GCC Code Coverage Report
Directory: . Exec Total Coverage
File: src/prop/minisat/core/Solver.cc Lines: 855 1026 83.3 %
Date: 2021-09-12 Branches: 1177 2782 42.3 %

Line Exec Source
1
/***************************************************************************************[Solver.cc]
2
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
3
Copyright (c) 2007-2010, Niklas Sorensson
4
5
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
6
associated documentation files (the "Software"), to deal in the Software without restriction,
7
including without limitation the rights to use, copy, modify, merge, publish, distribute,
8
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
9
furnished to do so, subject to the following conditions:
10
11
The above copyright notice and this permission notice shall be included in all copies or
12
substantial portions of the Software.
13
14
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
15
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
16
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
17
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
18
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
**************************************************************************************************/
20
21
#include "prop/minisat/core/Solver.h"
22
23
#include <math.h>
24
25
#include <iostream>
26
#include <unordered_set>
27
28
#include "base/check.h"
29
#include "base/output.h"
30
#include "options/base_options.h"
31
#include "options/main_options.h"
32
#include "options/prop_options.h"
33
#include "options/smt_options.h"
34
#include "proof/clause_id.h"
35
#include "prop/minisat/minisat.h"
36
#include "prop/minisat/mtl/Sort.h"
37
#include "prop/theory_proxy.h"
38
39
using namespace cvc5::prop;
40
41
namespace cvc5 {
42
namespace Minisat {
43
44
namespace {
45
/*
46
 * Returns true if the solver should add all clauses at the current assertion
47
 * level.
48
 *
49
 * FIXME: This is a workaround. Currently, our resolution proofs do not
50
 * handle clauses with a lower-than-assertion-level correctly because the
51
 * resolution proofs get removed when popping the context but the SAT solver
52
 * keeps using them.
53
 */
54
12372107
bool assertionLevelOnly()
55
{
56
17431783
  return (options::produceProofs() || options::unsatCores())
57
19684548
         && options::incrementalSolving();
58
}
59
60
//=================================================================================================
61
// Helper functions for decision tree tracing
62
63
// Writes to Trace macro for decision tree tracing
64
static inline void dtviewDecisionHelper(size_t level,
65
                                        const Node& node,
66
                                        const char* decisiontype)
67
{
68
  Trace("dtview") << std::string(level - (options::incrementalSolving() ? 1 : 0), '*')
69
                  << " " << node << " :" << decisiontype << "-DECISION:" << std::endl;
70
}
71
72
// Writes to Trace macro for propagation tracing
73
static inline void dtviewPropagationHeaderHelper(size_t level)
74
{
75
  Trace("dtview::prop") << std::string(level + 1 - (options::incrementalSolving() ? 1 : 0),
76
                                       '*')
77
                        << " /Propagations/" << std::endl;
78
}
79
80
// Writes to Trace macro for propagation tracing
81
static inline void dtviewBoolPropagationHelper(size_t level,
82
                                               Lit& l,
83
                                               cvc5::prop::TheoryProxy* proxy)
84
{
85
  Trace("dtview::prop") << std::string(
86
      level + 1 - (options::incrementalSolving() ? 1 : 0), ' ')
87
                        << ":BOOL-PROP: "
88
                        << proxy->getNode(MinisatSatSolver::toSatLiteral(l))
89
                        << std::endl;
90
}
91
92
// Writes to Trace macro for conflict tracing
93
static inline void dtviewPropConflictHelper(size_t level,
94
                                            Clause& confl,
95
                                            cvc5::prop::TheoryProxy* proxy)
96
{
97
  Trace("dtview::conflict")
98
      << std::string(level + 1 - (options::incrementalSolving() ? 1 : 0), ' ')
99
      << ":PROP-CONFLICT: (or";
100
  for (int i = 0; i < confl.size(); i++)
101
  {
102
    Trace("dtview::conflict")
103
        << " " << proxy->getNode(MinisatSatSolver::toSatLiteral(confl[i]));
104
  }
105
  Trace("dtview::conflict") << ")" << std::endl;
106
}
107
108
}  // namespace
109
110
//=================================================================================================
111
// Options:
112
113
static const char* _cat = "CORE";
114
115
9837
static DoubleOption  opt_var_decay         (_cat, "var-decay",   "The variable activity decay factor",            0.95,     DoubleRange(0, false, 1, false));
116
9837
static DoubleOption  opt_clause_decay      (_cat, "cla-decay",   "The clause activity decay factor",              0.999,    DoubleRange(0, false, 1, false));
117
9837
static DoubleOption  opt_random_var_freq   (_cat, "rnd-freq",    "The frequency with which the decision heuristic tries to choose a random variable", 0, DoubleRange(0, true, 1, true));
118
9837
static DoubleOption  opt_random_seed       (_cat, "rnd-seed",    "Used by the random variable selection",         91648253, DoubleRange(0, false, HUGE_VAL, false));
119
9837
static IntOption     opt_ccmin_mode        (_cat, "ccmin-mode",  "Controls conflict clause minimization (0=none, 1=basic, 2=deep)", 2, IntRange(0, 2));
120
9837
static IntOption     opt_phase_saving      (_cat, "phase-saving", "Controls the level of phase saving (0=none, 1=limited, 2=full)", 2, IntRange(0, 2));
121
9837
static BoolOption    opt_rnd_init_act      (_cat, "rnd-init",    "Randomize the initial activity", false);
122
9837
static BoolOption    opt_luby_restart      (_cat, "luby",        "Use the Luby restart sequence", true);
123
9837
static IntOption     opt_restart_first     (_cat, "rfirst",      "The base restart interval", 25, IntRange(1, INT32_MAX));
