort(explanation, lt);
351
40114
  Assert(explanation[0] == l);
352
353
  // Compute the assertion level for this clause
354
40114
  int explLevel = 0;
355
40114
  if (assertionLevelOnly())
356
  {
357
1564
    explLevel = assertionLevel;
358
    }
359
    else
360
    {
361
      int i, j;
362
38550
      Lit prev = lit_Undef;
363
284749
      for (i = 0, j = 0; i < explanation.size(); ++i)
364
      {
365
        // This clause is valid theory propagation, so its level is the level of
366
        // the top literal
367
246199
        explLevel = std::max(explLevel, intro_level(var(explanation[i])));
368
369
246199
        Assert(value(explanation[i]) != l_Undef);
370
246199
        Assert(i == 0
371
               || trail_index(var(explanation[0]))
372
                      > trail_index(var(explanation[i])));
373
374
        // Always keep the first literal
375
284749
        if (i == 0)
376
        {
377
38550
          prev = explanation[j++] = explanation[i];
378
38550
          continue;
379
        }
380
        // Ignore duplicate literals
381
207649
        if (explanation[i] == prev)
382
        {
383
          continue;
384
        }
385
        // Ignore zero level literals
386
415298
        if (level(var(explanation[i])) == 0
387
207649
            && user_level(var(explanation[i]) == 0))
388
        {
389
          continue;
390
        }
391
        // Keep this literal
392
207649
        prev = explanation[j++] = explanation[i];
393
      }
394
38550
      explanation.shrink(i - j);
395
396
38550
      Trace("pf::sat") << "Solver::reason: explanation = ";
397
284749
      for (int k = 0; k < explanation.size(); ++k)
398
      {
399
246199
        Trace("pf::sat") << explanation[k] << " ";
400
      }
401
38550
      Trace("pf::sat") << std::endl;
402
403
      // We need an explanation clause so we add a fake literal
404
38550
      if (j == 1)
405
      {
406
        // Add not TRUE to the clause
407
        explanation.push(mkLit(varTrue, true));
408
      }
409
    }
410
411
    // Construct the reason
412
40114
    CRef real_reason = ca.alloc(explLevel, explanation, true);
413
40114
    vardata[x] = VarData(real_reason, level(x), user_level(x), intro_level(x), trail_index(x));
414
40114
    clauses_removable.push(real_reason);
415
40114
    attachClause(real_reason);
416
417
40114
    return real_reason;
418
}
419
420
3836681
bool Solver::addClause_(vec<Lit>& ps, bool removable, ClauseId& id)
421
{
422
3836681
    if (!ok) return false;
423
424
    // Check if clause is satisfied and remove false/duplicate literals:
425
3836681
    sort(ps);
426
    Lit p; int i, j;
427
428
    // Which user-level to assert this clause at
429
3836681
    int clauseLevel = (removable && !assertionLevelOnly()) ? 0 : assertionLevel;
430
431
    // Check the clause for tautologies and similar
432
3836681
    int falseLiteralsCount = 0;
433
15257024
    for (i = j = 0, p = lit_Undef; i < ps.size(); i++) {
434
      // Update the level
435
23217114
      clauseLevel = assertionLevelOnly()
436
22600325
                        ? assertionLevel
437
22600325
                        : std::max(clauseLevel, intro_level(var(ps[i])));
438
      // Tautologies are ignored
439
11608557
      if (ps[i] == ~p) {
440
17770
        id = ClauseIdUndef;
441
        // Clause can be ignored
442
17770
        return true;
443
      }
444
      // Clauses with 0-level true literals are also ignored
445
11590787
      if (value(ps[i]) == l_True && level(var(ps[i])) == 0 && user_level(var(ps[i])) == 0) {
446
170444
        id = ClauseIdUndef;
447
170444
        return true;
448
      }
449
      // Ignore repeated literals
450
11420343
      if (ps[i] == p) {
451
19394
        continue;
452
      }
453
      // If a literal is false at 0 level (both sat and user level) we also
454
      // ignore it, unless we are tracking the SAT solver's reasoning
455
11400949
      if (value(ps[i]) == l_False) {
456
7293026
        if (!options::unsatCores() && !needProof() && level(var(ps[i])) == 0
457
3606055
            && user_level(var(ps[i])) == 0)
458
        {
459
773523
          continue;
460
        }
461
        else
462
        {
463
          // If we decide to keep it, we count it into the false literals
464
2038402
          falseLiteralsCount++;
465
        }
466
      }
467
      // This literal is a keeper
468
10627426
      ps[j++] = p = ps[i];
469
    }
470
471
    // Fit to size
472
3648467
    ps.shrink(i - j);
473
474
    // If we are in solve_ or propagate
475
3648467
    if (minisat_busy)
476
    {
477
2164035
      Trace("pf::sat") << "Add clause adding a new lemma: ";
478
8856941
      for (int k = 0; k < ps.size(); ++k) {
479
6692906
        Trace("pf::sat") << ps[k] << " ";
480
      }
481
2164035
      Trace("pf::sat") << std::endl;
482
483
2164035
      lemmas.push();
484
2164035
      ps.copyTo(lemmas.last());
485
2164035
      lemmas_removable.push(removable);
486
    } else {
487
1484432
      Assert(decisionLevel() == 0);
488
489
      // If all false, we're in conflict
490
1484432
      if (ps.size() == falseLiteralsCount) {
491
1333
        if (options::unsatCores() || needProof())
492
        {
493
          // Take care of false units here; otherwise, we need to
494
          // construct the clause below to give to the proof manager
495
          // as the final conflict.
496
491
          if(falseLiteralsCount == 1) {
497
472
            if (needProof())
498
            {
499
472
              d_pfManager->finalizeProof(ps[0], true);
500
            }
501
84190
            return ok = false;
502
          }
503
        }
504
        else
505
        {
506
842
          return ok = false;
507
        }
508
      }
509
510
1483118
      CRef cr = CRef_Undef;
511
512
      // If not unit, add the clause
513
1483118
      if (ps.size() > 1) {
514
515
1404058
        lemma_lt lt(*this);
516
1404058
        sort(ps, lt);
517
518
1404058
        cr = ca.alloc(clauseLevel, ps, false);
519
1404058
        clauses_persistent.push(cr);
520
1404058
        attachClause(cr);
521
522
1404058
        if (options::unsatCores() || needProof())
523
        {
524
660903
          if (ps.size() == falseLiteralsCount)
525
          {
526
19
            if (needProof())
527
            {
528
19
              d_pfManager->finalizeProof(ca[cr], true);
529
            }
530
19
            return ok = false;
531
          }
532
        }
533
      }
534
535
      // Check if it propagates
536
1483099
      if (ps.size() == falseLiteralsCount + 1) {
537
82385
        if(assigns[var(ps[0])] == l_Undef) {
538
80043
          Assert(assigns[var(ps[0])] != l_False);
539
80043
          uncheckedEnqueue(ps[0], cr);
540
160086
          Debug("cores") << "i'm registering a unit clause, maybe input"
541
80043
                         << std::endl;
542
80043
          if (ps.size() == 1)
543
          {
544
            // We need to do this so that the closedness check, if being done,
545
            // goes through when we have unit assumptions whose literal has
546
            // already been registered, as the ProofCnfStream will not register
547
            // them and as they are not the result of propagation will be left
548
            // hanging in assumptions accumulator
549
77544
            if (needProof())
550
            {
551
23605
              d_pfManager->registerSatLitAssumption(ps[0]);
552
            }
553
          }
554
80043
          CRef confl = propagate(CHECK_WITHOUT_THEORY);
555
80043
          if(! (ok = (confl == CRef_Undef)) ) {
556
38
            if (needProof())
557
            {
558
13
              if (ca[confl].size() == 1)
559
              {
560
                d_pfManager->finalizeProof(ca[confl][0]);
561
              }
562
              else
563
              {
564
13
                d_pfManager->finalizeProof(ca[confl]);
565
              }
566
            }
567
          }
568
80043
          return ok;
569
        } else {
570
2342
          return ok;
571
        }
572
      }
573
    }
574
575
3564749
    return true;
576
}
577
578
579
3921805
void Solver::attachClause(CRef cr) {
580
3921805
    const Clause& c = ca[cr];
581
3921805
    if (Debug.isOn("minisat"))
582
    {
583
      Debug("minisat") << "Solver::attachClause(" << c << "): ";
584
      for (unsigned i = 0, size = c.size(); i < size; ++i)
585
      {
586
        Debug("minisat") << c[i] << " ";
587
      }
588
      Debug("minisat") << ", level " << c.level() << "\n";
589
    }
590
3921805
    Assert(c.size() > 1);
591
3921805
    watches[~c[0]].push(Watcher(cr, c[1]));
592
3921805
    watches[~c[1]].push(Watcher(cr, c[0]));
593
3921805
    if (c.removable()) learnts_literals += c.size();
594
3401405
    else            clauses_literals += c.size();
595
3921805
}
596
597
598
830557
void Solver::detachClause(CRef cr, bool strict) {
599
830557
    const Clause& c = ca[cr];
600
830557
    Debug("minisat") << "Solver::detachClause(" << c << ")" << std::endl;
601
830557
    if (Debug.isOn("minisat"))
602
    {
603
      Debug("minisat") << "Solver::detachClause(" << c << "), CRef " << cr
604
                       << ", clause ";
605
      for (unsigned i = 0, size = c.size(); i < size; ++i)
606
      {
607
        Debug("minisat") << c[i] << " ";
608
      }
609
610
      Debug("minisat") << "\n";
611
    }
612
830557
    Assert(c.size() > 1);
613
614
830557
    if (strict){
615
89045
        remove(watches[~c[0]], Watcher(cr, c[1]));
616
89045
        remove(watches[~c[1]], Watcher(cr, c[0]));
617
    }else{
618
        // Lazy detaching: (NOTE! Must clean all watcher lists before garbage collecting this clause)
619
741512
        watches.smudge(~c[0]);
620
741512
        watches.smudge(~c[1]);
621
    }
622
623
830557
    if (c.removable()) learnts_literals -= c.size();
624
581980
    else            clauses_literals -= c.size(); }
625
626
627
741512
void Solver::removeClause(CRef cr) {
628
741512
    Clause& c = ca[cr];
629
741512
    if (Debug.isOn("minisat"))
630
    {
631
      Debug("minisat") << "Solver::removeClause(" << c << "), CRef " << cr
632
                       << ", clause ";
633
      for (unsigned i = 0, size = c.size(); i < size; ++i)
634
      {
635
        Debug("minisat") << c[i] << " ";
636
      }
637
      Debug("minisat") << "\n";
638
    }
639
741512
    detachClause(cr);
640
    // Don't leave pointers to free'd memory!
