GCC Code Coverage Report
Directory: . Exec Total Coverage
File: src/smt/proof_post_processor.cpp Lines: 539 585 92.1 %
Date: 2021-09-10 Branches: 1077 2784 38.7 %

Line Exec Source
1
/******************************************************************************
2
 * Top contributors (to current version):
3
 *   Andrew Reynolds, Haniel Barbosa, Aina Niemetz
4
 *
5
 * This file is part of the cvc5 project.
6
 *
7
 * Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
8
 * in the top-level source directory and their institutional affiliations.
9
 * All rights reserved.  See the file COPYING in the top-level source
10
 * directory for licensing information.
11
 * ****************************************************************************
12
 *
13
 * Implementation of module for processing proof nodes.
14
 */
15
16
#include "smt/proof_post_processor.h"
17
18
#include "expr/skolem_manager.h"
19
#include "options/proof_options.h"
20
#include "preprocessing/assertion_pipeline.h"
21
#include "proof/proof_node_manager.h"
22
#include "smt/smt_engine.h"
23
#include "theory/arith/arith_utilities.h"
24
#include "theory/builtin/proof_checker.h"
25
#include "theory/bv/bitblast/proof_bitblaster.h"
26
#include "theory/rewriter.h"
27
#include "theory/strings/infer_proof_cons.h"
28
#include "theory/theory.h"
29
#include "util/rational.h"
30
31
using namespace cvc5::kind;
32
using namespace cvc5::theory;
33
34
namespace cvc5 {
35
namespace smt {
36
37
3781
ProofPostprocessCallback::ProofPostprocessCallback(Env& env,
38
                                                   ProofGenerator* pppg,
39
                                                   rewriter::RewriteDb* rdb,
40
3781
                                                   bool updateScopedAssumptions)
41
    : d_env(env),
42
3781
      d_pnm(env.getProofNodeManager()),
43
      d_pppg(pppg),
44
      d_wfpm(env.getProofNodeManager()),
45
7562
      d_updateScopedAssumptions(updateScopedAssumptions)
46
{
47
3781
  d_true = NodeManager::currentNM()->mkConst(true);
48
3781
}
49
50
2813
void ProofPostprocessCallback::initializeUpdate()
51
{
52
2813
  d_assumpToProof.clear();
53
2813
  d_wfAssumptions.clear();
54
2813
}
55
56
13035
void ProofPostprocessCallback::setEliminateRule(PfRule rule)
57
{
58
13035
  d_elimRules.insert(rule);
59
13035
}
60
61
2443057
bool ProofPostprocessCallback::shouldUpdate(std::shared_ptr<ProofNode> pn,
62
                                            const std::vector<Node>& fa,
63
                                            bool& continueUpdate)
64
{
65
2443057
  PfRule id = pn->getRule();
66
2443057
  if (d_elimRules.find(id) != d_elimRules.end())
67
  {
68
159029
    return true;
69
  }
70
  // other than elimination rules, we always update assumptions as long as
71
  // d_updateScopedAssumptions is true or they are *not* in scope, i.e., not in
72
  // fa
73
4568056
  if (id != PfRule::ASSUME
74
6572717
      || (!d_updateScopedAssumptions
75
2284028
          && std::find(fa.begin(), fa.end(), pn->getResult()) != fa.end()))
76
  {
77
4009322
    Trace("smt-proof-pp-debug")
78
2004661
        << "... not updating in-scope assumption " << pn->getResult() << "\n";
79
2004661
    return false;
80
  }
81
279367
  return true;
82
}
83
84
503456
bool ProofPostprocessCallback::update(Node res,
85
                                      PfRule id,
86
                                      const std::vector<Node>& children,
87
                                      const std::vector<Node>& args,
88
                                      CDProof* cdp,
89
                                      bool& continueUpdate)
90
{
91
1006912
  Trace("smt-proof-pp-debug") << "- Post process " << id << " " << children
92
503456
                              << " / " << args << std::endl;
93
94
503456
  if (id == PfRule::ASSUME)
95
  {
96
    // we cache based on the assumption node, not the proof node, since there
97
    // may be multiple occurrences of the same node.
98
558734
    Node f = args[0];
99
558734
    std::shared_ptr<ProofNode> pfn;
100
    std::map<Node, std::shared_ptr<ProofNode>>::iterator it =
101
279367
        d_assumpToProof.find(f);
102
279367
    if (it != d_assumpToProof.end())
103
    {
104
244668
      Trace("smt-proof-pp-debug") << "...already computed" << std::endl;
105
244668
      pfn = it->second;
106
    }
107
    else
108
    {
109
34699
      Trace("smt-proof-pp-debug") << "...get proof" << std::endl;
110
34699
      Assert(d_pppg != nullptr);
111
      // get proof from preprocess proof generator
112
34699
      pfn = d_pppg->getProofFor(f);
113
34699
      Trace("smt-proof-pp-debug") << "...finished get proof" << std::endl;
114
      // print for debugging
115
34699
      if (pfn == nullptr)
116
      {
117
32794
        Trace("smt-proof-pp-debug")
118
16397
            << "...no proof, possibly an input assumption" << std::endl;
119
      }
120
      else
121
      {
122
18302
        Assert(pfn->getResult() == f);
123
18302
        if (Trace.isOn("smt-proof-pp"))
124
        {
125
          Trace("smt-proof-pp")
126
              << "=== Connect proof for preprocessing: " << f << std::endl;
127
          Trace("smt-proof-pp") << *pfn.get() << std::endl;
128
        }
129
      }
130
34699
      d_assumpToProof[f] = pfn;
131
    }
132
279367
    if (pfn == nullptr || pfn->getRule() == PfRule::ASSUME)
133
    {
134
262686
      Trace("smt-proof-pp-debug") << "...do not add proof" << std::endl;
135
      // no update
136
262686
      return false;
137
    }
138
16681
    Trace("smt-proof-pp-debug") << "...add proof" << std::endl;
139
    // connect the proof
140
16681
    cdp->addProof(pfn);
141
16681
    return true;
142
  }
143
448178
  Node ret = expandMacros(id, children, args, cdp);
144
224089
  Trace("smt-proof-pp-debug") << "...expanded = " << !ret.isNull() << std::endl;
145
224089
  return !ret.isNull();
146
}
147
148
65060
bool ProofPostprocessCallback::updateInternal(Node res,
149
                                              PfRule id,
150
                                              const std::vector<Node>& children,
151
                                              const std::vector<Node>& args,
152
                                              CDProof* cdp)
153
{
154
65060
  bool continueUpdate = true;
155
65060
  return update(res, id, children, args, cdp, continueUpdate);
156
}
157
158
38494
Node ProofPostprocessCallback::eliminateCrowdingLits(
159
    const std::vector<Node>& clauseLits,
160
    const std::vector<Node>& targetClauseLits,
161
    const std::vector<Node>& children,
162
    const std::vector<Node>& args,
163
    CDProof* cdp)
164
{
165
38494
  Trace("smt-proof-pp-debug2") << push;
166
38494
  NodeManager* nm = NodeManager::currentNM();
167
76988
  Node trueNode = nm->mkConst(true);
168
  // get crowding lits and the position of the last clause that includes
169
  // them. The factoring step must be added after the last inclusion and before
170
  // its elimination.