124
9837
static DoubleOption  opt_restart_inc       (_cat, "rinc",        "Restart interval increase factor", 3, DoubleRange(1, false, HUGE_VAL, false));
125
9837
static DoubleOption  opt_garbage_frac      (_cat, "gc-frac",     "The fraction of wasted memory allowed before a garbage collection is triggered",  0.20, DoubleRange(0, false, HUGE_VAL, false));
126
127
//=================================================================================================
128
// Proof declarations
129
CRef Solver::TCRef_Undef = CRef_Undef;
130
CRef Solver::TCRef_Lazy = CRef_Lazy;
131
132
class ScopedBool
133
{
134
  bool& d_watch;
135
  bool d_oldValue;
136
137
 public:
138
3634043
  ScopedBool(bool& watch, bool newValue) : d_watch(watch), d_oldValue(watch)
139
  {
140
3634043
    watch = newValue;
141
3634043
  }
142
3634043
  ~ScopedBool() { d_watch = d_oldValue; }
143
};
144
145
//=================================================================================================
146
// Constructor/Destructor:
147
148
9982
Solver::Solver(cvc5::prop::TheoryProxy* proxy,
149
               cvc5::context::Context* context,
150
               cvc5::context::UserContext* userContext,
151
               ProofNodeManager* pnm,
152
9982
               bool enableIncremental)
153
    : d_proxy(proxy),
154
      d_context(context),
155
      assertionLevel(0),
156
      d_pfManager(nullptr),
157
      d_enable_incremental(enableIncremental),
158
      minisat_busy(false)
159
      // Parameters (user settable):
160
      //
161
      ,
162
      verbosity(0),
163
      var_decay(opt_var_decay),
164
      clause_decay(opt_clause_decay),
165
      random_var_freq(opt_random_var_freq),
166
      random_seed(opt_random_seed),
167
      luby_restart(opt_luby_restart),
168
      ccmin_mode(opt_ccmin_mode),
169
      phase_saving(opt_phase_saving),
170
      rnd_pol(false),
171
      rnd_init_act(opt_rnd_init_act),
172
      garbage_frac(opt_garbage_frac),
173
      restart_first(opt_restart_first),
174
      restart_inc(opt_restart_inc)
175
176
      // Parameters (the rest):
177
      //
178
      ,
179
      learntsize_factor(1),
180
      learntsize_inc(1.5)
181
182
      // Parameters (experimental):
183
      //
184
      ,
185
      learntsize_adjust_start_confl(100),
186
      learntsize_adjust_inc(1.5)
187
188
      // Statistics: (formerly in 'SolverStats')
189
      //
190
      ,
191
      solves(0),
192
      starts(0),
193
      decisions(0),
194
      rnd_decisions(0),
195
      propagations(0),
196
      conflicts(0),
197
      resources_consumed(0),
198
      dec_vars(0),
199
      clauses_literals(0),
200
      learnts_literals(0),
201
      max_literals(0),
202
      tot_literals(0)
203
204
      ,
205
      ok(true),
206
      cla_inc(1),
207
      var_inc(1),
208
19964
      watches(WatcherDeleted(ca)),
209
      qhead(0),
210
      simpDB_assigns(-1),
211
      simpDB_props(0),
212
19964
      order_heap(VarOrderLt(activity)),
213
      progress_estimate(0),
214
9982
      remove_satisfied(!enableIncremental)
215
216
      // Resource constraints:
217
      //
218
      ,
219
      conflict_budget(-1),
220
      propagation_budget(-1),
221
59892
      asynch_interrupt(false)
222
{
223
9982
  if (pnm)
224
  {
225
2498
    d_pfManager.reset(
226
1249
        new SatProofManager(this, proxy->getCnfStream(), userContext, pnm));
227
  }
228
229
  // Create the constant variables
230
9982
  varTrue = newVar(true, false, false);
231
9982
  varFalse = newVar(false, false, false);
232
233
  // Assert the constants
234
9982
  uncheckedEnqueue(mkLit(varTrue, false));
235
9982
  uncheckedEnqueue(mkLit(varFalse, true));
236
9982
}
237
238
239
9979
Solver::~Solver()
240
{
241
9979
}
242
243
244
//=================================================================================================
245
// Minor methods:
246
247
248
// Creates a new SAT variable in the solver. If 'decision_var' is cleared, variable will not be
249
// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
250
//
251
1290831
Var Solver::newVar(bool sign, bool dvar, bool isTheoryAtom, bool preRegister, bool canErase)
252
{
253
1290831
    int v = nVars();
254
255
1290831
    watches  .init(mkLit(v, false));
256
1290831
    watches  .init(mkLit(v, true ));
257
1290831
    assigns  .push(l_Undef);
258
1290831
    vardata  .push(VarData(CRef_Undef, -1, -1, assertionLevel, -1));
259
1290831
    activity .push(rnd_init_act ? drand(random_seed) * 0.00001 : 0);
260
1290831
    seen     .push(0);
261
1290831
    polarity .push(sign);
262
1290831
    decision .push();
263
1290831
    trail    .capacity(v+1);
264
    // push whether it corresponds to a theory atom
265
1290831
    theory.push(isTheoryAtom);
266
267
1290831
    setDecisionVar(v, dvar);
268
269
1290831
    Debug("minisat") << "new var " << v << std::endl;
270
271
    // If the variable is introduced at non-zero level, we need to reintroduce it on backtracks
272
1290831
    if (preRegister)
273
    {
274
1203784
      Debug("minisat") << "  To register at level " << decisionLevel()
275
601892
                       << std::endl;
276
601892
      variables_to_register.push(VarIntroInfo(v, decisionLevel()));
277
    }
278
279
1290831
    return v;
280
}
281
282
4869
void Solver::resizeVars(int newSize) {
283
4869
  Assert(d_enable_incremental);
284
4869
  Assert(decisionLevel() == 0);
285
4869
  Assert(newSize >= 2) << "always keep true/false";
286
4869
  if (newSize < nVars()) {
287
3067
    int shrinkSize = nVars() - newSize;
288
289
    // Resize watches up to the negated last literal
290
3067
    watches.resizeTo(mkLit(newSize-1, true));
291
292
    // Resize all info arrays
293
3067
    assigns.shrink(shrinkSize);
294
3067
    vardata.shrink(shrinkSize);
295
3067
    activity.shrink(shrinkSize);
296
3067
    seen.shrink(shrinkSize);
297
3067
    polarity.shrink(shrinkSize);
298
3067
    decision.shrink(shrinkSize);
299
3067
    theory.shrink(shrinkSize);
300
  }
301
302
4869
  if (Debug.isOn("minisat::pop")) {
303