641
741512
    if (locked(c))
642
    {
643
      // a locked clause c is one whose first literal c[0] is true and is
644
      // propagated by c itself, i.e. vardata[var(c[0])].d_reason == c. Because
645
      // of this if we need to justify the propagation of c[0], via
646
      // Solver::reason, if it appears in a resolution chain built lazily we
647
      // will be unable to do so after the step below. Thus we eagerly justify
648
      // this propagation here.
649
11056
      if (needProof())
650
      {
651
2554
        Trace("pf::sat")
652
1277
            << "Solver::removeClause: eagerly compute propagation of " << c[0]
653
1277
            << "\n";
654
1277
        d_pfManager->startResChain(c);
655
5844
        for (unsigned i = 1, size = c.size(); i < size; ++i)
656
        {
657
4567
          d_pfManager->addResolutionStep(c[i]);
658
        }
659
1277
        d_pfManager->endResChain(c[0]);
660
      }
661
11056
      vardata[var(c[0])].d_reason = CRef_Undef;
662
    }
663
741512
    c.mark(1);
664
741512
    ca.free(cr);
665
741512
}
666
667
668
461479
bool Solver::satisfied(const Clause& c) const {
669
21514908
    for (int i = 0; i < c.size(); i++)
670
21098769
        if (value(c[i]) == l_True)
671
45340
            return true;
672
416139
    return false; }
673
674
675
// Revert to the state at given level (keeping all assignment at 'level' but not beyond).
676
//
677
570966
void Solver::cancelUntil(int level) {
678
570966
    Debug("minisat") << "minisat::cancelUntil(" << level << ")" << std::endl;
679
680
570966
    if (decisionLevel() > level){
681
        // Pop the SMT context
682
3409648
        for (int l = trail_lim.size() - level; l > 0; --l) {
683
2960952
          d_context->pop();
684
        }
685
116457045
        for (int c = trail.size()-1; c >= trail_lim[level]; c--){
686
116008349
            Var      x  = var(trail[c]);
687
116008349
            assigns [x] = l_Undef;
688
116008349
            vardata[x].d_trail_index = -1;
689
232016698
            if ((phase_saving > 1 ||
690
                 ((phase_saving == 1) && c > trail_lim.last())
691
232016698
                 ) && ((polarity[x] & 0x2) == 0)) {
692
115077422
              polarity[x] = sign(trail[c]);
693
            }
694
116008349
            insertVarOrder(x);
695
        }
696
448696
        qhead = trail_lim[level];
697
448696
        trail.shrink(trail.size() - trail_lim[level]);
698
448696
        trail_lim.shrink(trail_lim.size() - level);
699
448696
        flipped.shrink(flipped.size() - level);
700
701
        // Register variables that have not been registered yet
702
448696
        int currentLevel = decisionLevel();
703
900422
        for (int i = variables_to_register.size() - 1;
704
900422
             i >= 0 && variables_to_register[i].d_level > currentLevel;
705
             --i)
706
        {
707
451726
          variables_to_register[i].d_level = currentLevel;
708
903452
          d_proxy->variableNotify(
709
451726
              MinisatSatSolver::toSatVariable(variables_to_register[i].d_var));
710
        }
711
    }
712
570966
}
713
714
15235
void Solver::resetTrail() { cancelUntil(0); }
715
716
//=================================================================================================
717
// Major methods:
718
719
720
2683010
Lit Solver::pickBranchLit()
721
{
722
    Lit nextLit;
723
724
    // Theory requests
725
2683008
    nextLit =
726
2683010
        MinisatSatSolver::toMinisatLit(d_proxy->getNextTheoryDecisionRequest());
727
2703720
    while (nextLit != lit_Undef) {
728
61614
      if(value(var(nextLit)) == l_Undef) {
729
102516
        Debug("theoryDecision")
730
51258
            << "getNextTheoryDecisionRequest(): now deciding on " << nextLit
731
51258
            << std::endl;
732
51258
        decisions++;
733
734
        // org-mode tracing -- theory decision
735
51258
        if (Trace.isOn("dtview"))
736
        {
737
          dtviewDecisionHelper(
738
              d_context->getLevel(),
739
              d_proxy->getNode(MinisatSatSolver::toSatLiteral(nextLit)),
740
              "THEORY");
741
        }
742
743
51258
        if (Trace.isOn("dtview::prop"))
744
        {
745
          dtviewPropagationHeaderHelper(d_context->getLevel());
746
        }
747
748
51258
        return nextLit;
749
      } else {
750
20712
        Debug("theoryDecision")
751
10356
            << "getNextTheoryDecisionRequest(): would decide on " << nextLit
752
10356
            << " but it already has an assignment" << std::endl;
753
      }
754
10356
      nextLit = MinisatSatSolver::toMinisatLit(
755
10356
          d_proxy->getNextTheoryDecisionRequest());
756
    }
757
5263500
    Debug("theoryDecision")
758
2631750
        << "getNextTheoryDecisionRequest(): decide on another literal"
759
2631750
        << std::endl;
760
761
    // DE requests
762
2631750
    bool stopSearch = false;
763
2631750
    nextLit = MinisatSatSolver::toMinisatLit(
764
2631750
        d_proxy->getNextDecisionEngineRequest(stopSearch));
765
2631750
    if(stopSearch) {
766
53095
      return lit_Undef;
767
    }
768
2578655
    if(nextLit != lit_Undef) {
769
1158115
      Assert(value(var(nextLit)) == l_Undef)
770
          << "literal to decide already has value";
771
1158115
      decisions++;
772
1158115
      Var next = var(nextLit);
773
1158115
      if(polarity[next] & 0x2) {
774
225977
        nextLit = mkLit(next, polarity[next] & 0x1);
775
      }
776
777
      // org-mode tracing -- decision engine decision
778
1158115
      if (Trace.isOn("dtview"))
779
      {
780
        dtviewDecisionHelper(
781
            d_context->getLevel(),
782
            d_proxy->getNode(MinisatSatSolver::toSatLiteral(nextLit)),
783
            "DE");
784
      }
785
786
1158115
      if (Trace.isOn("dtview::prop"))
787
      {
788
        dtviewPropagationHeaderHelper(d_context->getLevel());
789
      }
790
791
1158115
      return nextLit;
792
    }
793
794
1420540
    Var next = var_Undef;
795
796
    // Random decision:
797
1420540
    if (drand(random_seed) < random_var_freq && !order_heap.empty()){
798
        next = order_heap[irand(random_seed,order_heap.size())];
799
        if (value(next) == l_Undef && decision[next])
800
            rnd_decisions++; }
801
802
    // Activity based decision:
803
10523284
    while (next >= nVars() || next == var_Undef || value(next) != l_Undef || !decision[next]) {
804
4569686
        if (order_heap.empty()){
805
18314
            next = var_Undef;
806
18314
            break;
807
        }else {
808
4551372
            next = order_heap.removeMin();
809
        }
810
811
4551372
        if(!decision[next]) continue;
812
        // Check with decision engine about relevancy
813
9077440
        if (d_proxy->isDecisionRelevant(MinisatSatSolver::toSatVariable(next))
814
4538720
            == false)
815
        {
816
          next = var_Undef;
817
        }
818
    }
819
820
1420540
    if(next == var_Undef) {
821
18314
      return lit_Undef;
822
    } else {
823
1402226
      decisions++;
824
      // Check with decision engine if it can tell polarity
825
      lbool dec_pol = MinisatSatSolver::toMinisatlbool(
826
1402226
          d_proxy->getDecisionPolarity(MinisatSatSolver::toSatVariable(next)));
827
      Lit decisionLit;
828
1402226
      if(dec_pol != l_Undef) {
829
        Assert(dec_pol == l_True || dec_pol == l_False);
830
        decisionLit = mkLit(next, (dec_pol == l_True));
831
      }
832
      else
833
      {
834
        // If it can't use internal heuristic to do that
835
1402226
        decisionLit = mkLit(
836
1402226
            next, rnd_pol ? drand(random_seed) < 0.5 : (polarity[next] & 0x1));
837
      }
838
839
      // org-mode tracing -- decision engine decision
840
1402226
      if (Trace.isOn("dtview"))
841
      {
842
        dtviewDecisionHelper(
843
            d_context->getLevel(),
844
            d_proxy->getNode(MinisatSatSolver::toSatLiteral(decisionLit)),
845
            "DE");
846
      }
847
848
1402226
      if (Trace.isOn("dtview::prop"))
849
      {
850
        dtviewPropagationHeaderHelper(d_context->getLevel());
851
      }
852
853
1402226
      return decisionLit;
854
    }
855
}
856
857
858
/*_________________________________________________________________________________________________
859
|
860
|  analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&)  ->  [void]
861
|
862
|  Description:
863
|    Analyze conflict and produce a reason clause.