171
76988
  std::unordered_set<TNode> crowding;
172
76988
  std::vector<std::pair<Node, size_t>> lastInclusion;
173
  // positions of eliminators of crowding literals, which are the positions of
174
  // the clauses that eliminate crowding literals *after* their last inclusion
175
76988
  std::vector<size_t> eliminators;
176
1936044
  for (size_t i = 0, size = clauseLits.size(); i < size; ++i)
177
  {
178
5692650
    if (!crowding.count(clauseLits[i])
179
8986052
        && std::find(
180
1646701
               targetClauseLits.begin(), targetClauseLits.end(), clauseLits[i])
181
5190952
               == targetClauseLits.end())
182
    {
183
570362
      Node crowdLit = clauseLits[i];
184
285181
      crowding.insert(crowdLit);
185
285181
      Trace("smt-proof-pp-debug2") << "crowding lit " << crowdLit << "\n";
186
      // found crowding lit, now get its last inclusion position, which is the
187
      // position of the last resolution link that introduces the crowding
188
      // literal. Note that this position has to be *before* the last link, as a
189
      // link *after* the last inclusion must eliminate the crowding literal.
190
      size_t j;
191
6458578
      for (j = children.size() - 1; j > 0; --j)
192
      {
193
        // notice that only non-singleton clauses may be introducing the
194
        // crowding literal, so we only care about non-singleton OR nodes. We
195
        // check then against the kind and whether the whole OR node occurs as a
196
        // pivot of the respective resolution
197
6458578
        if (children[j - 1].getKind() != kind::OR)
198
        {
199
884948
          continue;
200
        }
201
5573630
        uint64_t pivotIndex = 2 * (j - 1);
202
11147260
        if (args[pivotIndex] == children[j - 1]
203
11147260
            || args[pivotIndex].notNode() == children[j - 1])
204
        {
205
15087
          continue;
206
        }
207
16675629
        if (std::find(children[j - 1].begin(), children[j - 1].end(), crowdLit)
208
16675629
            != children[j - 1].end())
209
        {
210
285181
          break;
211
        }
212
      }
213
285181
      Assert(j > 0);
214
285181
      lastInclusion.emplace_back(crowdLit, j - 1);
215
216
285181
      Trace("smt-proof-pp-debug2") << "last inc " << j - 1 << "\n";
217
      // get elimination position, starting from the following link as the last
218
      // inclusion one. The result is the last (in the chain, but first from
219
      // this point on) resolution link that eliminates the crowding literal. A
220
      // literal l is eliminated by a link if it contains a literal l' with
221
      // opposite polarity to l.
222
2416673
      for (; j < children.size(); ++j)
223
      {
224
1350927
        bool posFirst = args[(2 * j) - 1] == trueNode;
225
2416673
        Node pivot = args[(2 * j)];
226
2701854
        Trace("smt-proof-pp-debug2")
227
1350927
            << "\tcheck w/ args " << posFirst << " / " << pivot << "\n";
228
        // To eliminate the crowding literal (crowdLit), the clause must contain
229
        // it with opposite polarity. There are three successful cases,
230
        // according to the pivot and its sign
231
        //
232
        // - crowdLit is the same as the pivot and posFirst is true, which means
233
        //   that the clause contains its negation and eliminates it
234
        //
235
        // - crowdLit is the negation of the pivot and posFirst is false, so the
236
        //   clause contains the node whose negation is crowdLit. Note that this
237
        //   case may either be crowdLit.notNode() == pivot or crowdLit ==
238
        //   pivot.notNode().
239
2843194
        if ((crowdLit == pivot && posFirst)
240
2560514
            || (crowdLit.notNode() == pivot && !posFirst)
241
3911441
            || (pivot.notNode() == crowdLit && !posFirst))
242
        {
243
285181
          Trace("smt-proof-pp-debug2") << "\t\tfound it!\n";
244
285181
          eliminators.push_back(j);
245
285181
          break;
246
        }
247
      }
248
285181
      AlwaysAssert(j < children.size());
249
    }
250
  }
251
38494
  Assert(!lastInclusion.empty());
252
  // order map so that we process crowding literals in the order of the clauses
253
  // that last introduce them
254
877833
  auto cmp = [](std::pair<Node, size_t>& a, std::pair<Node, size_t>& b) {
255
877833
    return a.second < b.second;
256
877833
  };
257
38494
  std::sort(lastInclusion.begin(), lastInclusion.end(), cmp);
258
  // order eliminators
259
38494
  std::sort(eliminators.begin(), eliminators.end());
260
38494
  if (Trace.isOn("smt-proof-pp-debug"))
261
  {
262
    Trace("smt-proof-pp-debug") << "crowding lits last inclusion:\n";
263
    for (const auto& pair : lastInclusion)
264
    {
265
      Trace("smt-proof-pp-debug")
266
          << "\t- [" << pair.second << "] : " << pair.first << "\n";
267
    }
268
    Trace("smt-proof-pp-debug") << "eliminators:";
269
    for (size_t elim : eliminators)
270
    {
271
      Trace("smt-proof-pp-debug") << " " << elim;
272
    }
273
    Trace("smt-proof-pp-debug") << "\n";
274
  }
275
  // TODO (cvc4-wishues/issues/77): implement also simpler version and compare
276
  //
277
  // We now start to break the chain, one step at a time. Naively this breaking
278
  // down would be one resolution/factoring to each crowding literal, but we can
279
  // merge some of the cases. Effectively we do the following:
280
  //
281
  //
282
  // lastClause   children[start] ... children[end]
283
  // ---------------------------------------------- CHAIN_RES
284
  //         C
285
  //    ----------- FACTORING
286
  //    lastClause'                children[start'] ... children[end']
287
  //    -------------------------------------------------------------- CHAIN_RES
288
  //                                    ...
289
  //
290
  // where
291
  //   lastClause_0 = children[0]
292
  //   start_0 = 1
293
  //   end_0 = eliminators[0] - 1
294
  //   start_i+1 = nextGuardedElimPos - 1
295
  //
296
  // The important point is how end_i+1 is computed. It is based on what we call
297
  // the "nextGuardedElimPos", i.e., the next elimination position that requires
298
  // removal of duplicates. The intuition is that a factoring step may eliminate
299
  // the duplicates of crowding literals l1 and l2. If the last inclusion of l2
300
  // is before the elimination of l1, then we can go ahead and also perform the
301
  // elimination of l2 without another factoring. However if another literal l3
302
  // has its last inclusion after the elimination of l2, then the elimination of
303
  // l3 is the next guarded elimination.
304
  //
305
  // To do the above computation then we determine, after a resolution/factoring
306
  // step, the first crowded literal to have its last inclusion after "end". The
307
  // first elimination position to be bigger than the position of that crowded
308
  // literal is the next guarded elimination position.