    for (int i = 0; i < trail.size(); ++ i) {
304
      Assert(var(trail[i]) < nVars());
305
    }
306
  }
307
4869
}
308
309
169840020
CRef Solver::reason(Var x) {
310
169840020
  Trace("pf::sat") << "Solver::reason(" << x << ")" << std::endl;
311
312
  // If we already have a reason, just return it
313
169840020
  if (vardata[x].d_reason != CRef_Lazy)
314
  {
315
169794070
    if (Trace.isOn("pf::sat"))
316
    {
317
      Trace("pf::sat") << "  Solver::reason: " << vardata[x].d_reason << ", ";
318
      if (vardata[x].d_reason == CRef_Undef)
319
      {
320
        Trace("pf::sat") << "CRef_Undef";
321
      }
322
      else
323
      {
324
        for (unsigned i = 0, size = ca[vardata[x].d_reason].size(); i < size;
325
             ++i)
326
        {
327
          Trace("pf::sat") << ca[vardata[x].d_reason][i] << " ";
328
        }
329
      }
330
      Trace("pf::sat") << "\n";
331
    }
332
169794070
    return vardata[x].d_reason;
333
  }
334
  // What's the literal we are trying to explain
335
45950
  Lit l = mkLit(x, value(x) != l_True);
336
337
  // Get the explanation from the theory
338
91900
  SatClause explanation_cl;
339
  // FIXME: at some point return a tag with the theory that spawned you
340
45950
  d_proxy->explainPropagation(MinisatSatSolver::toSatLiteral(l),
341
                              explanation_cl);
342
91900
  vec<Lit> explanation;
343
45950
  MinisatSatSolver::toMinisatClause(explanation_cl, explanation);
344
345
91900
  Trace("pf::sat") << "Solver::reason: explanation_cl = " << explanation_cl
346
45950
                   << std::endl;
347
348
  // Sort the literals by trail index level
349
45950
  lemma_lt lt(*this);
350
45950
  sort(explanation, lt);
351
45950
  Assert(explanation[0] == l);
352
353
  // Compute the assertion level for this clause
354
45950
  int explLevel = 0;
355
45950
  if (assertionLevelOnly())
356
  {
357
1585
    explLevel = assertionLevel;
358
    }
359
    else
360
    {
361
      int i, j;
362
44365
      Lit prev = lit_Undef;
363
322005
      for (i = 0, j = 0; i < explanation.size(); ++i)
364
      {
365
        // This clause is valid theory propagation, so its level is the level of
366
        // the top literal
367
277640
        explLevel = std::max(explLevel, intro_level(var(explanation[i])));
368
369
277640
        Assert(value(explanation[i]) != l_Undef);
370
277640
        Assert(i == 0
371
               || trail_index(var(explanation[0]))
372
                      > trail_index(var(explanation[i])));
373
374
        // Always keep the first literal
375
322005
        if (i == 0)
376
        {
377
44365
          prev = explanation[j++] = explanation[i];
378
44365
          continue;
379
        }
380
        // Ignore duplicate literals
381
233275
        if (explanation[i] == prev)
382
        {
383
          continue;
384
        }
385
        // Ignore zero level literals
386
466550
        if (level(var(explanation[i])) == 0
387
233275
            && user_level(var(explanation[i]) == 0))
388
        {
389
          continue;
390
        }
391
        // Keep this literal
392
233275
        prev = explanation[j++] = explanation[i];
393
      }
394
44365
      explanation.shrink(i - j);
395
396
44365
      Trace("pf::sat") << "Solver::reason: explanation = ";
397
322005
      for (int k = 0; k < explanation.size(); ++k)
398
      {
399
277640
        Trace("pf::sat") << explanation[k] << " ";
400
      }
401
44365
      Trace("pf::sat") << std::endl;
402
403
      // We need an explanation clause so we add a fake literal
404
44365
      if (j == 1)
405
      {
406
        // Add not TRUE to the clause
407
        explanation.push(mkLit(varTrue, true));
408
      }
409
    }
410
411
    // Construct the reason
412
45950
    CRef real_reason = ca.alloc(explLevel, explanation, true);
413
45950
    vardata[x] = VarData(real_reason, level(x), user_level(x), intro_level(x), trail_index(x));
414
45950
    clauses_removable.push(real_reason);
415
45950
    attachClause(real_reason);
416
417
45950
    return real_reason;
418
}
419
420
3830117
bool Solver::addClause_(vec<Lit>& ps, bool removable, ClauseId& id)
421
{
422
3830117
    if (!ok) return false;
423
424
    // Check if clause is satisfied and remove false/duplicate literals:
425
3830117
    sort(ps);
426
    Lit p; int i, j;
427
428
    // Which user-level to assert this clause at
429
3830117
    int clauseLevel = (removable && !assertionLevelOnly()) ? 0 : assertionLevel;
430
431
    // Check the clause for tautologies and similar
432
3830117
    int falseLiteralsCount = 0;
433
15275335
    for (i = j = 0, p = lit_Undef; i < ps.size(); i++) {
434
      // Update the level
435
23264716
      clauseLevel = assertionLevelOnly()
436
22644209
                        ? assertionLevel
437
22644209
                        : std::max(clauseLevel, intro_level(var(ps[i])));
438
      // Tautologies are ignored
439
11632358
      if (ps[i] == ~p) {
440
17589
        id = ClauseIdUndef;
441
        // Clause can be ignored
442
17589
        return true;
443
      }
444
      // Clauses with 0-level true literals are also ignored
445
11614769
      if (value(ps[i]) == l_True && level(var(ps[i])) == 0 && user_level(var(ps[i])) == 0) {
446
169551
        id = ClauseIdUndef;
447
169551
        return true;
448
      }
449
      // Ignore repeated literals
450
11445218
      if (ps[i] == p) {
451
19349
        continue;
452
      }
453
      // If a literal is false at 0 level (both sat and user level) we also
454
      // ignore it, unless we are tracking the SAT solver's reasoning
455
11425869
      if (value(ps[i]) == l_False) {
456
7452409
        if (!options::unsatCores() && !needProof() && level(var(ps[i])) == 0
457
3670498
            && user_level(var(ps[i])) == 0)
458
        {
459
783332
          continue;
460
        }
461
        else
462
        {
463
          // If we decide to keep it, we count it into the false literals
464
2083306
          falseLiteralsCount++;
465
        }
466
      }
467
      // This literal is a keeper