864
|
865
|    Pre-conditions:
866
|      * 'out_learnt' is assumed to be cleared.
867
|      * Current decision level must be greater than root level.
868
|
869
|    Post-conditions:
870
|      * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
871
|      * If out_learnt.size() > 1 then 'out_learnt[1]' has the greatest decision level of the
872
|        rest of literals. There may be others from the same level though.
873
|      * returns the maximal level of the resolved clauses
874
|
875
|________________________________________________________________________________________________@*/
876
295242
int Solver::analyze(CRef confl, vec<Lit>& out_learnt, int& out_btlevel)
877
{
878
590484
  Trace("pf::sat") << "Solver::analyze: starting with " << confl
879
295242
                   << " with decision level " << decisionLevel() << "\n";
880
881
295242
  int pathC = 0;
882
295242
  Lit p = lit_Undef;
883
884
  // Generate conflict clause:
885
  //
886
295242
  out_learnt.push();  // (leave room for the asserting literal)
887
295242
  int index = trail.size() - 1;
888
889
295242
  int max_resolution_level = 0;  // Maximal level of the resolved clauses
890
891
295242
    if (needProof())
892
    {
893
22561
      d_pfManager->startResChain(ca[confl]);
894
    }
895
33291335
    do{
896
33586577
      Assert(confl != CRef_Undef);  // (otherwise should be UIP)
897
898
      {
899
        // ! IMPORTANT !
900
        // It is not safe to use c after this block of code because
901
        // resolveOutUnit() below may lead to clauses being allocated, which
902
        // in turn may lead to reallocations that invalidate c.
903
33586577
        Clause& c = ca[confl];
904
33586577
        max_resolution_level = std::max(max_resolution_level, c.level());
905
906
33586577
        if (c.removable()) claBumpActivity(c);
907
      }
908
909
33586577
        if (Trace.isOn("pf::sat"))
910
        {
911
          Trace("pf::sat") << "Solver::analyze: conflict clause ";
912
          for (unsigned i = 0, size = ca[confl].size(); i < size; ++i)
913
          {
914
            Trace("pf::sat") << ca[confl][i] << " ";
915
          }
916
          Trace("pf::sat") << "\n";
917
        }
918
919
33586577
        Trace("pf::sat") << cvc5::push;
920
229721557
        for (int j = (p == lit_Undef) ? 0 : 1, size = ca[confl].size();
921
229721557
             j < size;
922
             j++)
923
        {
924
196134980
          Lit q = ca[confl][j];
925
926
392269960
          Trace("pf::sat") << "Lit " << q
927
392269960
                           << " seen/level: " << (seen[var(q)] ? 1 : 0) << " / "
928
196134980
                           << level(var(q)) << "\n";
929
196134980
          if (!seen[var(q)] && level(var(q)) > 0)
930
          {
931
60167643
            varBumpActivity(var(q));
932
60167643
            seen[var(q)] = 1;
933
60167643
            if (level(var(q)) >= decisionLevel())
934
33586577
              pathC++;
935
            else
936
26581066
              out_learnt.push(q);
937
          }
938
          else
939
          {
940
            // We could be resolving a literal propagated by a clause/theory
941
            // using information from a higher level
942
135967337
            if (!seen[var(q)] && level(var(q)) == 0)
943
            {
944
397642
              max_resolution_level =
945
795284
                  std::max(max_resolution_level, user_level(var(q)));
946
            }
947
948
            // FIXME: can we do it lazily if we actually need the proof?
949
135967337
            if (level(var(q)) == 0 && needProof())
950
            {
951
139381
              d_pfManager->addResolutionStep(q);
952
            }
953
          }
954
        }
955
33586577
        Trace("pf::sat") << cvc5::pop;
956
957
        // Select next clause to look at:
958
93889657
        while (!seen[var(trail[index--])]);
959
33586577
        p     = trail[index+1];
960
33586577
        confl = reason(var(p));
961
33586577
        seen[var(p)] = 0;
962
33586577
        pathC--;
963
964
33586577
        if (pathC > 0 && confl != CRef_Undef && needProof())
965
        {
966
292975
          d_pfManager->addResolutionStep(ca[confl], p);
967
        }
968
969
33586577
    } while (pathC > 0);
970
295242
    out_learnt[0] = ~p;
971
295242
    if (Debug.isOn("newproof::sat"))
972
    {
973
      Debug("newproof::sat") << "finished with learnt clause ";
974
      for (unsigned i = 0, size = out_learnt.size(); i < size; ++i)
975
      {
976
        prop::SatLiteral satLit = toSatLiteral<Minisat::Solver>(out_learnt[i]);
977
        Debug("newproof::sat") << satLit << " ";
978
      }
979
      Debug("newproof::sat") << "\n";
980
    }
981
982
    // Simplify conflict clause:
983
    int i, j;
984
295242
    out_learnt.copyTo(analyze_toclear);
985
295242
    if (ccmin_mode == 2){
986
295242
        uint32_t abstract_level = 0;
987
26876308
        for (i = 1; i < out_learnt.size(); i++)
988
26581066
            abstract_level |= abstractLevel(var(out_learnt[i])); // (maintain an abstraction of levels involved in conflict)
989
990
26876308
        for (i = j = 1; i < out_learnt.size(); i++) {
991
26581066
            if (reason(var(out_learnt[i])) == CRef_Undef) {
992
4527191
                out_learnt[j++] = out_learnt[i];
993
            } else {
994
              // Check if the literal is redundant
995
22053875
              if (!litRedundant(out_learnt[i], abstract_level)) {
996
                // Literal is not redundant
997
19767864
                out_learnt[j++] = out_learnt[i];
998
              } else {
999
2286011
                if (needProof())
1000
                {
1001
71900
                  Debug("newproof::sat")
1002
35950
                      << "Solver::analyze: redundant lit "
1003
35950
                      << toSatLiteral<Minisat::Solver>(out_learnt[i]) << "\n";
1004
35950
                  d_pfManager->addResolutionStep(out_learnt[i], true);
1005
                }
1006
                // Literal is redundant, to be safe, mark the level as current assertion level
1007
                // TODO: maybe optimize
1008
2286011
                max_resolution_level = std::max(max_resolution_level, user_level(var(out_learnt[i])));
1009
              }
1010
            }
1011
        }
1012
1013
    }else if (ccmin_mode == 1){
1014
        Unreachable();
1015
        for (i = j = 1; i < out_learnt.size(); i++){
1016
            Var x = var(out_learnt[i]);
1017
1018
            if (reason(x) == CRef_Undef)
1019
                out_learnt[j++] = out_learnt[i];
1020
            else{
1021
                Clause& c = ca[reason(var(out_learnt[i]))];
1022
                for (int k = 1; k < c.size(); k++)
1023
                    if (!seen[var(c[k])] && level(var(c[k])) > 0){
1024
                        out_learnt[j++] = out_learnt[i];
1025
                        break; }
1026
            }
1027
        }
1028
    }else
1029
        i = j = out_learnt.size();
1030
1031
295242
    max_literals += out_learnt.size();
1032
295242
    out_learnt.shrink(i - j);
1033
295242
    tot_literals += out_learnt.size();
1034
1035
    // Find correct backtrack level:
1036
    //
1037
295242
    if (out_learnt.size() == 1)
1038
6122
        out_btlevel = 0;
1039
    else{
1040
289120
        int max_i = 1;
1041
        // Find the first literal assigned at the next-highest level:
1042
24295055
        for (int k = 2; k < out_learnt.size(); k++)
1043
24005935
          if (level(var(out_learnt[k])) > level(var(out_learnt[max_i])))
1044
659702
            max_i = k;
1045
        // Swap-in this literal at index 1:
1046
289120
        Lit p2 = out_learnt[max_i];
1047
289120
        out_learnt[max_i] = out_learnt[1];
1048
289120
        out_learnt[1] = p2;
1049
289120
        out_btlevel = level(var(p2));
1050
    }
1051
1052
29450317
    for (int k = 0; k < analyze_toclear.size(); k++)
1053
29155075
      seen[var(analyze_toclear[k])] = 0;  // ('seen[]' is now cleared)
1054
1055
    // Return the maximal resolution level
1056
295242
    return max_resolution_level;
1057
}
1058
1059
1060
// Check if 'p' can be removed. 'abstract_levels' is used to abort early if the algorithm is
1061
// visiting literals at levels that cannot be removed later.