309
38494
  size_t lastElim = 0;
310
38494
  Node lastClause = children[0];
311
76988
  std::vector<Node> childrenRes;
312
76988
  std::vector<Node> childrenResArgs;
313
76988
  Node resPlaceHolder;
314
38494
  size_t nextGuardedElimPos = eliminators[0];
315
  do
316
  {
317
219448
    size_t start = lastElim + 1;
318
219448
    size_t end = nextGuardedElimPos - 1;
319
438896
    Trace("smt-proof-pp-debug2")
320
219448
        << "res with:\n\tlastClause: " << lastClause << "\n\tstart: " << start
321
219448
        << "\n\tend: " << end << "\n";
322
219448
    childrenRes.push_back(lastClause);
323
    // note that the interval of insert is exclusive in the end, so we add 1
324
658344
    childrenRes.insert(childrenRes.end(),
325
438896
                       children.begin() + start,
326
1097240
                       children.begin() + end + 1);
327
658344
    childrenResArgs.insert(childrenResArgs.end(),
328
438896
                           args.begin() + (2 * start) - 1,
329
1097240
                           args.begin() + (2 * end) + 1);
330
219448
    Trace("smt-proof-pp-debug2") << "res children: " << childrenRes << "\n";
331
219448
    Trace("smt-proof-pp-debug2") << "res args: " << childrenResArgs << "\n";
332
438896
    resPlaceHolder = d_pnm->getChecker()->checkDebug(PfRule::CHAIN_RESOLUTION,
333
                                                     childrenRes,
334
                                                     childrenResArgs,
335
438896
                                                     Node::null(),
336
                                                     "");
337
438896
    Trace("smt-proof-pp-debug2")
338
219448
        << "resPlaceHorder: " << resPlaceHolder << "\n";
339
219448
    cdp->addStep(
340
        resPlaceHolder, PfRule::CHAIN_RESOLUTION, childrenRes, childrenResArgs);
341
    // I need to add factoring if end < children.size(). Otherwise, this is
342
    // to be handled by the caller
343
219448
    if (end < children.size() - 1)
344
    {
345
542862
      lastClause = d_pnm->getChecker()->checkDebug(
346
542862
          PfRule::FACTORING, {resPlaceHolder}, {}, Node::null(), "");
347
180954
      if (!lastClause.isNull())
348
      {
349
180954
        cdp->addStep(lastClause, PfRule::FACTORING, {resPlaceHolder}, {});
350
      }
351
      else
352
      {
353
        lastClause = resPlaceHolder;
354
      }
355
180954
      Trace("smt-proof-pp-debug2") << "lastClause: " << lastClause << "\n";
356
    }
357
    else
358
    {
359
38494
      lastClause = resPlaceHolder;
360
38494
      break;
361
    }
362
    // update for next round
363
180954
    childrenRes.clear();
364
180954
    childrenResArgs.clear();
365
180954
    lastElim = end;
366
367
    // find the position of the last inclusion of the next crowded literal
368
180954
    size_t nextCrowdedInclusionPos = lastInclusion.size();
369
1637887
    for (size_t i = 0, size = lastInclusion.size(); i < size; ++i)
370
    {
371
1599393
      if (lastInclusion[i].second > lastElim)
372
      {
373
142460
        nextCrowdedInclusionPos = i;
374
142460
        break;
375
      }
376
    }
377
361908
    Trace("smt-proof-pp-debug2")
378
180954
        << "nextCrowdedInclusion/Pos: "
379
180954
        << lastInclusion[nextCrowdedInclusionPos].second << "/"
380
180954
        << nextCrowdedInclusionPos << "\n";
381
    // if there is none, then the remaining literals will be used in the next
382
    // round
383
180954
    if (nextCrowdedInclusionPos == lastInclusion.size())
384
    {
385
38494
      nextGuardedElimPos = children.size();
386
    }
387
    else
388
    {
389
142460
      nextGuardedElimPos = children.size();
390
1211049
      for (size_t i = 0, size = eliminators.size(); i < size; ++i)
391
      {
392
        //  nextGuardedElimPos is the largest element of
393
        // eliminators bigger the next crowded literal's last inclusion
394
1211049
        if (eliminators[i] > lastInclusion[nextCrowdedInclusionPos].second)
395
        {
396
142460
          nextGuardedElimPos = eliminators[i];
397
142460
          break;
398
        }
399
      }
400
142460
      Assert(nextGuardedElimPos < children.size());
401
    }
402
361908
    Trace("smt-proof-pp-debug2")
403
361908
        << "nextGuardedElimPos: " << nextGuardedElimPos << "\n";
404
  } while (true);
405
76988
  Trace("smt-proof-pp-debug2") << pop;
406
76988
  return lastClause;
407
}
408
409
311826
Node ProofPostprocessCallback::expandMacros(PfRule id,
410
                                            const std::vector<Node>& children,
411
                                            const std::vector<Node>& args,
412
                                            CDProof* cdp)
413
{
414
311826
  if (d_elimRules.find(id) == d_elimRules.end())
415
  {
416
    // not eliminated
417
6
    return Node::null();
418
  }
419
  // macro elimination
420
311820
  if (id == PfRule::MACRO_SR_EQ_INTRO)
421
  {
422
    // (TRANS
423
    //   (SUBS <children> :args args[0:1])
424
    //   (REWRITE :args <t.substitute(x1,t1). ... .substitute(xn,tn)> args[2]))
425
184612
    std::vector<Node> tchildren;
426
184612
    Node t = args[0];
427
184612
    Node ts;
428
92306
    if (!children.empty())
429
    {
430
27636
      std::vector<Node> sargs;
431
13818
      sargs.push_back(t);
432
13818
      MethodId ids = MethodId::SB_DEFAULT;
433
13818
      if (args.size() >= 2)
434
      {
435
10394
        if (getMethodId(args[1], ids))
436
        {
437
10394
          sargs.push_back(args[1]);
438
        }
439
      }
440
13818
      MethodId ida = MethodId::SBA_SEQUENTIAL;
441
13818
      if (args.size() >= 3)
442
      {
443
2572
        if (getMethodId(args[2], ida))
444
        {
445
2572
          sargs.push_back(args[2]);
446
        }
447
      }
448
13818
      ts = builtin::BuiltinProofRuleChecker::applySubstitution(
449
          t, children, ids, ida);
450
27636
      Trace("smt-proof-pp-debug")
451
13818
          << "...eq intro subs equality is " << t << " == " << ts << ", from "
452
13818
          << ids << " " << ida << std::endl;
453
13818
      if (ts != t)
454
      {
455
16818
        Node eq = t.eqNode(ts);
456
        // apply SUBS proof rule if necessary
457
8409
        if (!updateInternal(eq, PfRule::SUBS, children, sargs, cdp))
458
        {
459
          // if we specified that we did not want to eliminate, add as step
460
          cdp->addStep(eq, PfRule::SUBS, children, sargs);
461
        }
462
8409
        tchildren.push_back(eq);
463
      }
464
    }
465
    else
466
    {
467
      // no substitute
468
78488
      ts = t;
469
    }
470
184612
    std::vector<Node> rargs;
471
92306
    rargs.push_back(ts);
472
92306
    MethodId idr = MethodId::RW_REWRITE;
473
92306
    if (args.size() >= 4)
474
    {
475
51
      if (getMethodId(args[3], idr))
476
      {
477
51
        rargs.push_back(args[3]);
478
      }
479
    }
480
92306
    Rewriter* rr = d_env.getRewriter();
481
184612
    Node tr = rr->rewriteViaMethod(ts, idr);
482
184612
    Trace("smt-proof-pp-debug")
483
92306
        << "...eq intro rewrite equality is " << ts << " == " << tr << ", from "
484
92306
        << idr << std::endl;
485
92306
    if (ts != tr)
486
    {
487
113302
      Node eq = ts.eqNode(tr);
488
      // apply REWRITE proof rule
489
56651
      if (!updateInternal(eq, PfRule::REWRITE, {}, rargs, cdp))
490
      {
491
        // if not elimianted, add as step
492
        cdp->addStep(eq, PfRule::REWRITE, {}, rargs);
493
      }
494
56651
      tchildren.push_back(eq);
495
    }
496
92306
    if (t == tr)
497
    {
498
      // typically not necessary, but done to be robust
499
34423
      cdp->addStep(t.eqNode(tr), PfRule::REFL, {}, {t});
500
34423
      return t.eqNode(tr);
501
    }
502
    // must add TRANS if two step
503
57883
    return addProofForTrans(tchildren, cdp);
504
  }
505
219514
  else if (id == PfRule::MACRO_SR_PRED_INTRO)
506
  {
507
16080
    std::vector<Node> tchildren;
508
16080
    std::vector<Node> sargs = args;
509
    // take into account witness form, if necessary
510
8040
    bool reqWitness = d_wfpm.requiresWitnessFormIntro(args[0]);
511
16080
    Trace("smt-proof-pp-debug")
512
8040
        << "...pred intro reqWitness=" << reqWitness << std::endl;
513
    // (TRUE_ELIM
514
    // (TRANS
515
    //    (MACRO_SR_EQ_INTRO <children> :args (t args[1:]))
516
    //    ... proof of apply_SR(t) = toWitness(apply_SR(t)) ...