468
10642537
      ps[j++] = p = ps[i];
469
    }
470
471
    // Fit to size
472
3642977
    ps.shrink(i - j);
473
474
    // If we are in solve_ or propagate
475
3642977
    if (minisat_busy)
476
    {
477
2165430
      Trace("pf::sat") << "Add clause adding a new lemma: ";
478
8890782
      for (int k = 0; k < ps.size(); ++k) {
479
6725352
        Trace("pf::sat") << ps[k] << " ";
480
      }
481
2165430
      Trace("pf::sat") << std::endl;
482
483
2165430
      lemmas.push();
484
2165430
      ps.copyTo(lemmas.last());
485
2165430
      lemmas_removable.push(removable);
486
    } else {
487
1477547
      Assert(decisionLevel() == 0);
488
489
      // If all false, we're in conflict
490
1477547
      if (ps.size() == falseLiteralsCount) {
491
1341
        if (options::unsatCores() || needProof())
492
        {
493
          // Take care of false units here; otherwise, we need to
494
          // construct the clause below to give to the proof manager
495
          // as the final conflict.
496
489
          if(falseLiteralsCount == 1) {
497
470
            if (needProof())
498
            {
499
470
              d_pfManager->finalizeProof(ps[0], true);
500
            }
501
83964
            return ok = false;
502
          }
503
        }
504
        else
505
        {
506
852
          return ok = false;
507
        }
508
      }
509
510
1476225
      CRef cr = CRef_Undef;
511
512
      // If not unit, add the clause
513
1476225
      if (ps.size() > 1) {
514
515
1397399
        lemma_lt lt(*this);
516
1397399
        sort(ps, lt);
517
518
1397399
        cr = ca.alloc(clauseLevel, ps, false);
519
1397399
        clauses_persistent.push(cr);
520
1397399
        attachClause(cr);
521
522
1397399
        if (options::unsatCores() || needProof())
523
        {
524
660935
          if (ps.size() == falseLiteralsCount)
525
          {
526
19
            if (needProof())
527
            {
528
19
              d_pfManager->finalizeProof(ca[cr], true);
529
            }
530
19
            return ok = false;
531
          }
532
        }
533
      }
534
535
      // Check if it propagates
536
1476206
      if (ps.size() == falseLiteralsCount + 1) {
537
82153
        if(assigns[var(ps[0])] == l_Undef) {
538
79811
          Assert(assigns[var(ps[0])] != l_False);
539
79811
          uncheckedEnqueue(ps[0], cr);
540
159622
          Debug("cores") << "i'm registering a unit clause, maybe input"
541
79811
                         << std::endl;
542
79811
          if (ps.size() == 1)
543
          {
544
            // We need to do this so that the closedness check, if being done,
545
            // goes through when we have unit assumptions whose literal has
546
            // already been registered, as the ProofCnfStream will not register
547
            // them and as they are not the result of propagation will be left
548
            // hanging in assumptions accumulator
549
77310
            if (needProof())
550
            {
551
23603
              d_pfManager->registerSatLitAssumption(ps[0]);
552
            }
553
          }
554
79811
          CRef confl = propagate(CHECK_WITHOUT_THEORY);
555
79811
          if(! (ok = (confl == CRef_Undef)) ) {
556
38
            if (needProof())
557
            {
558
13
              if (ca[confl].size() == 1)
559
              {
560
                d_pfManager->finalizeProof(ca[confl][0]);
561
              }
562
              else
563
              {
564
13
                d_pfManager->finalizeProof(ca[confl]);
565
              }
566
            }
567
          }
568
79811
          return ok;
569
        } else {
570
2342
          return ok;
571
        }
572
      }
573
    }
574
575
3559483
    return true;
576
}
577
578
579
3927753
void Solver::attachClause(CRef cr) {
580
3927753
    const Clause& c = ca[cr];
581
3927753
    if (Debug.isOn("minisat"))
582
    {
583
      Debug("minisat") << "Solver::attachClause(" << c << "): ";
584
      for (unsigned i = 0, size = c.size(); i < size; ++i)
585
      {
586
        Debug("minisat") << c[i] << " ";
587
      }
588
      Debug("minisat") << ", level " << c.level() << "\n";
589
    }
590
3927753
    Assert(c.size() > 1);
591
3927753
    watches[~c[0]].push(Watcher(cr, c[1]));
592
3927753
    watches[~c[1]].push(Watcher(cr, c[0]));
593
3927753
    if (c.removable()) learnts_literals += c.size();
594
3390314
    else            clauses_literals += c.size();
595
3927753
}
596
597
598
850375
void Solver::detachClause(CRef cr, bool strict) {
599
850375
    const Clause& c = ca[cr];
600
850375
    Debug("minisat") << "Solver::detachClause(" << c << ")" << std::endl;
601
850375
    if (Debug.isOn("minisat"))
602
    {
603
      Debug("minisat") << "Solver::detachClause(" << c << "), CRef " << cr
604
                       << ", clause ";
605
      for (unsigned i = 0, size = c.size(); i < size; ++i)
606
      {
607
        Debug("minisat") << c[i] << " ";
608
      }
609
610
      Debug("minisat") << "\n";
611
    }
612
850375
    Assert(c.size() > 1);
613
614
850375
    if (strict){
615
89047
        remove(watches[~c[0]], Watcher(cr, c[1]));
616
89047
        remove(watches[~c[1]], Watcher(cr, c[0]));
617
    }else{
618
        // Lazy detaching: (NOTE! Must clean all watcher lists before garbage collecting this clause)
619
761328
        watches.smudge(~c[0]);
620
761328
        watches.smudge(~c[1]);
621
    }
622
623
850375
    if (c.removable()) learnts_literals -= c.size();
624
583895
    else            clauses_literals -= c.size(); }
625
626
627
761328
void Solver::removeClause(CRef cr) {
628
761328
    Clause& c = ca[cr];
629
761328
    if (Debug.isOn("minisat"))
630
    {
631
      Debug("minisat") << "Solver::removeClause(" << c << "), CRef " << cr
632
                       << ", clause ";
633
      for (unsigned i = 0, size = c.size(); i < size; ++i)
634
      {
635
        Debug("minisat") << c[i] << " ";
636
      }
637
      Debug("minisat") << "\n";
638
    }
639
761328
    detachClause(cr);
640
    // Don't leave pointers to free'd memory!