1062
22053875
bool Solver::litRedundant(Lit p, uint32_t abstract_levels)
1063
{
1064
22053875
    analyze_stack.clear(); analyze_stack.push(p);
1065
22053875
    int top = analyze_toclear.size();
1066
59429731
    while (analyze_stack.size() > 0){
1067
38455792
        CRef c_reason = reason(var(analyze_stack.last()));
1068
38455792
        Assert(c_reason != CRef_Undef);
1069
38455792
        Clause& c = ca[c_reason];
1070
38455792
        int c_size = c.size();
1071
38455792
        analyze_stack.pop();
1072
1073
        // Since calling reason might relocate to resize, c is not necesserily the right reference, we must
1074
        // use the allocator each time
1075
148710142
        for (int i = 1; i < c_size; i++){
1076
130022214
          Lit p2 = ca[c_reason][i];
1077
130022214
          if (!seen[var(p2)] && level(var(p2)) > 0)
1078
          {
1079
141448222
            if (reason(var(p2)) != CRef_Undef
1080
70724111
                && (abstractLevel(var(p2)) & abstract_levels) != 0)
1081
            {
1082
50956247
              seen[var(p2)] = 1;
1083
50956247
              analyze_stack.push(p2);
1084
50956247
              analyze_toclear.push(p2);
1085
            }
1086
            else
1087
            {
1088
68445344
              for (int j = top; j < analyze_toclear.size(); j++)
1089
48677480
                seen[var(analyze_toclear[j])] = 0;
1090
19767864
              analyze_toclear.shrink(analyze_toclear.size() - top);
1091
19767864
              return false;
1092
            }
1093
          }
1094
        }
1095
    }
1096
1097
2286011
    return true;
1098
}
1099
1100
1101
/*_________________________________________________________________________________________________
1102
|
1103
|  analyzeFinal : (p : Lit)  ->  [void]
1104
|
1105
|  Description:
1106
|    Specialized analysis procedure to express the final conflict in terms of assumptions.
1107
|    Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
1108
|    stores the result in 'out_conflict'.
1109
|________________________________________________________________________________________________@*/
1110
2736
void Solver::analyzeFinal(Lit p, vec<Lit>& out_conflict)
1111
{
1112
2736
    out_conflict.clear();
1113
2736
    out_conflict.push(p);
1114
1115
2736
    if (decisionLevel() == 0)
1116
918
        return;
1117
1118
1818
    seen[var(p)] = 1;
1119
1120
132558
    for (int i = trail.size()-1; i >= trail_lim[0]; i--){
1121
130740
        Var x = var(trail[i]);
1122
130740
        if (seen[x]){
1123
28712
            if (reason(x) == CRef_Undef){
1124
10592
              Assert(level(x) > 0);
1125
10592
              out_conflict.push(~trail[i]);
1126
            }else{
1127
18120
                Clause& c = ca[reason(x)];
1128
57697
                for (int j = 1; j < c.size(); j++)
1129
39577
                    if (level(var(c[j])) > 0)
1130
38534
                        seen[var(c[j])] = 1;
1131
            }
1132
28712
            seen[x] = 0;
1133
        }
1134
    }
1135
1136
1818
    seen[var(p)] = 0;
1137
}
1138
1139
116344068
void Solver::uncheckedEnqueue(Lit p, CRef from)
1140
{
1141
116344068
  if (Debug.isOn("minisat"))
1142
  {
1143
    Debug("minisat") << "unchecked enqueue of " << p << " ("
1144
                     << trail_index(var(p)) << ") trail size is "
1145
                     << trail.size() << " cap is " << trail.capacity()
1146
                     << ", reason is " << from << ", ";
1147
    if (from == CRef_Lazy)
1148
    {
1149
      Debug("minisat") << "CRef_Lazy";
1150
    }
1151
    else if (from == CRef_Undef)
1152
    {
1153
      Debug("minisat") << "CRef_Undef";
1154
    }
1155
    else
1156
    {
1157
      for (unsigned i = 0, size = ca[from].size(); i < size; ++i)
1158
      {
1159
        Debug("minisat") << ca[from][i] << " ";
1160
      }
1161
    }
1162
    Debug("minisat") << "\n";
1163
  }
1164
116344068
  Assert(value(p) == l_Undef);
1165
116344068
  Assert(var(p) < nVars());
1166
116344068
  assigns[var(p)] = lbool(!sign(p));
1167
116344068
  vardata[var(p)] = VarData(
1168
      from, decisionLevel(), assertionLevel, intro_level(var(p)), trail.size());
1169
116344068
  trail.push_(p);
1170
116344068
  if (theory[var(p)])
1171
  {
1172
    // Enqueue to the theory
1173
16452978
    d_proxy->enqueueTheoryLiteral(MinisatSatSolver::toSatLiteral(p));
1174
  }
1175
116344068
}
1176
1177
3509650
CRef Solver::propagate(TheoryCheckType type)
1178
{
1179
3509650
    CRef confl = CRef_Undef;
1180
3509650
    recheck = false;
1181
3509650
    theoryConflict = false;
1182
1183
7019300
    ScopedBool scoped_bool(minisat_busy, true);
1184
1185
    // Add lemmas that we're left behind
1186
3509650
    if (lemmas.size() > 0) {
1187
145
      confl = updateLemmas();
1188
145
      if (confl != CRef_Undef) {
1189
        return confl;
1190
      }
1191
    }
1192
1193
    // If this is the final check, no need for Boolean propagation and
1194
    // theory propagation
1195
3509650
    if (type == CHECK_FINAL) {
1196
      // Do the theory check
1197
77603
      theoryCheck(cvc5::theory::Theory::EFFORT_FULL);
1198
      // Pick up the theory propagated literals (there could be some,
1199
      // if new lemmas are added)
1200
77592
      propagateTheory();
1201
      // If there are lemmas (or conflicts) update them
1202
77592
      if (lemmas.size() > 0) {
1203
60945
        recheck = true;
1204
60945
        confl = updateLemmas();
1205
60945
        return confl;
1206
      } else {
1207
16647
        recheck = d_proxy->theoryNeedCheck();
1208
16647
        return confl;
1209
      }
1210
    }
1211
1212
    // Keep running until we have checked everything, we
1213
    // have no conflict and no new literals have been asserted
1214
906251
    do {
1215
        // Propagate on the clauses
1216
4338298
        confl = propagateBool();
1217
        // If no conflict, do the theory check
1218
4338298
        if (confl == CRef_Undef && type != CHECK_WITHOUT_THEORY) {
1219
            // Do the theory check
1220
3960082
            if (type == CHECK_FINAL_FAKE) {
1221
              theoryCheck(cvc5::theory::Theory::EFFORT_FULL);
1222
            } else {
1223
3960082
              theoryCheck(cvc5::theory::Theory::EFFORT_STANDARD);
1224
            }
1225
            // Pick up the theory propagated literals
1226
3960079
            propagateTheory();
1227
            // If there are lemmas (or conflicts) update them
1228
7920158
            if (lemmas.size() > 0) {
1229
196701
              confl = updateLemmas();
1230
            }
1231
        } else {
1232
          // if dumping decision tree, print the conflict
1233
378216
          if (Trace.isOn("dtview::conflict"))
1234
          {
1235
            if (confl != CRef_Undef)
1236
            {
1237
              dtviewPropConflictHelper(decisionLevel(), ca[confl], d_proxy);
1238
            }
1239
          }
1240
          // Even though in conflict, we still need to discharge the lemmas
1241
378216
          if (lemmas.size() > 0) {
1242
            // Remember the trail size
1243
            int oldLevel = decisionLevel();
1244
            // Update the lemmas
1245
            CRef lemmaConflict = updateLemmas();
1246
            // If we get a conflict, we prefer it since it's earlier in the trail
1247
            if (lemmaConflict != CRef_Undef) {
1248
              // Lemma conflict takes precedence, since it's earlier in the trail
1249
              confl = lemmaConflict;
1250
            } else {
1251
              // Otherwise, the Boolean conflict is canceled in the case we popped the trail
1252
              if (oldLevel > decisionLevel()) {
1253
                confl = CRef_Undef;
1254
              }
1255
            }
1256
          }
1257
        }
1258
4338295
    } while (confl == CRef_Undef && qhead < trail.size());
1259
3432044
    return confl;
1260
}
1261
1262
4037671
void Solver::propagateTheory() {
1263
8075342
  SatClause propagatedLiteralsClause;
1264
  // Doesn't actually call propagate(); that's done in theoryCheck() now that combination
1265
  // is online.  This just incorporates those propagations previously discovered.
1266
4037671
  d_proxy->theoryPropagate(propagatedLiteralsClause);
1267
1268
8075342
  vec<Lit> propagatedLiterals;
1269
4037671
  MinisatSatSolver::toMinisatClause(propagatedLiteralsClause, propagatedLiterals);
1270
1271
4037671
  int oldTrailSize = trail.size();
1272
4037671
  Debug("minisat") << "old trail size is " << oldTrailSize << ", propagating " << propagatedLiterals.size() << " lits..." << std::endl;
1273
10529532
  for (unsigned i = 0, i_end = propagatedLiterals.size(); i < i_end; ++ i) {
1274
6491861
    Debug("minisat") << "Theory propagated: " << propagatedLiterals[i] << std::endl;
1275
    // multiple theories can propagate the same literal
1276
6491861
    Lit p = propagatedLiterals[i];
1277
6491861
    if (value(p) == l_Undef) {
1278
3102892
      uncheckedEnqueue(p, CRef_Lazy);
1279
    } else {
1280
3388969
      if (value(p) == l_False) {
1281
72449
        Debug("minisat") << "Conflict in theory propagation" << std::endl;
1282
144898
        SatClause explanation_cl;
1283
72449
        d_proxy->explainPropagation(MinisatSatSolver::toSatLiteral(p),
1284
                                    explanation_cl);
1285
144898
        vec<Lit> explanation;
1286
72449
        MinisatSatSolver::toMinisatClause(explanation_cl, explanation);
1287
        ClauseId id; // FIXME: mark it as explanation here somehow?