517
    //    (MACRO_SR_EQ_INTRO {} {toWitness(apply_SR(t))})
518
    // ))
519
    // Notice this is an optimized, one sided version of the expansion of
520
    // MACRO_SR_PRED_TRANSFORM below.
521
    // We call the expandMacros method on MACRO_SR_EQ_INTRO, where notice
522
    // that this rule application is immediately expanded in the recursive
523
    // call and not added to the proof.
524
16080
    Node conc = expandMacros(PfRule::MACRO_SR_EQ_INTRO, children, sargs, cdp);
525
16080
    Trace("smt-proof-pp-debug")
526
8040
        << "...pred intro conclusion is " << conc << std::endl;
527
8040
    Assert(!conc.isNull());
528
8040
    Assert(conc.getKind() == EQUAL);
529
8040
    Assert(conc[0] == args[0]);
530
8040
    tchildren.push_back(conc);
531
8040
    if (reqWitness)
532
    {
533
5758
      Node weq = addProofForWitnessForm(conc[1], cdp);
534
2879
      Trace("smt-proof-pp-debug") << "...weq is " << weq << std::endl;
535
2879
      if (addToTransChildren(weq, tchildren))
536
      {
537
        // toWitness(apply_SR(t)) = apply_SR(toWitness(apply_SR(t)))
538
        // rewrite again, don't need substitution. Also we always use the
539
        // default rewriter, due to the definition of MACRO_SR_PRED_INTRO.
540
5494
        Node weqr = expandMacros(PfRule::MACRO_SR_EQ_INTRO, {}, {weq[1]}, cdp);
541
2747
        addToTransChildren(weqr, tchildren);
542
      }
543
    }
544
    // apply transitivity if necessary
545
16080
    Node eq = addProofForTrans(tchildren, cdp);
546
8040
    Assert(!eq.isNull());
547
8040
    Assert(eq.getKind() == EQUAL);
548
8040
    Assert(eq[0] == args[0]);
549
8040
    Assert(eq[1] == d_true);
550
551
8040
    cdp->addStep(eq[0], PfRule::TRUE_ELIM, {eq}, {});
552
8040
    return eq[0];
553
  }
554
211474
  else if (id == PfRule::MACRO_SR_PRED_ELIM)
555
  {
556
    // (EQ_RESOLVE
557
    //   children[0]
558
    //   (MACRO_SR_EQ_INTRO children[1:] :args children[0] ++ args))
559
4650
    std::vector<Node> schildren(children.begin() + 1, children.end());
560
4650
    std::vector<Node> srargs;
561
2325
    srargs.push_back(children[0]);
562
2325
    srargs.insert(srargs.end(), args.begin(), args.end());
563
4650
    Node conc = expandMacros(PfRule::MACRO_SR_EQ_INTRO, schildren, srargs, cdp);
564
2325
    Assert(!conc.isNull());
565
2325
    Assert(conc.getKind() == EQUAL);
566
2325
    Assert(conc[0] == children[0]);
567
    // apply equality resolve
568
2325
    cdp->addStep(conc[1], PfRule::EQ_RESOLVE, {children[0], conc}, {});
569
2325
    return conc[1];
570
  }
571
209149
  else if (id == PfRule::MACRO_SR_PRED_TRANSFORM)
572
  {
573
    // (EQ_RESOLVE
574
    //   children[0]
575
    //   (TRANS
576
    //      (MACRO_SR_EQ_INTRO children[1:] :args (children[0] args[1:]))
577
    //      ... proof of c = wc
578
    //      (MACRO_SR_EQ_INTRO {} wc)
579
    //      (SYMM
580
    //        (MACRO_SR_EQ_INTRO children[1:] :args <args>)
581
    //        ... proof of a = wa
582
    //        (MACRO_SR_EQ_INTRO {} wa))))
583
    // where
584
    // wa = toWitness(apply_SR(args[0])) and
585
    // wc = toWitness(apply_SR(children[0])).
586
77432
    Trace("smt-proof-pp-debug")
587
38716
        << "Transform " << children[0] << " == " << args[0] << std::endl;
588
38716
    if (CDProof::isSame(children[0], args[0]))
589
    {
590
4373
      Trace("smt-proof-pp-debug") << "...nothing to do" << std::endl;
591
      // nothing to do
592
4373
      return children[0];
593
    }
594
68686
    std::vector<Node> tchildren;
595
68686
    std::vector<Node> schildren(children.begin() + 1, children.end());
596
68686
    std::vector<Node> sargs = args;
597
    // first, compute if we need
598
34343
    bool reqWitness = d_wfpm.requiresWitnessFormTransform(children[0], args[0]);
599
34343
    Trace("smt-proof-pp-debug") << "...reqWitness=" << reqWitness << std::endl;
600
    // convert both sides, in three steps, take symmetry of second chain
601
103029
    for (unsigned r = 0; r < 2; r++)
602
    {
603
137372
      std::vector<Node> tchildrenr;
604
      // first rewrite children[0], then args[0]
605
68686
      sargs[0] = r == 0 ? children[0] : args[0];
606
      // t = apply_SR(t)
607
137372
      Node eq = expandMacros(PfRule::MACRO_SR_EQ_INTRO, schildren, sargs, cdp);
608
137372
      Trace("smt-proof-pp-debug")
609
68686
          << "transform subs_rewrite (" << r << "): " << eq << std::endl;
610
68686
      Assert(!eq.isNull() && eq.getKind() == EQUAL && eq[0] == sargs[0]);
611
68686
      addToTransChildren(eq, tchildrenr);
612
      // apply_SR(t) = toWitness(apply_SR(t))
613
68686
      if (reqWitness)
614
      {
615
23132
        Node weq = addProofForWitnessForm(eq[1], cdp);
616
23132
        Trace("smt-proof-pp-debug")
617
11566
            << "transform toWitness (" << r << "): " << weq << std::endl;
618
11566
        if (addToTransChildren(weq, tchildrenr))
619
        {
620
          // toWitness(apply_SR(t)) = apply_SR(toWitness(apply_SR(t)))
621
          // rewrite again, don't need substitution. Also, we always use the
622
          // default rewriter, due to the definition of MACRO_SR_PRED_TRANSFORM.