641
761328
    if (locked(c))
642
    {
643
      // a locked clause c is one whose first literal c[0] is true and is
644
      // propagated by c itself, i.e. vardata[var(c[0])].d_reason == c. Because
645
      // of this if we need to justify the propagation of c[0], via
646
      // Solver::reason, if it appears in a resolution chain built lazily we
647
      // will be unable to do so after the step below. Thus we eagerly justify
648
      // this propagation here.
649
11059
      if (needProof())
650
      {
651
2554
        Trace("pf::sat")
652
1277
            << "Solver::removeClause: eagerly compute propagation of " << c[0]
653
1277
            << "\n";
654
1277
        d_pfManager->startResChain(c);
655
5847
        for (unsigned i = 1, size = c.size(); i < size; ++i)
656
        {
657
4570
          d_pfManager->addResolutionStep(c[i]);
658
        }
659
1277
        d_pfManager->endResChain(c[0]);
660
      }
661
11059
      vardata[var(c[0])].d_reason = CRef_Undef;
662
    }
663
761328
    c.mark(1);
664
761328
    ca.free(cr);
665
761328
}
666
667
668
469021
bool Solver::satisfied(const Clause& c) const {
669
21567603
    for (int i = 0; i < c.size(); i++)
670
21143799
        if (value(c[i]) == l_True)
671
45217
            return true;
672
423804
    return false; }
673
674
675
// Revert to the state at given level (keeping all assignment at 'level' but not beyond).
676
//
677
582270
void Solver::cancelUntil(int level) {
678
582270
    Debug("minisat") << "minisat::cancelUntil(" << level << ")" << std::endl;
679
680
582270
    if (decisionLevel() > level){
681
        // Pop the SMT context
682
3522117
        for (int l = trail_lim.size() - level; l > 0; --l) {
683
3065577
          d_context->pop();
684
        }
685
117505983
        for (int c = trail.size()-1; c >= trail_lim[level]; c--){
686
117049443
            Var      x  = var(trail[c]);
687
117049443
            assigns [x] = l_Undef;
688
117049443
            vardata[x].d_trail_index = -1;
689
234098886
            if ((phase_saving > 1 ||
690
                 ((phase_saving == 1) && c > trail_lim.last())
691
234098886
                 ) && ((polarity[x] & 0x2) == 0)) {
692
116113553
              polarity[x] = sign(trail[c]);
693
            }
694
117049443
            insertVarOrder(x);
695
        }
696
456540
        qhead = trail_lim[level];
697
456540
        trail.shrink(trail.size() - trail_lim[level]);
698
456540
        trail_lim.shrink(trail_lim.size() - level);
699
456540
        flipped.shrink(flipped.size() - level);
700
701
        // Register variables that have not been registered yet
702
456540
        int currentLevel = decisionLevel();
703
914454
        for (int i = variables_to_register.size() - 1;
704
914454
             i >= 0 && variables_to_register[i].d_level > currentLevel;
705
             --i)
706
        {
707
457914
          variables_to_register[i].d_level = currentLevel;
708
915828
          d_proxy->variableNotify(
709
457914
              MinisatSatSolver::toSatVariable(variables_to_register[i].d_var));
710
        }
711
    }
712
582270
}
713
714
15223
void Solver::resetTrail() { cancelUntil(0); }
715
716
//=================================================================================================
717
// Major methods:
718
719
720
2787738
Lit Solver::pickBranchLit()
721
{
722
    Lit nextLit;
723
724
    // Theory requests
725
2787736
    nextLit =
726
2787738
        MinisatSatSolver::toMinisatLit(d_proxy->getNextTheoryDecisionRequest());
727
2808452
    while (nextLit != lit_Undef) {
728
62326
      if(value(var(nextLit)) == l_Undef) {
729
103936
        Debug("theoryDecision")
730
51968
            << "getNextTheoryDecisionRequest(): now deciding on " << nextLit
731
51968
            << std::endl;
732
51968
        decisions++;
733
734
        // org-mode tracing -- theory decision
735
51968
        if (Trace.isOn("dtview"))
736
        {
737
          dtviewDecisionHelper(
738
              d_context->getLevel(),
739
              d_proxy->getNode(MinisatSatSolver::toSatLiteral(nextLit)),
740
              "THEORY");
741
        }
742
743
51968
        if (Trace.isOn("dtview::prop"))
744
        {
745
          dtviewPropagationHeaderHelper(d_context->getLevel());
746
        }
747
748
51968
        return nextLit;
749
      } else {
750
20716
        Debug("theoryDecision")
751
10358
            << "getNextTheoryDecisionRequest(): would decide on " << nextLit
752
10358
            << " but it already has an assignment" << std::endl;
753
      }
754
10358
      nextLit = MinisatSatSolver::toMinisatLit(
755
10358
          d_proxy->getNextTheoryDecisionRequest());
756
    }
757
5471536
    Debug("theoryDecision")
758
2735768
        << "getNextTheoryDecisionRequest(): decide on another literal"
759
2735768
        << std::endl;
760
761
    // DE requests
762
2735768
    bool stopSearch = false;
763
2735768
    nextLit = MinisatSatSolver::toMinisatLit(
764
2735768
        d_proxy->getNextDecisionEngineRequest(stopSearch));
765
2735768
    if(stopSearch) {