1288
72449
        addClause(explanation, true, id);
1289
      }
1290
    }
1291
  }
1292
4037671
}
1293
1294
/*_________________________________________________________________________________________________
1295
|
1296
|  theoryCheck: [void]  ->  [Clause*]
1297
|
1298
|  Description:
1299
|    Checks all enqueued theory facts for satisfiability. If a conflict arises, the conflicting
1300
|    clause is returned, otherwise NULL.
1301
|
1302
|    Note: the propagation queue might be NOT empty
1303
|________________________________________________________________________________________________@*/
1304
4037685
void Solver::theoryCheck(cvc5::theory::Theory::Effort effort)
1305
{
1306
4037685
  d_proxy->theoryCheck(effort);
1307
4037671
}
1308
1309
/*_________________________________________________________________________________________________
1310
|
1311
|  propagateBool : [void]  ->  [Clause*]
1312
|
1313
|  Description:
1314
|    Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
1315
|    otherwise CRef_Undef.
1316
|
1317
|    Post-conditions:
1318
|      * the propagation queue is empty, even if there was a conflict.
1319
|________________________________________________________________________________________________@*/
1320
4338298
CRef Solver::propagateBool()
1321
{
1322
4338298
    CRef    confl     = CRef_Undef;
1323
4338298
    int     num_props = 0;
1324
4338298
    watches.cleanAll();
1325
1326
225604746
    while (qhead < trail.size()){
1327
110633224
        Lit            p   = trail[qhead++];     // 'p' is enqueued fact to propagate.
1328
110633224
        vec<Watcher>&  ws  = watches[p];
1329
        Watcher        *i, *j, *end;
1330
110633224
        num_props++;
1331
1332
        // if propagation tracing enabled, print boolean propagation
1333
110633224
        if (Trace.isOn("dtview::prop"))
1334
        {
1335
          dtviewBoolPropagationHelper(decisionLevel(), p, d_proxy);
1336
        }
1337
1338
909449517
        for (i = j = (Watcher*)ws, end = i + ws.size();  i != end;){
1339
            // Try to avoid inspecting the clause:
1340
798816293
            Lit blocker = i->blocker;
1341
1300145279
            if (value(blocker) == l_True){
1342
1529886459
                *j++ = *i++; continue; }
1343
1344
            // Make sure the false literal is data[1]:
1345
297487307
            CRef     cr        = i->cref;
1346
297487307
            Clause&  c         = ca[cr];
1347
297487307
            Lit      false_lit = ~p;
1348
297487307
            if (c[0] == false_lit)
1349
85535611
                c[0] = c[1], c[1] = false_lit;
1350
297487307
            Assert(c[1] == false_lit);
1351
297487307
            i++;
1352
1353
            // If 0th watch is true, then clause is already satisfied.
1354
297487307
            Lit     first = c[0];
1355
297487307
            Watcher w     = Watcher(cr, first);
1356
323386808
            if (first != blocker && value(first) == l_True){
1357
51799002
                *j++ = w; continue; }
1358
1359
            // Look for new watch:
1360
271587806
            Assert(c.size() >= 2);
1361
1257201115
            for (int k = 2; k < c.size(); k++)
1362
1147331265
                if (value(c[k]) != l_False){
1363
161717956
                    c[1] = c[k]; c[k] = false_lit;
1364
161717956
                    watches[~c[1]].push(w);
1365
161717956
                    goto NextClause; }
1366
1367
            // Did not find watch -- clause is unit under assignment:
1368
109869850
            *j++ = w;
1369
109869850
            if (value(first) == l_False){
1370
243591
                confl = cr;
1371
243591
                qhead = trail.size();
1372
                // Copy the remaining watches:
1373
6031403
                while (i < end)
1374
2893906
                    *j++ = *i++;
1375
            }else
1376
109626259
                uncheckedEnqueue(first, cr);
1377
1378
271587806
        NextClause:;
1379
        }
1380
110633224
        ws.shrink(i - j);
1381
    }
1382
4338298
    propagations += num_props;
1383
4338298
    simpDB_props -= num_props;
1384
1385
4338298
    return confl;
1386
}
1387
1388
1389
/*_________________________________________________________________________________________________
1390
|
1391
|  reduceDB : ()  ->  [void]
1392
|
1393
|  Description:
1394
|    Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
1395
|    clauses are clauses that are reason to some assignment. Binary clauses are never removed.
1396
|________________________________________________________________________________________________@*/
1397
struct reduceDB_lt {
1398
    ClauseAllocator& ca;
1399
3710
    reduceDB_lt(ClauseAllocator& ca_) : ca(ca_) {}
1400
4767111
    bool operator () (CRef x, CRef y) {
1401
4767111
        return ca[x].size() > 2 && (ca[y].size() == 2 || ca[x].activity() < ca[y].activity()); }
1402
};
1403
3710
void Solver::reduceDB()
1404
{
1405
    int     i, j;
1406
3710
    double  extra_lim = cla_inc / clauses_removable.size();    // Remove any clause below this activity
1407
1408
3710
    sort(clauses_removable, reduceDB_lt(ca));
1409
    // Don't delete binary or locked clauses. From the rest, delete clauses from the first half
1410
    // and clauses with activity smaller than 'extra_lim':
1411
446866
    for (i = j = 0; i < clauses_removable.size(); i++){
1412
443156
        Clause& c = ca[clauses_removable[i]];
1413
443156
        if (c.size() > 2 && !locked(c) && (i < clauses_removable.size() / 2 || c.activity() < extra_lim))
1414
194295
            removeClause(clauses_removable[i]);
1415
        else
1416
248861
            clauses_removable[j++] = clauses_removable[i];
1417
    }
1418
3710
    clauses_removable.shrink(i - j);
1419
3710
    checkGarbage();
1420
3710
}
1421
1422
1423
18266
void Solver::removeSatisfied(vec<CRef>& cs)
1424
{
1425
    int i, j;
1426
479745
    for (i = j = 0; i < cs.size(); i++){
1427
461479
        Clause& c = ca[cs[i]];
1428
461479
        if (satisfied(c)) {
1429
45340
          removeClause(cs[i]);
1430
        }
1431
        else
1432
        {
1433
416139
          cs[j++] = cs[i];
1434
        }
1435
    }
1436
18266
    cs.shrink(i - j);
1437
18266
}
1438
1439
9738
void Solver::removeClausesAboveLevel(vec<CRef>& cs, int level)
1440
{
1441
    int i, j;
1442
835057
    for (i = j = 0; i < cs.size(); i++){
1443
825319
        Clause& c = ca[cs[i]];
1444
825319
        if (c.level() > level) {
1445
248387
          Assert(!locked(c));
1446
248387
          removeClause(cs[i]);
1447
        } else {
1448
576932
            cs[j++] = cs[i];
1449
        }
1450
    }
1451
9738
    cs.shrink(i - j);
1452
9738
}
1453
1454
18266
void Solver::rebuildOrderHeap()
1455
{
1456
36532
    vec<Var> vs;
1457
2866633
    for (Var v = 0; v < nVars(); v++)
1458
2848367
        if (decision[v] && value(v) == l_Undef)
1459
2162897
            vs.push(v);
1460
18266
    order_heap.build(vs);
1461
18266
}
1462
1463
1464
/*_________________________________________________________________________________________________
1465
|
1466
|  simplify : [void]  ->  [bool]
1467
|
1468
|  Description:
1469
|    Simplify the clause database according to the current top-level assigment. Currently, the only
1470
|    thing done here is the removal of satisfied clauses, but more things can be put here.
1471
|________________________________________________________________________________________________@*/
1472
45789
bool Solver::simplify()
1473
{
1474
45789
  Assert(decisionLevel() == 0);
1475
1476
45789
  if (!ok || propagate(CHECK_WITHOUT_THEORY) != CRef_Undef) return ok = false;
1477
1478
45570
  if (nAssigns() == simpDB_assigns || (simpDB_props > 0)) return true;
1479
1480
  // Remove satisfied clauses:
1481
18266
  removeSatisfied(clauses_removable);
1482
18266
  if (remove_satisfied)  // Can be turned off.
1483
    removeSatisfied(clauses_persistent);
1484
18266
  checkGarbage();
1485
18266
  rebuildOrderHeap();
1486
1487
18266
  simpDB_assigns = nAssigns();
1488
18266
  simpDB_props =
1489
18266
      clauses_literals + learnts_literals;  // (shouldn't depend on stats
1490
                                            // really, but it will do for now)
1491
1492
18266
  return true;
1493
}
1494
1495
1496
/*_________________________________________________________________________________________________
1497
|
1498
|  search : (nof_conflicts : int) (params : const SearchParams&)  ->  [lbool]
1499
|
1500
|  Description:
1501
|    Search for a model the specified number of conflicts.