623
          Node weqr =
624
11866
              expandMacros(PfRule::MACRO_SR_EQ_INTRO, {}, {weq[1]}, cdp);
625
11866
          Trace("smt-proof-pp-debug") << "transform rewrite_witness (" << r
626
5933
                                      << "): " << weqr << std::endl;
627
5933
          addToTransChildren(weqr, tchildrenr);
628
        }
629
      }
630
137372
      Trace("smt-proof-pp-debug")
631
68686
          << "transform connect (" << r << ")" << std::endl;
632
      // add to overall chain
633
68686
      if (r == 0)
634
      {
635
        // add the current chain to the overall chain
636
34343
        tchildren.insert(tchildren.end(), tchildrenr.begin(), tchildrenr.end());
637
      }
638
      else
639
      {
640
        // add the current chain to cdp
641
68686
        Node eqr = addProofForTrans(tchildrenr, cdp);
642
34343
        if (!eqr.isNull())
643
        {
644
43236
          Trace("smt-proof-pp-debug") << "transform connect sym " << tchildren
645
21618
                                      << " " << eqr << std::endl;
646
          // take symmetry of above and add it to the overall chain
647
21618
          addToTransChildren(eqr, tchildren, true);
648
        }
649
      }
650
137372
      Trace("smt-proof-pp-debug")
651
68686
          << "transform finish (" << r << ")" << std::endl;
652
    }
653
654
    // apply transitivity if necessary
655
68686
    Node eq = addProofForTrans(tchildren, cdp);
656
657
34343
    cdp->addStep(args[0], PfRule::EQ_RESOLVE, {children[0], eq}, {});
658
34343
    return args[0];
659
  }
660
170433
  else if (id == PfRule::MACRO_RESOLUTION
661
170433
           || id == PfRule::MACRO_RESOLUTION_TRUST)
662
  {
663
    // first generate the naive chain_resolution
664
186586
    std::vector<Node> chainResArgs{args.begin() + 1, args.end()};
665
93293
    Node chainConclusion = d_pnm->getChecker()->checkDebug(
666
186586
        PfRule::CHAIN_RESOLUTION, children, chainResArgs, Node::null(), "");
667
93293
    Trace("smt-proof-pp-debug") << "Original conclusion: " << args[0] << "\n";
668
186586
    Trace("smt-proof-pp-debug")
669
93293
        << "chainRes conclusion: " << chainConclusion << "\n";
670
    // There are n cases:
671
    // - if the conclusion is the same, just replace
672
    // - if they have the same literals but in different quantity, add a
673
    //   FACTORING step
674
    // - if the order is not the same, add a REORDERING step
675
    // - if there are literals in chainConclusion that are not in the original
676
    //   conclusion, we need to transform the MACRO_RESOLUTION into a series of
677
    //   CHAIN_RESOLUTION + FACTORING steps, so that we explicitly eliminate all
678
    //   these "crowding" literals. We do this via FACTORING so we avoid adding
679
    //   an exponential number of premises, which would happen if we just
680
    //   repeated in the premises the clauses needed for eliminating crowding
681
    //   literals, which could themselves add crowding literals.
682
93293
    if (chainConclusion == args[0])
683
    {
684
35323
      cdp->addStep(
685
          chainConclusion, PfRule::CHAIN_RESOLUTION, children, chainResArgs);
686
35323
      return chainConclusion;
687
    }
688
57970
    NodeManager* nm = NodeManager::currentNM();
689
    // If we got here, then chainConclusion is NECESSARILY an OR node
690
57970
    Assert(chainConclusion.getKind() == kind::OR);
691
    // get the literals in the chain conclusion
692
    std::vector<Node> chainConclusionLits{chainConclusion.begin(),
693
115940
                                          chainConclusion.end()};
694
    std::set<Node> chainConclusionLitsSet{chainConclusion.begin(),
695
115940
                                          chainConclusion.end()};
696
    // is args[0] a singleton clause? If it's not an OR node, then yes.
697
    // Otherwise, it's only a singleton if it occurs in chainConclusionLitsSet
698
115940
    std::vector<Node> conclusionLits;
699
    // whether conclusion is singleton
700
57970
    if (chainConclusionLitsSet.count(args[0]))
701
    {
702
9847
      conclusionLits.push_back(args[0]);
703
    }
704
    else
705
    {
706
48123
      Assert(args[0].getKind() == kind::OR);
707
48123
      conclusionLits.insert(
708
96246
          conclusionLits.end(), args[0].begin(), args[0].end());
709
    }
710
    std::set<Node> conclusionLitsSet{conclusionLits.begin(),
711
115940
                                     conclusionLits.end()};
712
    // If the sets are different, there are "crowding" literals, i.e. literals
713
    // that were removed by implicit multi-usage of premises in the resolution
714
    // chain.
715
57970
    if (chainConclusionLitsSet != conclusionLitsSet)
716
    {
717
38494
      chainConclusion = eliminateCrowdingLits(
718
          chainConclusionLits, conclusionLits, children, args, cdp);
719
      // update vector of lits. Note that the set is no longer used, so we don't
720
      // need to update it
721
      //
722
      // We need again to check whether chainConclusion is a singleton
723
      // clause. As above, it's a singleton if it's in the original
724
      // chainConclusionLitsSet.
725
38494
      chainConclusionLits.clear();
726
38494
      if (chainConclusionLitsSet.count(chainConclusion))
727
      {
728
        chainConclusionLits.push_back(chainConclusion);
729
      }
730
      else
731
      {
732
38494
        Assert(chainConclusion.getKind() == kind::OR);
733
115482
        chainConclusionLits.insert(chainConclusionLits.end(),
734
                                   chainConclusion.begin(),
735
115482
                                   chainConclusion.end());
736
      }
737
    }
738
    else
739
    {
740
19476
      cdp->addStep(
741
          chainConclusion, PfRule::CHAIN_RESOLUTION, children, chainResArgs);
742
    }
743
115940
    Trace("smt-proof-pp-debug")
744
57970
        << "Conclusion after chain_res/elimCrowd: " << chainConclusion << "\n";
745
115940
    Trace("smt-proof-pp-debug")
746
57970
        << "Conclusion lits: " << chainConclusionLits << "\n";
747
    // Placeholder for running conclusion
748
115940
    Node n = chainConclusion;
749
    // factoring
750
57970
    if (chainConclusionLits.size() != conclusionLits.size())
751
    {
752
      // We build it rather than taking conclusionLits because the order may be
753
      // different
754
112072
      std::vector<Node> factoredLits;
755
112072
      std::unordered_set<TNode> clauseSet;
756
1079366
      for (size_t i = 0, size = chainConclusionLits.size(); i < size; ++i)
757
      {
758
1023330
        if (clauseSet.count(chainConclusionLits[i]))
759
        {
760
464466
          continue;
761
        }
762
558864
        factoredLits.push_back(n[i]);
763
558864
        clauseSet.insert(n[i]);
764
      }
765
56036
      Node factored = factoredLits.empty()
766
                          ? nm->mkConst(false)
767
56036
                          : factoredLits.size() == 1
768
9847
                                ? factoredLits[0]
769
177955
                                : nm->mkNode(kind::OR, factoredLits);
770
56036
      cdp->addStep(factored, PfRule::FACTORING, {n}, {});
771
56036
      n = factored;
772
    }
773
    // either same node or n as a clause
774
57970
    Assert(n == args[0] || n.getKind() == kind::OR);
775
    // reordering
776
57970
    if (n != args[0])
777
    {
778
38227
      cdp->addStep(args[0], PfRule::REORDERING, {n}, {args[0]});
779
    }
780
57970
    return args[0];
781
  }
782
77140
  else if (id == PfRule::SUBS)
783
  {
784
8409
    NodeManager* nm = NodeManager::currentNM();
785
    // Notice that a naive way to reconstruct SUBS is to do a term conversion
786
    // proof for each substitution.