766
53203
      return lit_Undef;
767
    }
768
2682565
    if(nextLit != lit_Undef) {
769
1178456
      Assert(value(var(nextLit)) == l_Undef)
770
          << "literal to decide already has value";
771
1178456
      decisions++;
772
1178456
      Var next = var(nextLit);
773
1178456
      if(polarity[next] & 0x2) {
774
225535
        nextLit = mkLit(next, polarity[next] & 0x1);
775
      }
776
777
      // org-mode tracing -- decision engine decision
778
1178456
      if (Trace.isOn("dtview"))
779
      {
780
        dtviewDecisionHelper(
781
            d_context->getLevel(),
782
            d_proxy->getNode(MinisatSatSolver::toSatLiteral(nextLit)),
783
            "DE");
784
      }
785
786
1178456
      if (Trace.isOn("dtview::prop"))
787
      {
788
        dtviewPropagationHeaderHelper(d_context->getLevel());
789
      }
790
791
1178456
      return nextLit;
792
    }
793
794
1504109
    Var next = var_Undef;
795
796
    // Random decision:
797
1504109
    if (drand(random_seed) < random_var_freq && !order_heap.empty()){
798
        next = order_heap[irand(random_seed,order_heap.size())];
799
        if (value(next) == l_Undef && decision[next])
800
            rnd_decisions++; }
801
802
    // Activity based decision:
803
10974093
    while (next >= nVars() || next == var_Undef || value(next) != l_Undef || !decision[next]) {
804
4752845
        if (order_heap.empty()){
805
17853
            next = var_Undef;
806
17853
            break;
807
        }else {
808
4734992
            next = order_heap.removeMin();
809
        }
810
811
4734992
        if(!decision[next]) continue;
812
        // Check with decision engine about relevancy
813
9444680
        if (d_proxy->isDecisionRelevant(MinisatSatSolver::toSatVariable(next))
814
4722340
            == false)
815
        {
816
          next = var_Undef;
817
        }
818
    }
819
820
1504109
    if(next == var_Undef) {
821
17853
      return lit_Undef;
822
    } else {
823
1486256
      decisions++;
824
      // Check with decision engine if it can tell polarity
825
      lbool dec_pol = MinisatSatSolver::toMinisatlbool(
826
1486256
          d_proxy->getDecisionPolarity(MinisatSatSolver::toSatVariable(next)));
827
      Lit decisionLit;
828
1486256
      if(dec_pol != l_Undef) {
829
        Assert(dec_pol == l_True || dec_pol == l_False);
830
        decisionLit = mkLit(next, (dec_pol == l_True));
831
      }
832
      else
833
      {
834
        // If it can't use internal heuristic to do that
835
1486256
        decisionLit = mkLit(
836
1486256
            next, rnd_pol ? drand(random_seed) < 0.5 : (polarity[next] & 0x1));
837
      }
838
839
      // org-mode tracing -- decision engine decision
840
1486256
      if (Trace.isOn("dtview"))
841
      {
842
        dtviewDecisionHelper(
843
            d_context->getLevel(),
844
            d_proxy->getNode(MinisatSatSolver::toSatLiteral(decisionLit)),
845
            "DE");
846
      }
847
848
1486256
      if (Trace.isOn("dtview::prop"))
849
      {
850
        dtviewPropagationHeaderHelper(d_context->getLevel());
851
      }
852
853
1486256
      return decisionLit;
854
    }
855
}
856
857
858
/*_________________________________________________________________________________________________
859
|
860
|  analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&)  ->  [void]
861
|
862
|  Description:
863
|    Analyze conflict and produce a reason clause.
864
|
865
|    Pre-conditions:
866
|      * 'out_learnt' is assumed to be cleared.
867
|      * Current decision level must be greater than root level.
868
|
869
|    Post-conditions:
870
|      * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
871
|      * If out_learnt.size() > 1 then 'out_learnt[1]' has the greatest decision level of the
872
|        rest of literals. There may be others from the same level though.
873
|      * returns the maximal level of the resolved clauses
874
|
875
|________________________________________________________________________________________________@*/
876
300882
int Solver::analyze(CRef confl, vec<Lit>& out_learnt, int& out_btlevel)
877
{
878
601764
  Trace("pf::sat") << "Solver::analyze: starting with " << confl
879
300882
                   << " with decision level " << decisionLevel() << "\n";
880
881
300882
  int pathC = 0;
882
300882
  Lit p = lit_Undef;
883
884
  // Generate conflict clause:
885
  //
886
300882
  out_learnt.push();  // (leave room for the asserting literal)
887
300882
  int index = trail.size() - 1;
888
889
300882
  int max_resolution_level = 0;  // Maximal level of the resolved clauses
890
891
300882
    if (needProof())
892
    {
893
22358
      d_pfManager->startResChain(ca[confl]);
894
    }
895
33320499
    do{
896
33621381
      Assert(confl != CRef_Undef);  // (otherwise should be UIP)
897
898
      {
899
        // ! IMPORTANT !
900
        // It is not safe to use c after this block of code because
901
        // resolveOutUnit() below may lead to clauses being allocated, which
902
        // in turn may lead to reallocations that invalidate c.