1502
|    NOTE! Use negative value for 'nof_conflicts' indicate infinity.
1503
|
1504
|  Output:
1505
|    'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If
1506
|    all variables are decision variables, this means that the clause set is satisfiable. 'l_False'
1507
|    if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached.
1508
|________________________________________________________________________________________________@*/
1509
16277
lbool Solver::search(int nof_conflicts)
1510
{
1511
16277
  Assert(ok);
1512
  int backtrack_level;
1513
16277
  int conflictC = 0;
1514
32554
  vec<Lit> learnt_clause;
1515
16277
  starts++;
1516
1517
16277
  TheoryCheckType check_type = CHECK_WITH_THEORY;
1518
  for (;;)
1519
  {
1520
    // Propagate and call the theory solvers
1521
3374984
    CRef confl = propagate(check_type);
1522
3374970
    Assert(lemmas.size() == 0);
1523
1524
3374970
    if (confl != CRef_Undef)
1525
    {
1526
298633
      conflicts++;
1527
298633
      conflictC++;
1528
1529
298633
      if (decisionLevel() == 0)
1530
      {
1531
3391
        if (needProof())
1532
        {
1533
859
          if (confl == CRef_Lazy)
1534
          {
1535
48
            d_pfManager->finalizeProof();
1536
          }
1537
          else
1538
          {
1539
811
            d_pfManager->finalizeProof(ca[confl]);
1540
          }
1541
        }
1542
3391
        return l_False;
1543
      }
1544
1545
      // Analyze the conflict
1546
295242
      learnt_clause.clear();
1547
295242
      int max_level = analyze(confl, learnt_clause, backtrack_level);
1548
295242
      cancelUntil(backtrack_level);
1549
1550
      // Assert the conflict clause and the asserting literal
1551
295242
      if (learnt_clause.size() == 1)
1552
      {
1553
6122
        uncheckedEnqueue(learnt_clause[0]);
1554
6122
        if (needProof())
1555
        {
1556
1541
          d_pfManager->endResChain(learnt_clause[0]);
1557
        }
1558
      }
1559
      else
1560
      {
1561
289120
        CRef cr = ca.alloc(assertionLevelOnly() ? assertionLevel : max_level,
1562
                           learnt_clause,
1563
289120
                           true);
1564
289120
        clauses_removable.push(cr);
1565
289120
        attachClause(cr);
1566
289120
        claBumpActivity(ca[cr]);
1567
289120
        uncheckedEnqueue(learnt_clause[0], cr);
1568
289120
        if (needProof())
1569
        {
1570
21020
          d_pfManager->endResChain(ca[cr]);
1571
        }
1572
      }
1573
1574
295242
      varDecayActivity();
1575
295242
      claDecayActivity();
1576
1577
295242
      if (--learntsize_adjust_cnt == 0)
1578
      {
1579
560
        learntsize_adjust_confl *= learntsize_adjust_inc;
1580
560
        learntsize_adjust_cnt = (int)learntsize_adjust_confl;
1581
560
        max_learnts *= learntsize_inc;
1582
1583
560
        if (verbosity >= 1)
1584
          printf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |\n",
1585
                 (int)conflicts,
1586
                 (int)dec_vars
1587
                     - (trail_lim.size() == 0 ? trail.size() : trail_lim[0]),
1588
                 nClauses(),
1589
                 (int)clauses_literals,
1590
                 (int)max_learnts,
1591
                 nLearnts(),
1592
                 (double)learnts_literals / nLearnts(),
1593
                 progressEstimate() * 100);
1594
      }
1595
1596
295242
      if (theoryConflict && options::sat_refine_conflicts())
1597
      {
1598
        check_type = CHECK_FINAL_FAKE;
1599
      }
1600
      else
1601
      {
1602
295242
        check_type = CHECK_WITH_THEORY;
1603
      }
1604
    }
1605
    else
1606
    {
1607
      // If this was a final check, we are satisfiable
1608
3076337
      if (check_type == CHECK_FINAL)
1609
      {
1610
        // Note that we are done making decisions when there are no pending decisions
1611
        // on assumptions, and the decision engine indicates it is done.
1612
68095
        bool decisionEngineDone = (decisionLevel() >= assumptions.size())
1613
68095
                                  && d_proxy->isDecisionEngineDone();
1614
        // Unless a lemma has added more stuff to the queues
1615
190588
        if (!decisionEngineDone
1616
68095
            && (!order_heap.empty() || qhead < trail.size()))
1617
        {
1618
54398
          check_type = CHECK_WITH_THEORY;
1619
186399
          continue;
1620
        }
1621
13697
        else if (recheck)
1622
        {
1623
          // There some additional stuff added, so we go for another
1624
          // full-check
1625
6194
          continue;
1626
        }
1627
        else
1628
        {
1629
          // Yes, we're truly satisfiable
1630
7503
          return l_True;
1631
        }
1632
      }
1633
3008242
      else if (check_type == CHECK_FINAL_FAKE)
1634
      {
1635
        check_type = CHECK_WITH_THEORY;
1636
      }
1637
1638
6016484
      if ((nof_conflicts >= 0 && conflictC >= nof_conflicts)
1639
6013853
          || !withinBudget(Resource::SatConflictStep))
1640
      {
1641
        // Reached bound on number of conflicts:
1642
2631
        progress_estimate = progressEstimate();
1643
2631
        cancelUntil(0);
1644
        // [mdeters] notify theory engine of restarts for deferred
1645
        // theory processing
1646
2631
        d_proxy->notifyRestart();
1647
2631
        return l_Undef;
1648
      }
1649
1650
      // Simplify the set of problem clauses:
1651
3005611
      if (decisionLevel() == 0 && !simplify())
1652
      {
1653
        return l_False;
1654
      }
1655
1656
3005611
      if (clauses_removable.size() - nAssigns() >= max_learnts)
1657
      {
1658
        // Reduce the set of learnt clauses:
1659
3710
        reduceDB();
1660
      }
1661
1662
3005611
      Lit next = lit_Undef;
1663
3064771
      while (decisionLevel() < assumptions.size())
1664
      {
1665
        // Perform user provided assumption:
1666
352181
        Lit p = assumptions[decisionLevel()];
1667
352181
        if (value(p) == l_True)
1668
        {
1669
          // Dummy decision level:
1670
29580
          newDecisionLevel();
1671
        }
1672
322601
        else if (value(p) == l_False)
1673
        {
1674
2736
          analyzeFinal(~p, d_conflict);
1675
2736
          return l_False;
1676
        }
1677
        else
1678
        {
1679
319865
          next = p;
1680
319865
          break;
1681
        }
1682
      }
1683
1684
3002875
      if (next == lit_Undef)
1685
      {
1686
        // New variable decision:
1687
2683010
        next = pickBranchLit();
1688
1689
2754417
        if (next == lit_Undef)
1690
        {
1691
          // We need to do a full theory check to confirm
1692
142818
          Debug("minisat::search")
1693
71409
              << "Doing a full theory check..." << std::endl;
1694
71409
          check_type = CHECK_FINAL;
1695
71409
          continue;
1696
        }
1697
      }
1698
1699
      // Increase decision level and enqueue 'next'
1700
2931464
      newDecisionLevel();
1701
2931464
      uncheckedEnqueue(next);
1702
    }
1703
3358707
  }
1704
}
1705
1706
1707
2631
double Solver::progressEstimate() const
1708
{
1709
2631
    double  progress = 0;
1710
2631
    double  F = 1.0 / nVars();
1711
1712
191419
    for (int i = 0; i <= decisionLevel(); i++){
1713
188788
        int beg = i == 0 ? 0 : trail_lim[i - 1];
1714
188788
        int end = i == decisionLevel() ? trail.size() : trail_lim[i];
1715
188788
        progress += pow(F, i) * (end - beg);
1716
    }
1717
1718
2631
    return progress / nVars();
1719
}
1720
1721
/*
1722
  Finite subsequences of the Luby-sequence:
1723
1724
  0: 1
1725
  1: 1 1 2
1726
  2: 1 1 2 1 1 2 4
1727
  3: 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8
1728
  ...
1729
1730
1731
 */
1732
1733
16277
static double luby(double y, int x){
1734
1735
    // Find the finite subsequence that contains index 'x', and the
1736
    // size of that subsequence:
1737
    int size, seq;
1738
16277
    for (size = 1, seq = 0; size < x+1; seq++, size = 2*size+1);
1739
1740
27435
    while (size-1 != x){
1741
5579
        size = (size-1)>>1;
1742
5579
        seq--;
1743
5579
        x = x % size;
1744
    }
1745
1746
16277
    return pow(y, seq);
1747
}
1748
1749
// NOTE: assumptions passed in member-variable 'assumptions'.