787
    // The proof of f(a) * { a -> g(b) } * { b -> c } = f(g(c)) is:
788
    //   TRANS( CONG{f}( a=g(b) ), CONG{f}( CONG{g}( b=c ) ) )
789
    // Notice that more optimal proofs are possible that do a single traversal
790
    // over t. This is done by applying later substitutions to the range of
791
    // previous substitutions, until a final simultaneous substitution is
792
    // applied to t.  For instance, in the above example, we first prove:
793
    //   CONG{g}( b = c )
794
    // by applying the second substitution { b -> c } to the range of the first,
795
    // giving us a proof of g(b)=g(c). We then construct the updated proof
796
    // by tranitivity:
797
    //   TRANS( a=g(b), CONG{g}( b=c ) )
798
    // We then apply the substitution { a -> g(c), b -> c } to f(a), to obtain:
799
    //   CONG{f}( TRANS( a=g(b), CONG{g}( b=c ) ) )
800
    // which notice is more compact than the proof above.
801
16818
    Node t = args[0];
802
    // get the kind of substitution
803
8409
    MethodId ids = MethodId::SB_DEFAULT;
804
8409
    if (args.size() >= 2)
805
    {
806
6437
      getMethodId(args[1], ids);
807
    }
808
8409
    MethodId ida = MethodId::SBA_SEQUENTIAL;
809
8409
    if (args.size() >= 3)
810
    {
811
2526
      getMethodId(args[2], ida);
812
    }
813
16818
    std::vector<std::shared_ptr<CDProof>> pfs;
814
16818
    std::vector<TNode> vsList;
815
16818
    std::vector<TNode> ssList;
816
16818
    std::vector<TNode> fromList;
817
16818
    std::vector<ProofGenerator*> pgs;
818
    // first, compute the entire substitution
819
559305
    for (size_t i = 0, nchild = children.size(); i < nchild; i++)
820
    {
821
      // get the substitution
822
1101792
      builtin::BuiltinProofRuleChecker::getSubstitutionFor(
823
550896
          children[i], vsList, ssList, fromList, ids);
824
      // ensure proofs for each formula in fromList
825
550896
      if (children[i].getKind() == AND && ids == MethodId::SB_DEFAULT)
826
      {
827
        for (size_t j = 0, nchildi = children[i].getNumChildren(); j < nchildi;
828
             j++)
829
        {
830
          Node nodej = nm->mkConst(Rational(j));
831
          cdp->addStep(
832
              children[i][j], PfRule::AND_ELIM, {children[i]}, {nodej});
833
        }
834
      }
835
    }
836
16818
    std::vector<Node> vvec;
837
16818
    std::vector<Node> svec;
838
559305
    for (size_t i = 0, nvs = vsList.size(); i < nvs; i++)
839
    {
840
      // Note we process in forward order, since later substitution should be
841
      // applied to earlier ones, and the last child of a SUBS is processed
842
      // first.
843
1101513
      TNode var = vsList[i];
844
1101513
      TNode subs = ssList[i];
845
1101513
      TNode childFrom = fromList[i];
846
1101792
      Trace("smt-proof-pp-debug")
847
550896
          << "...process " << var << " -> " << subs << " (" << childFrom << ", "
848
550896
          << ids << ")" << std::endl;
849
      // apply the current substitution to the range
850
550896
      if (!vvec.empty() && ida == MethodId::SBA_SEQUENTIAL)
851
      {
852
        Node ss =
853
1915
            subs.substitute(vvec.begin(), vvec.end(), svec.begin(), svec.end());
854
1097
        if (ss != subs)
855
        {
856
558
          Trace("smt-proof-pp-debug")
857
279
              << "......updated to " << var << " -> " << ss
858
279
              << " based on previous substitution" << std::endl;
859
          // make the proof for the tranitivity step
860
558
          std::shared_ptr<CDProof> pf = std::make_shared<CDProof>(d_pnm);
861
279
          pfs.push_back(pf);
862
          // prove the updated substitution
863
          TConvProofGenerator tcg(d_pnm,
864
                                  nullptr,
865
                                  TConvPolicy::ONCE,
866
                                  TConvCachePolicy::NEVER,
867
                                  "nested_SUBS_TConvProofGenerator",
868
                                  nullptr,
869
558
                                  true);
870
          // add previous rewrite steps
871
996
          for (unsigned j = 0, nvars = vvec.size(); j < nvars; j++)
872
          {
873
            // substitutions are pre-rewrites
874
717
            tcg.addRewriteStep(vvec[j], svec[j], pgs[j], true);
875
          }
876
          // get the proof for the update to the current substitution
877
558
          Node seqss = subs.eqNode(ss);
878
558
          std::shared_ptr<ProofNode> pfn = tcg.getProofFor(seqss);
879
279
          Assert(pfn != nullptr);
880
          // add the proof
881
279
          pf->addProof(pfn);
882
          // get proof for childFrom from cdp
883
279
          pfn = cdp->getProofFor(childFrom);
884
279
          pf->addProof(pfn);
885
          // ensure we have a proof of var = subs
886
558
          Node veqs = addProofForSubsStep(var, subs, childFrom, pf.get());
887
          // transitivity
888
279
          pf->addStep(var.eqNode(ss), PfRule::TRANS, {veqs, seqss}, {});
889
          // add to the substitution
890
279
          vvec.push_back(var);
891
279
          svec.push_back(ss);
892
279
          pgs.push_back(pf.get());
893
279
          continue;
894
        }
895
      }
896
      // Just use equality from CDProof, but ensure we have a proof in cdp.
897
      // This may involve a TRUE_INTRO/FALSE_INTRO if the substitution step
898
      // uses the assumption childFrom as a Boolean assignment (e.g.
899
      // childFrom = true if we are using MethodId::SB_LITERAL).
900
550617
      addProofForSubsStep(var, subs, childFrom, cdp);
901
550617
      vvec.push_back(var);
902
550617
      svec.push_back(subs);
903
550617
      pgs.push_back(cdp);
904
    }
905
    // should be implied by the substitution now
906
8409
    TConvPolicy tcpolicy = ida == MethodId::SBA_FIXPOINT ? TConvPolicy::FIXPOINT
907
                                                         : TConvPolicy::ONCE;
908
    TConvProofGenerator tcpg(d_pnm,
909
                             nullptr,
910
                             tcpolicy,
911
                             TConvCachePolicy::NEVER,
912
                             "SUBS_TConvProofGenerator",
913
                             nullptr,
914
16818
                             true);
915
559305
    for (unsigned j = 0, nvars = vvec.size(); j < nvars; j++)
916
    {
917
      // substitutions are pre-rewrites
918
550896
      tcpg.addRewriteStep(vvec[j], svec[j], pgs[j], true);
919
    }
920
    // add the proof constructed by the term conversion utility
921
16818
    std::shared_ptr<ProofNode> pfn = tcpg.getProofForRewriting(t);
922
16818
    Node eq = pfn->getResult();
923
    Node ts = builtin::BuiltinProofRuleChecker::applySubstitution(
924
16818
        t, children, ids, ida);
925
16818
    Node eqq = t.eqNode(ts);
926
8409
    if (eq != eqq)
927
    {
928
      pfn = nullptr;
929
    }
930
    // should give a proof, if not, then tcpg does not agree with the
931
    // substitution.