903
33621381
        Clause& c = ca[confl];
904
33621381
        max_resolution_level = std::max(max_resolution_level, c.level());
905
906
33621381
        if (c.removable()) claBumpActivity(c);
907
      }
908
909
33621381
        if (Trace.isOn("pf::sat"))
910
        {
911
          Trace("pf::sat") << "Solver::analyze: conflict clause ";
912
          for (unsigned i = 0, size = ca[confl].size(); i < size; ++i)
913
          {
914
            Trace("pf::sat") << ca[confl][i] << " ";
915
          }
916
          Trace("pf::sat") << "\n";
917
        }
918
919
33621381
        Trace("pf::sat") << cvc5::push;
920
229928073
        for (int j = (p == lit_Undef) ? 0 : 1, size = ca[confl].size();
921
229928073
             j < size;
922
             j++)
923
        {
924
196306692
          Lit q = ca[confl][j];
925
926
392613384
          Trace("pf::sat") << "Lit " << q
927
392613384
                           << " seen/level: " << (seen[var(q)] ? 1 : 0) << " / "
928
196306692
                           << level(var(q)) << "\n";
929
196306692
          if (!seen[var(q)] && level(var(q)) > 0)
930
          {
931
60271607
            varBumpActivity(var(q));
932
60271607
            seen[var(q)] = 1;
933
60271607
            if (level(var(q)) >= decisionLevel())
934
33621381
              pathC++;
935
            else
936
26650226
              out_learnt.push(q);
937
          }
938
          else
939
          {
940
            // We could be resolving a literal propagated by a clause/theory
941
            // using information from a higher level
942
136035085
            if (!seen[var(q)] && level(var(q)) == 0)
943
            {
944
397808
              max_resolution_level =
945
795616
                  std::max(max_resolution_level, user_level(var(q)));
946
            }
947
948
            // FIXME: can we do it lazily if we actually need the proof?
949
136035085
            if (level(var(q)) == 0 && needProof())
950
            {
951
137084
              d_pfManager->addResolutionStep(q);
952
            }
953
          }
954
        }
955
33621381
        Trace("pf::sat") << cvc5::pop;
956
957
        // Select next clause to look at:
958
94143667
        while (!seen[var(trail[index--])]);
959
33621381
        p     = trail[index+1];
960
33621381
        confl = reason(var(p));
961
33621381
        seen[var(p)] = 0;
962
33621381
        pathC--;
963
964
33621381
        if (pathC > 0 && confl != CRef_Undef && needProof())
965
        {
966
286308
          d_pfManager->addResolutionStep(ca[confl], p);
967
        }
968
969
33621381
    } while (pathC > 0);
970
300882
    out_learnt[0] = ~p;
971
300882
    if (Debug.isOn("newproof::sat"))
972
    {
973
      Debug("newproof::sat") << "finished with learnt clause ";
974
      for (unsigned i = 0, size = out_learnt.size(); i < size; ++i)
975
      {
976
        prop::SatLiteral satLit = toSatLiteral<Minisat::Solver>(out_learnt[i]);
977
        Debug("newproof::sat") << satLit << " ";
978
      }
979
      Debug("newproof::sat") << "\n";
980
    }
981
982
    // Simplify conflict clause:
983
    int i, j;
984
300882
    out_learnt.copyTo(analyze_toclear);
985
300882
    if (ccmin_mode == 2){
986
300882
        uint32_t abstract_level = 0;
987
26951108
        for (i = 1; i < out_learnt.size(); i++)
988
26650226
            abstract_level |= abstractLevel(var(out_learnt[i])); // (maintain an abstraction of levels involved in conflict)
989
990
26951108
        for (i = j = 1; i < out_learnt.size(); i++) {
991
26650226
            if (reason(var(out_learnt[i])) == CRef_Undef) {
992
4537883
                out_learnt[j++] = out_learnt[i];
993
            } else {
994
              // Check if the literal is redundant
995
22112343
              if (!litRedundant(out_learnt[i], abstract_level)) {
996
                // Literal is not redundant
997
19811830
                out_learnt[j++] = out_learnt[i];
998
              } else {
999
2300513
                if (needProof())
1000
                {
1001
66712
                  Debug("newproof::sat")
1002
33356
                      << "Solver::analyze: redundant lit "
1003
33356
                      << toSatLiteral<Minisat::Solver>(out_learnt[i]) << "\n";
1004
33356
                  d_pfManager->addResolutionStep(out_learnt[i], true);
1005
                }
1006
                // Literal is redundant, to be safe, mark the level as current assertion level
1007
                // TODO: maybe optimize
1008
2300513
                max_resolution_level = std::max(max_resolution_level, user_level(var(out_learnt[i])));
1009
              }
1010
            }
1011
        }
1012
1013
    }else if (ccmin_mode == 1){
1014
        Unreachable();
1015
        for (i = j = 1; i < out_learnt.size(); i++){
1016
            Var x = var(out_learnt[i]);
1017
1018
            if (reason(x) == CRef_Undef)
1019
                out_learnt[j++] = out_learnt[i];
1020
            else{
1021
                Clause& c = ca[reason(var(out_learnt[i]))];
1022
                for (int k = 1; k < c.size(); k++)
1023
                    if (!seen[var(c[k])] && level(var(c[k])) > 0){
1024
                        out_learnt[j++] = out_learnt[i];
1025
                        break; }
1026
            }
1027
        }
1028
    }else
1029
        i = j = out_learnt.size();
1030
1031
300882
    max_literals += out_learnt.size();
1032
300882
    out_learnt.shrink(i - j);
1033
300882
    tot_literals += out_learnt.size();
1034
1035
    // Find correct backtrack level:
1036
    //
1037
300882
    if (out_learnt.size() == 1)
1038
5962
        out_btlevel = 0;
1039
    else{
1040
294920
        int max_i = 1;
1041
        // Find the first literal assigned at the next-highest level:
1042
24349713
        for (int k = 2; k < out_learnt.size(); k++)
1043
24054793
          if (level(var(out_learnt[k])) > level(var(out_learnt[max_i])))
1044
663759
            max_i = k;
1045
        // Swap-in this literal at index 1:
1046
294920
        Lit p2 = out_learnt[max_i];
1047
294920
        out_learnt[max_i] = out_learnt[1];
1048
294920
        out_learnt[1] = p2;
1049
294920
        out_btlevel = level(var(p2));
1050
    }
1051
1052
29535198
    for (int k = 0; k < analyze_toclear.size(); k++)
1053
29234316
      seen[var(analyze_toclear[k])] = 0;  // ('seen[]' is now cleared)
1054
1055
    // Return the maximal resolution level
1056
300882
    return max_resolution_level;
1057
}
1058
1059
1060
// Check if 'p' can be removed. 'abstract_levels' is used to abort early if the algorithm is
1061
// visiting literals at levels that cannot be removed later.