1750
15026
lbool Solver::solve_()
1751
{
1752
15026
    Debug("minisat") << "nvars = " << nVars() << std::endl;
1753
1754
30052
    ScopedBool scoped_bool(minisat_busy, true);
1755
1756
15026
    Assert(decisionLevel() == 0);
1757
1758
15026
    model.clear();
1759
15026
    d_conflict.clear();
1760
15026
    if (!ok){
1761
1380
      minisat_busy = false;
1762
1380
      return l_False;
1763
    }
1764
1765
13646
    solves++;
1766
1767
13646
    max_learnts               = nClauses() * learntsize_factor;
1768
13646
    learntsize_adjust_confl   = learntsize_adjust_start_confl;
1769
13646
    learntsize_adjust_cnt     = (int)learntsize_adjust_confl;
1770
13646
    lbool   status            = l_Undef;
1771
1772
13646
    if (verbosity >= 1){
1773
1
        printf("============================[ Search Statistics ]==============================\n");
1774
1
        printf("| Conflicts |          ORIGINAL         |          LEARNT          | Progress |\n");
1775
1
        printf("|           |    Vars  Clauses Literals |    Limit  Clauses Lit/Cl |          |\n");
1776
1
        printf("===============================================================================\n");
1777
    }
1778
1779
    // Search:
1780
13646
    int curr_restarts = 0;
1781
46168
    while (status == l_Undef){
1782
16277
        double rest_base = luby_restart ? luby(restart_inc, curr_restarts) : pow(restart_inc, curr_restarts);
1783
16277
        status = search(rest_base * restart_first);
1784
16261
        if (!withinBudget(Resource::SatConflictStep))
1785
          break;  // FIXME add restart option?
1786
16261
        curr_restarts++;
1787
    }
1788
1789
13630
    if (!withinBudget(Resource::SatConflictStep))
1790
      status = l_Undef;
1791
1792
13630
    if (verbosity >= 1)
1793
1
        printf("===============================================================================\n");
1794
1795
1796
13630
    if (status == l_True){
1797
        // Extend & copy model:
1798
7503
        model.growTo(nVars());
1799
627506
        for (int i = 0; i < nVars(); i++) {
1800
620003
          model[i] = value(i);
1801
620003
          Debug("minisat") << i << " = " << model[i] << std::endl;
1802
        }
1803
    }
1804
6127
    else if (status == l_False && d_conflict.size() == 0)
1805
3391
      ok = false;
1806
1807
13630
    return status;
1808
}
1809
1810
//=================================================================================================
1811
// Writing CNF to DIMACS:
1812
//
1813
// FIXME: this needs to be rewritten completely.
1814
1815
static Var mapVar(Var x, vec<Var>& map, Var& max)
1816
{
1817
    if (map.size() <= x || map[x] == -1){
1818
        map.growTo(x+1, -1);
1819
        map[x] = max++;
1820
    }
1821
    return map[x];
1822
}
1823
1824
1825
void Solver::toDimacs(FILE* f, Clause& c, vec<Var>& map, Var& max)
1826
{
1827
    if (satisfied(c)) return;
1828
1829
    for (int i = 0; i < c.size(); i++)
1830
        if (value(c[i]) != l_False)
1831
            fprintf(f, "%s%d ", sign(c[i]) ? "-" : "", mapVar(var(c[i]), map, max)+1);
1832
    fprintf(f, "0\n");
1833
}
1834
1835
1836
void Solver::toDimacs(const char *file, const vec<Lit>& assumps)
1837
{
1838
    FILE* f = fopen(file, "wr");
1839
    if (f == NULL)
1840
        fprintf(stderr, "could not open file %s\n", file), exit(1);
1841
    toDimacs(f, assumps);
1842
    fclose(f);
1843
}
1844
1845
1846
void Solver::toDimacs(FILE* f, const vec<Lit>& assumps)
1847
{
1848
    // Handle case when solver is in contradictory state:
1849
    if (!ok){
1850
        fprintf(f, "p cnf 1 2\n1 0\n-1 0\n");
1851
        return; }
1852
1853
    vec<Var> map; Var max = 0;
1854
1855
    // Cannot use removeClauses here because it is not safe
1856
    // to deallocate them at this point. Could be improved.
1857
    int cnt = 0;
1858
    for (int i = 0; i < clauses_persistent.size(); i++)
1859
        if (!satisfied(ca[clauses_persistent[i]]))
1860
            cnt++;
1861
1862
    for (int i = 0; i < clauses_persistent.size(); i++)
1863
        if (!satisfied(ca[clauses_persistent[i]])){
1864
            Clause& c = ca[clauses_persistent[i]];
1865
            for (int j = 0; j < c.size(); j++)
1866
                if (value(c[j]) != l_False)
1867
                    mapVar(var(c[j]), map, max);
1868
        }
1869
1870
    // Assumptions are added as unit clauses:
1871
    cnt += assumptions.size();
1872
1873
    fprintf(f, "p cnf %d %d\n", max, cnt);
1874
1875
    for (int i = 0; i < assumptions.size(); i++){
1876
      Assert(value(assumptions[i]) != l_False);
1877
      fprintf(f,
1878
              "%s%d 0\n",
1879
              sign(assumptions[i]) ? "-" : "",
1880
              mapVar(var(assumptions[i]), map, max) + 1);
1881
    }
1882
1883
    for (int i = 0; i < clauses_persistent.size(); i++)
1884
        toDimacs(f, ca[clauses_persistent[i]], map, max);
1885
1886
    if (verbosity > 0)
1887
        printf("Wrote %d clauses with %d variables.\n", cnt, max);
1888
}
1889
1890
1891
//=================================================================================================
1892
// Garbage Collection methods:
1893
1894
2818
void Solver::relocAll(ClauseAllocator& to)
1895
{
1896
    // All watchers:
1897
    //
1898
    // for (int i = 0; i < watches.size(); i++)
1899
2818
    watches.cleanAll();
1900
865502
    for (int v = 0; v < nVars(); v++)
1901
2588052
        for (int s = 0; s < 2; s++){
1902
1725368
            Lit p = mkLit(v, s);
1903
            // printf(" >>> RELOCING: %s%d\n", sign(p)?"-":"", var(p)+1);
1904
1725368
            vec<Watcher>& ws = watches[p];
1905
5375678
            for (int j = 0; j < ws.size(); j++)
1906
            {
1907
3650310
              ca.reloc(ws[j].cref, to);
1908
            }
1909
        }
1910
1911
    // All reasons:
1912
    //
1913
182768
    for (int i = 0; i < trail.size(); i++){
1914
179950
        Var v = var(trail[i]);
1915
1916
359900
        if (hasReasonClause(v)
1917
179950
            && (ca[reason(v)].reloced() || locked(ca[reason(v)])))
1918
        {
1919
38501
          ca.reloc(vardata[v].d_reason, to);
1920
        }
1921
    }
1922
    // All learnt:
1923
    //
1924
185795
    for (int i = 0; i < clauses_removable.size(); i++)
1925
    {
1926
182977
      ca.reloc(clauses_removable[i], to);
1927
    }
1928
    // All original:
1929
    //
1930
1644996
    for (int i = 0; i < clauses_persistent.size(); i++)
1931
    {
1932
1642178
      ca.reloc(clauses_persistent[i], to);
1933
    }
1934
2818
}
1935
1936
1937
void Solver::garbageCollect()
1938
{
1939
    // Initialize the next region to a size corresponding to the estimated utilization degree. This
1940
    // is not precise but should avoid some unnecessary reallocations for the new region:
1941
    ClauseAllocator to(ca.size() - ca.wasted());
1942
1943
    relocAll(to);
1944
    if (verbosity >= 2)
1945
        printf("|  Garbage collection:   %12d bytes => %12d bytes             |\n",
1946
               ca.size()*ClauseAllocator::Unit_Size, to.size()*ClauseAllocator::Unit_Size);
1947
    to.moveTo(ca);
1948
}
1949
1950
4869
void Solver::push()
1951
{
1952
4869
  Assert(d_enable_incremental);
1953
4869
  Assert(decisionLevel() == 0);
1954
1955
4869
  ++assertionLevel;
1956
4869
  Debug("minisat") << "in user push, increasing assertion level to " << assertionLevel << std::endl;
1957
4869
  trail_ok.push(ok);
1958
4869
  assigns_lim.push(assigns.size());
1959
1960
4869
  d_context->push();  // SAT context for cvc5
1961
1962
4869
  Debug("minisat") << "MINISAT PUSH assertionLevel is " << assertionLevel << ", trail.size is " << trail.size() << std::endl;
1963
4869
}
1964
1965
4869
void Solver::pop()
1966
{
1967
4869
  Assert(d_enable_incremental);
1968
1969
4869
  Assert(decisionLevel() == 0);
1970
1971
  // Pop the trail below the user level
1972
4869
  --assertionLevel;
1973
9738
  Debug("minisat") << "in user pop, decreasing assertion level to "
1974
4869
                   << assertionLevel << "\n"
1975
4869
                   << cvc5::push;
1976
  while (true) {
1977
57167
    Debug("minisat") << "== unassigning " << trail.last() << std::endl;
1978
57167
    Var      x  = var(trail.last());
1979
57167
    if (user_level(x) > assertionLevel) {
1980
52298
      assigns[x] = l_Undef;
1981
52298
      vardata[x] = VarData(CRef_Undef, -1, -1, intro_level(x), -1);
1982
52298
      if(phase_saving >= 1 && (polarity[x] & 0x2) == 0)
1983
51172
        polarity[x] = sign(trail.last());
1984
52298
      insertVarOrder(x);