932
8409
    if (pfn == nullptr)
933
    {
934
      Warning() << "resort to TRUST_SUBS" << std::endl
935
                << eq << std::endl
936
                << eqq << std::endl
937
                << "from " << children << " applied to " << t << std::endl;
938
      cdp->addStep(eqq, PfRule::TRUST_SUBS, {}, {eqq});
939
    }
940
    else
941
    {
942
8409
      cdp->addProof(pfn);
943
    }
944
8409
    return eqq;
945
  }
946
68731
  else if (id == PfRule::REWRITE)
947
  {
948
    // get the kind of rewrite
949
61317
    MethodId idr = MethodId::RW_REWRITE;
950
61317
    TheoryId theoryId = Theory::theoryOf(args[0]);
951
61317
    if (args.size() >= 2)
952
    {
953
43
      getMethodId(args[1], idr);
954
    }
955
61317
    Rewriter* rr = d_env.getRewriter();
956
122634
    Node ret = rr->rewriteViaMethod(args[0], idr);
957
122634
    Node eq = args[0].eqNode(ret);
958
61317
    if (idr == MethodId::RW_REWRITE || idr == MethodId::RW_REWRITE_EQ_EXT)
959
    {
960
      // rewrites from theory::Rewriter
961
61311
      bool isExtEq = (idr == MethodId::RW_REWRITE_EQ_EXT);
962
      // use rewrite with proof interface
963
122622
      TrustNode trn = rr->rewriteWithProof(args[0], isExtEq);
964
122622
      std::shared_ptr<ProofNode> pfn = trn.toProofNode();
965
61311
      if (pfn == nullptr)
966
      {
967
74
        Trace("smt-proof-pp-debug")
968
37
            << "Use TRUST_REWRITE for " << eq << std::endl;
969
        // did not have a proof of rewriting, probably isExtEq is true
970
37
        if (isExtEq)
971
        {
972
          // update to THEORY_REWRITE with idr
973
37
          Assert(args.size() >= 1);
974
74
          Node tid = builtin::BuiltinProofRuleChecker::mkTheoryIdNode(theoryId);
975
37
          cdp->addStep(eq, PfRule::THEORY_REWRITE, {}, {eq, tid, args[1]});
976
        }
977
        else
978
        {
979
          // this should never be applied
980
          cdp->addStep(eq, PfRule::TRUST_REWRITE, {}, {eq});
981
        }
982
      }
983
      else
984
      {
985
61274
        cdp->addProof(pfn);
986
      }
987
122622
      Assert(trn.getNode() == ret)
988
61311
          << "Unexpected rewrite " << args[0] << std::endl
989
61311
          << "Got: " << trn.getNode() << std::endl
990
61311
          << "Expected: " << ret;
991
    }
992
6
    else if (idr == MethodId::RW_EVALUATE)
993
    {
994
      // change to evaluate, which is never eliminated
995
      cdp->addStep(eq, PfRule::EVALUATE, {}, {args[0]});
996
    }
997
    else
998
    {
999
      // try to reconstruct as a standalone rewrite
1000
6
      std::vector<Node> targs;
1001
6
      targs.push_back(eq);
1002
6
      targs.push_back(
1003
12
          builtin::BuiltinProofRuleChecker::mkTheoryIdNode(theoryId));
1004
      // in this case, must be a non-standard rewrite kind
1005
6
      Assert(args.size() >= 2);
1006
6
      targs.push_back(args[1]);
1007
6
      Node eqp = expandMacros(PfRule::THEORY_REWRITE, {}, targs, cdp);
1008
6
      if (eqp.isNull())
1009
      {
1010
        // don't know how to eliminate
1011
6
        return Node::null();
1012
      }
1013
    }
1014
61311
    if (args[0] == ret)
1015
    {
1016
      // should not be necessary typically
1017
      cdp->addStep(eq, PfRule::REFL, {}, {args[0]});
1018
    }
1019
61311
    return eq;
1020
  }
1021
7414
  else if (id == PfRule::THEORY_REWRITE)
1022
  {
1023
    Assert(!args.empty());
1024
    Node eq = args[0];
1025
    Assert(eq.getKind() == EQUAL);
1026
    // try to replay theory rewrite
1027
    // first, check that maybe its just an evaluation step
1028
    ProofChecker* pc = d_pnm->getChecker();
1029
    Node ceval =
1030
        pc->checkDebug(PfRule::EVALUATE, {}, {eq[0]}, eq, "smt-proof-pp-debug");
1031
    if (!ceval.isNull() && ceval == eq)
1032
    {
1033
      cdp->addStep(eq, PfRule::EVALUATE, {}, {eq[0]});
1034
      return eq;
1035
    }
1036
    // otherwise no update
1037
    Trace("final-pf-hole") << "hole: " << id << " : " << eq << std::endl;
1038
  }
1039
7414
  else if (id == PfRule::MACRO_ARITH_SCALE_SUM_UB)
1040
  {
1041
4861
    Debug("macro::arith") << "Expand MACRO_ARITH_SCALE_SUM_UB" << std::endl;
1042
4861
    if (Debug.isOn("macro::arith"))
1043
    {
1044
      for (const auto& child : children)
1045
      {
1046
        Debug("macro::arith") << "  child: " << child << std::endl;
1047
      }
1048
      Debug("macro::arith") << "   args: " << args << std::endl;
1049
    }
1050
4861
    Assert(args.size() == children.size());
1051
4861
    NodeManager* nm = NodeManager::currentNM();
1052
9722
    ProofStepBuffer steps{d_pnm->getChecker()};
1053
1054
    // Scale all children, accumulating
1055
9722
    std::vector<Node> scaledRels;
1056
31072
    for (size_t i = 0; i < children.size(); ++i)
1057
    {
1058
52422
      TNode child = children[i];
1059
52422
      TNode scalar = args[i];
1060
26211
      bool isPos = scalar.getConst<Rational>() > 0;
1061
      Node scalarCmp =
1062
52422
          nm->mkNode(isPos ? GT : LT, scalar, nm->mkConst(Rational(0)));
1063
      // (= scalarCmp true)
1064
52422
      Node scalarCmpOrTrue = steps.tryStep(PfRule::EVALUATE, {}, {scalarCmp});
1065
26211
      Assert(!scalarCmpOrTrue.isNull());
1066
      // scalarCmp
1067
26211
      steps.addStep(PfRule::TRUE_ELIM, {scalarCmpOrTrue}, {}, scalarCmp);
1068
      // (and scalarCmp relation)
1069
      Node scalarCmpAndRel =
1070
52422
          steps.tryStep(PfRule::AND_INTRO, {scalarCmp, child}, {});
1071
26211
      Assert(!scalarCmpAndRel.isNull());
1072
      // (=> (and scalarCmp relation) scaled)
1073
      Node impl =
1074
          steps.tryStep(isPos ? PfRule::ARITH_MULT_POS : PfRule::ARITH_MULT_NEG,
1075
                        {},
1076
52422
                        {scalar, child});
1077
26211
      Assert(!impl.isNull());
1078
      // scaled
1079
      Node scaled =
1080
52422
          steps.tryStep(PfRule::MODUS_PONENS, {scalarCmpAndRel, impl}, {});
1081
26211
      Assert(!scaled.isNull());
1082
26211
      scaledRels.emplace_back(scaled);
1083
    }
1084
1085
9722
    Node sumBounds = steps.tryStep(PfRule::ARITH_SUM_UB, scaledRels, {});
1086
4861
    cdp->addSteps(steps);
1087
9722
    Debug("macro::arith") << "Expansion done. Proved: " << sumBounds
1088
4861
                          << std::endl;
1089
4861
    return sumBounds;
1090
  }
1091
2553
  else if (id == PfRule::STRING_INFERENCE)
1092
  {
1093
    // get the arguments
1094
987
    Node conc;
1095
    InferenceId iid;
1096
    bool isRev;
1097
987
    std::vector<Node> exp;
1098
987
    if (strings::InferProofCons::unpackArgs(args, conc, iid, isRev, exp))
1099
    {
1100
987
      if (strings::InferProofCons::addProofTo(cdp, conc, iid, isRev, exp))
1101
      {
1102
987
        return conc;
1103
      }
1104
    }
1105
  }
1106
1566
  else if (id == PfRule::BV_BITBLAST)
1107
  {
1108
3132
    bv::BBProof bb(nullptr, d_pnm, true);
1109
3132
    Node eq = args[0];
1110
1566
    Assert(eq.getKind() == EQUAL);
1111
1566
    bb.bbAtom(eq[0]);
1112
3132
    Node bbAtom = bb.getStoredBBAtom(eq[0]);
1113
1566
    bb.getProofGenerator()->addProofTo(eq[0].eqNode(bbAtom), cdp);
1114
1566
    return eq;
1115
  }
1116
1117
  // TRUST, PREPROCESS, THEORY_LEMMA, THEORY_PREPROCESS?
1118
1119
  return Node::null();
1120
}
1121
1122
14445
Node ProofPostprocessCallback::addProofForWitnessForm(Node t, CDProof* cdp)
1123
{
1124
28890
  Node tw = SkolemManager::getOriginalForm(t);
1125
14445
  Node eq = t.eqNode(tw);
1126
14445
  if (t == tw)
1127
  {
1128
    // not necessary, add REFL step
1129
5765
    cdp->addStep(eq, PfRule::REFL, {}, {t});
1130
5765
    return eq;
1131
  }
1132
17360
  std::shared_ptr<ProofNode> pn = d_wfpm.getProofFor(eq);
1133
8680
  if (pn != nullptr)
1134
  {
1135
    // add the proof
1136
8680
    cdp->addProof(pn);
1137
  }
1138
  else
1139
  {
1140
    Assert(false) << "ProofPostprocessCallback::addProofForWitnessForm: failed "
1141
                     "to add proof for witness form of "
1142
                  << t;
1143
  }
1144
8680
  return eq;
1145
}
1146
1147
134609
Node ProofPostprocessCallback::addProofForTrans(
1148
    const std::vector<Node>& tchildren, CDProof* cdp)
1149
{
1150
134609
  size_t tsize = tchildren.size();
1151
134609
  if (tsize > 1)
1152
  {
1153
34610
    Node lhs = tchildren[0][0];
1154
34610
    Node rhs = tchildren[tsize - 1][1];
1155
34610
    Node eq = lhs.eqNode(rhs);
1156
17305
    cdp->addStep(eq, PfRule::TRANS, tchildren, {});
1157
17305
    return eq;
1158
  }
1159
117304
  else if (tsize == 1)
1160
  {
1161
104579
    return tchildren[0];
1162
  }
1163
12725
  return Node::null();
1164
}
1165
1166
550896
Node ProofPostprocessCallback::addProofForSubsStep(Node var,
1167
                                                   Node subs,
1168
                                                   Node assump,
1169
                                                   CDProof* cdp)
1170
{
1171
  // ensure we have a proof of var = subs
1172
550896
  Node veqs = var.eqNode(subs);
1173
550896
  if (veqs != assump)
1174
  {
1175
    // should be true intro or false intro
1176
3911
    Assert(subs.isConst());
1177
11733
    cdp->addStep(
1178
        veqs,
1179
3911
        subs.getConst<bool>() ? PfRule::TRUE_INTRO : PfRule::FALSE_INTRO,
1180
        {assump},
1181
3911
        {});
1182
  }
1183
550896
  return veqs;
1184
}
1185
1186
113429
bool ProofPostprocessCallback::addToTransChildren(Node eq,
1187
                                                  std::vector<Node>& tchildren,
1188
                                                  bool isSymm)
1189
{
1190
113429
  Assert(!eq.isNull());
1191
113429
  Assert(eq.getKind() == kind::EQUAL);
1192
113429
  if (eq[0] == eq[1])
1193
  {
1194
39539
    return false;
1195
  }
1196
147780
  Node equ = isSymm ? eq[1].eqNode(eq[0]) : eq;
1197
73890
  Assert(tchildren.empty()
1198
         || (tchildren[tchildren.size() - 1].getKind() == kind::EQUAL
1199
             && tchildren[tchildren.size() - 1][1] == equ[0]));
1200
73890
  tchildren.push_back(equ);
1201
73890
  return true;
1202
}
1203
1204
3781
ProofPostproccess::ProofPostproccess(Env& env,
1205
                                     ProofGenerator* pppg,
1206
                                     rewriter::RewriteDb* rdb,
1207
3781
                                     bool updateScopedAssumptions)
1208
    : d_cb(env, pppg, rdb, updateScopedAssumptions),
1209
      // the update merges subproofs
1210
3781
      d_updater(env.getProofNodeManager(), d_cb, options::proofPpMerge()),
1211
      d_finalCb(env.getProofNodeManager()),
1212
7562
      d_finalizer(env.getProofNodeManager(), d_finalCb)
1213
{
1214
3781
}
1215
1216
3781
ProofPostproccess::~ProofPostproccess() {}
1217
1218
2813
void ProofPostproccess::process(std::shared_ptr<ProofNode> pf)
1219
{
1220
  // Initialize the callback, which computes necessary static information about
1221
  // how to process, including how to process assumptions in pf.
1222
2813
  d_cb.initializeUpdate();
1223
  // now, process
1224
2813
  d_updater.process(pf);
1225
  // take stats and check pedantic
1226
2813
  d_finalCb.initializeUpdate();
1227
2813
  d_finalizer.process(pf);
1228
1229
5626
  std::stringstream serr;
1230
2813
  bool wasPedanticFailure = d_finalCb.wasPedanticFailure(serr);
1231
2813
  if (wasPedanticFailure)
1232
  {
1233
    AlwaysAssert(!wasPedanticFailure)
1234
        << "ProofPostproccess::process: pedantic failure:" << std::endl
1235
        << serr.str();
1236
  }
1237
2813
}
1238
1239
13035
void ProofPostproccess::setEliminateRule(PfRule rule)
1240
{
1241
13035
  d_cb.setEliminateRule(rule);
1242
13035
}
1243
1244
}  // namespace smt
1245
29502
}  // namespace cvc5