1985
52298
      trail.pop();
1986
    } else {
1987
4869
      break;
1988
    }
1989
52298
  }
1990
1991
  // The head should be at the trail top
1992
4869
  qhead = trail.size();
1993
1994
  // Remove the clauses
1995
4869
  removeClausesAboveLevel(clauses_persistent, assertionLevel);
1996
4869
  removeClausesAboveLevel(clauses_removable, assertionLevel);
1997
4869
  Debug("minisat") << cvc5::pop;
1998
  // Pop the SAT context to notify everyone
1999
4869
  d_context->pop();  // SAT context for cvc5
2000
2001
9738
  Debug("minisat") << "MINISAT POP assertionLevel is " << assertionLevel
2002
4869
                   << ", trail.size is " << trail.size() << "\n";
2003
  // Pop the created variables
2004
4869
  resizeVars(assigns_lim.last());
2005
4869
  assigns_lim.pop();
2006
4869
  variables_to_register.clear();
2007
2008
  // Pop the OK
2009
4869
  ok = trail_ok.last();
2010
4869
  trail_ok.pop();
2011
4869
}
2012
2013
257791
CRef Solver::updateLemmas() {
2014
2015
257791
  Debug("minisat::lemmas") << "Solver::updateLemmas() begin" << std::endl;
2016
2017
  // Avoid adding lemmas indefinitely without resource-out
2018
257791
  d_proxy->spendResource(Resource::LemmaStep);
2019
2020
257791
  CRef conflict = CRef_Undef;
2021
2022
  // Decision level to backtrack to
2023
257791
  int backtrackLevel = decisionLevel();
2024
2025
  // We use this comparison operator
2026
257791
  lemma_lt lt(*this);
2027
2028
  // Check for propagation and level to backtrack to
2029
257791
  int i = 0;
2030
773507
  while (i < lemmas.size()) {
2031
    // We need this loop as when we backtrack, due to registration more lemmas could be added
2032
4585874
    for (; i < lemmas.size(); ++ i)
2033
    {
2034
      // The current lemma
2035
2164008
      vec<Lit>& lemma = lemmas[i];
2036
2037
2164008
      Trace("pf::sat") << "Solver::updateLemmas: working on lemma: ";
2038
8856875
      for (int k = 0; k < lemma.size(); ++k) {
2039
6692867
        Trace("pf::sat") << lemma[k] << " ";
2040
      }
2041
2164008
      Trace("pf::sat") << std::endl;
2042
2043
      // If it's an empty lemma, we have a conflict at zero level
2044
2165221
      if (lemma.size() == 0) {
2045
1213
        Assert(!options::unsatCores() && !needProof());
2046
1213
        conflict = CRef_Lazy;
2047
1213
        backtrackLevel = 0;
2048
1213
        Debug("minisat::lemmas") << "Solver::updateLemmas(): found empty clause" << std::endl;
2049
1213
        continue;
2050
      }
2051
      // Sort the lemma to be able to attach
2052
2162795
      sort(lemma, lt);
2053
      // See if the lemma propagates something
2054
2162795
      if (lemma.size() == 1 || value(lemma[1]) == l_False) {
2055
463413
        Debug("minisat::lemmas") << "found unit " << lemma.size() << std::endl;
2056
        // This lemma propagates, see which level we need to backtrack to
2057
463413
        int currentBacktrackLevel = lemma.size() == 1 ? 0 : level(var(lemma[1]));
2058
        // Even if the first literal is true, we should propagate it at this level (unless it's set at a lower level)
2059
463413
        if (value(lemma[0]) != l_True || level(var(lemma[0])) > currentBacktrackLevel) {
2060
446238
          if (currentBacktrackLevel < backtrackLevel) {
2061
151151
            backtrackLevel = currentBacktrackLevel;
2062
          }
2063
        }
2064
      }
2065
    }
2066
2067
    // Pop so that propagation would be current
2068
257858
    Debug("minisat::lemmas") << "Solver::updateLemmas(): backtracking to " << backtrackLevel << " from " << decisionLevel() << std::endl;
2069
257858
    cancelUntil(backtrackLevel);
2070
  }
2071
2072
  // Last index in the trail
2073
257791
  int backtrack_index = trail.size();
2074
2075
  // Attach all the clauses and enqueue all the propagations
2076
2421799
  for (int j = 0; j < lemmas.size(); ++j)
2077
  {
2078
    // The current lemma
2079
2164008
    vec<Lit>& lemma = lemmas[j];
2080
2164008
    bool removable = lemmas_removable[j];
2081
2082
    // Attach it if non-unit
2083
2164008
    CRef lemma_ref = CRef_Undef;
2084
2164008
    if (lemma.size() > 1) {
2085
      // If the lemmas is removable, we can compute its level by the level
2086
2099468
      int clauseLevel = assertionLevel;
2087
2099468
      if (removable && !assertionLevelOnly())
2088
      {
2089
183296
        clauseLevel = 0;
2090
1554698
        for (int k = 0; k < lemma.size(); ++k)
2091
        {
2092
1371402
          clauseLevel = std::max(clauseLevel, intro_level(var(lemma[k])));
2093
        }
2094
      }
2095
2096
2099468
      lemma_ref = ca.alloc(clauseLevel, lemma, removable);
2097
2099468
      if (removable) {
2098
191166
        clauses_removable.push(lemma_ref);
2099
      } else {
2100
1908302
        clauses_persistent.push(lemma_ref);
2101
      }
2102
2099468
      attachClause(lemma_ref);
2103
    }
2104
2105
    // If the lemma is propagating enqueue its literal (or set the conflict)
2106
2164008
    if (conflict == CRef_Undef && value(lemma[0]) != l_True) {
2107
2074748
      if (lemma.size() == 1 || (value(lemma[1]) == l_False && trail_index(var(lemma[1])) < backtrack_index)) {
2108
683244
        Trace("pf::sat") << "Solver::updateLemmas: unit theory lemma: "
2109
341622
                         << lemma[0] << std::endl;
2110
341622
        if (value(lemma[0]) == l_False) {
2111
          // We have a conflict
2112
53958
          if (lemma.size() > 1) {
2113
53390
            Debug("minisat::lemmas") << "Solver::updateLemmas(): conflict" << std::endl;
2114
53390
            conflict = lemma_ref;
2115
          } else {
2116
568
            Debug("minisat::lemmas") << "Solver::updateLemmas(): unit conflict or empty clause" << std::endl;
2117
568
            conflict = CRef_Lazy;
2118
568
            if (needProof())
2119
            {
2120
48
              d_pfManager->storeUnitConflict(lemma[0]);
2121
            }
2122
          }
2123
        } else {
2124
287664
          Debug("minisat::lemmas") << "lemma size is " << lemma.size() << std::endl;
2125
287664
          Debug("minisat::lemmas") << "lemma ref is " << lemma_ref << std::endl;
2126
287664
          uncheckedEnqueue(lemma[0], lemma_ref);
2127
        }
2128
      }
2129
    }
2130
  }
2131
2132
  // Clear the lemmas
2133
257791
  lemmas.clear();
2134
257791
  lemmas_removable.clear();
2135
2136
257791
  if (conflict != CRef_Undef) {
2137
55083
    theoryConflict = true;
2138
  }
2139
2140
257791
  Debug("minisat::lemmas") << "Solver::updateLemmas() end" << std::endl;
2141
2142
257791
  return conflict;
2143
}
2144
2145
6154023
void ClauseAllocator::reloc(CRef& cr, ClauseAllocator& to)
2146
{
2147
6154023
  Debug("minisat") << "ClauseAllocator::reloc: cr " << cr << std::endl;
2148
  // FIXME what is this CRef_lazy
2149
6154023
  if (cr == CRef_Lazy) return;
2150
2151
6154023
  Clause& c = operator[](cr);
2152
6154023
  if (c.reloced()) { cr = c.relocation(); return; }
2153
2154
1825833
  cr = to.alloc(c.level(), c, c.removable());
2155
1825833
  c.relocate(cr);
2156
  // Copy extra data-fields:
2157
  // (This could be cleaned-up. Generalize Clause-constructor to be applicable here instead?)
2158
1825833
  to[cr].mark(c.mark());
2159
1825833
  if (to[cr].removable())         to[cr].activity() = c.activity();
2160
1642856
  else if (to[cr].has_extra()) to[cr].calcAbstraction();
2161
}
2162
2163
3035502
inline bool Solver::withinBudget(Resource r) const
2164
{
2165
3035502
  Assert(d_proxy);
2166
  // spendResource sets async_interrupt or throws UnsafeInterruptException
2167
  // depending on whether hard-limit is enabled
2168
3035502
  d_proxy->spendResource(r);
2169
2170
3035502
  bool within_budget =
2171
6071004
      !asynch_interrupt && (conflict_budget < 0 || conflicts < conflict_budget)
2172
6071004
      && (propagation_budget < 0 || propagations < propagation_budget);
2173
3035502
  return within_budget;
2174
}
2175
2176
2504
SatProofManager* Solver::getProofManager()
2177
{
2178
2504
  return isProofEnabled() ? d_pfManager.get() : nullptr;
2179
}
2180
2181
2823
std::shared_ptr<ProofNode> Solver::getProof()
2182
{
2183
2823
  return isProofEnabled() ? d_pfManager->getProof() : nullptr;
2184
}
2185
2186
39078273
bool Solver::isProofEnabled() const { return d_pfManager != nullptr; }
2187
2188
39072946
bool Solver::needProof() const
2189
{
2190
39072946
  return isProofEnabled()
2191
39072946
         && options::unsatCoresMode() != options::UnsatCoresMode::ASSUMPTIONS;
2192
}
2193
2194
}  // namespace Minisat
2195
29505
}  // namespace cvc5