1062
22112343
bool Solver::litRedundant(Lit p, uint32_t abstract_levels)
1063
{
1064
22112343
    analyze_stack.clear(); analyze_stack.push(p);
1065
22112343
    int top = analyze_toclear.size();
1066
59561399
    while (analyze_stack.size() > 0){
1067
38536358
        CRef c_reason = reason(var(analyze_stack.last()));
1068
38536358
        Assert(c_reason != CRef_Undef);
1069
38536358
        Clause& c = ca[c_reason];
1070
38536358
        int c_size = c.size();
1071
38536358
        analyze_stack.pop();
1072
1073
        // Since calling reason might relocate to resize, c is not necesserily the right reference, we must
1074
        // use the allocator each time
1075
148867060
        for (int i = 1; i < c_size; i++){
1076
130142532
          Lit p2 = ca[c_reason][i];
1077
130142532
          if (!seen[var(p2)] && level(var(p2)) > 0)
1078
          {
1079
141626378
            if (reason(var(p2)) != CRef_Undef
1080
70813189
                && (abstractLevel(var(p2)) & abstract_levels) != 0)
1081
            {
1082
51001359
              seen[var(p2)] = 1;
1083
51001359
              analyze_stack.push(p2);
1084
51001359
              analyze_toclear.push(p2);
1085
            }
1086
            else
1087
            {
1088
68529981
              for (int j = top; j < analyze_toclear.size(); j++)
1089
48718151
                seen[var(analyze_toclear[j])] = 0;
1090
19811830
              analyze_toclear.shrink(analyze_toclear.size() - top);
1091
19811830
              return false;
1092
            }
1093
          }
1094
        }
1095
    }
1096
1097
2300513
    return true;
1098
}
1099
1100
1101
/*_________________________________________________________________________________________________
1102
|
1103
|  analyzeFinal : (p : Lit)  ->  [void]
1104
|
1105
|  Description:
1106
|    Specialized analysis procedure to express the final conflict in terms of assumptions.
1107
|    Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
1108
|    stores the result in 'out_conflict'.
1109
|________________________________________________________________________________________________@*/
1110
2736
void Solver::analyzeFinal(Lit p, vec<Lit>& out_conflict)
1111
{
1112
2736
    out_conflict.clear();
1113
2736
    out_conflict.push(p);
1114
1115
2736
    if (decisionLevel() == 0)
1116
918
        return;
1117
1118
1818
    seen[var(p)] = 1;
1119
1120
133022
    for (int i = trail.size()-1; i >= trail_lim[0]; i--){
1121
131204
        Var x = var(trail[i]);
1122
131204
        if (seen[x]){
1123
28684
            if (reason(x) == CRef_Undef){
1124
10592
              Assert(level(x) > 0);
1125
10592
              out_conflict.push(~trail[i]);
1126
            }else{
1127
18092
                Clause& c = ca[reason(x)];
1128
57635
                for (int j = 1; j < c.size(); j++)
1129
39543
                    if (level(var(c[j])) > 0)
1130
38498
                        seen[var(c[j])] = 1;
1131
            }
1132
28684
            seen[x] = 0;
1133
        }
1134
    }
1135
1136
1818
    seen[var(p)] = 0;
1137
}
1138
1139
117384703
void Solver::uncheckedEnqueue(Lit p, CRef from)
1140
{
1141
117384703
  if (Debug.isOn("minisat"))
1142
  {
1143
    Debug("minisat") << "unchecked enqueue of " << p << " ("
1144
                     << trail_index(var(p)) << ") trail size is "
1145
                     << trail.size() << " cap is " << trail.capacity()
1146
                     << ", reason is " << from << ", ";
1147
    if (from == CRef_Lazy)
1148
    {
1149
      Debug("minisat") << "CRef_Lazy";
1150
    }
1151
    else if (from == CRef_Undef)
1152
    {
1153
      Debug("minisat") << "CRef_Undef";
1154
    }
1155
    else
1156
    {
1157
      for (unsigned i = 0, size = ca[from].size(); i < size; ++i)
1158
      {
1159
        Debug("minisat") << ca[from][i] << " ";
1160
      }
1161
    }
1162
    Debug("minisat") << "\n";
1163
  }
1164
117384703
  Assert(value(p) == l_Undef);
1165
117384703
  Assert(var(p) < nVars());
1166
117384703
  assigns[var(p)] = lbool(!sign(p));
1167
117384703
  vardata[var(p)] = VarData(
1168
      from, decisionLevel(), assertionLevel, intro_level(var(p)), trail.size());
1169
117384703
  trail.push_(p);
1170
117384703
  if (theory[var(p)])
1171
  {
1172
    // Enqueue to the theory
1173
17361403
    d_proxy->enqueueTheoryLiteral(MinisatSatSolver::toSatLiteral(p));
1174
  }
1175
117384703
}
1176
1177
3619047
CRef Solver::propagate(TheoryCheckType type)
1178
{
1179
3619047
    CRef confl = CRef_Undef;
1180
3619047
    recheck = false;
1181
3619047
    theoryConflict = false;
1182
1183
7238094
    ScopedBool scoped_bool(minisat_busy, true);
1184
1185
    // Add lemmas that we're left behind
1186
3619047
    if (lemmas.size() > 0) {
1187
145
      confl = updateLemmas();
1188
145
      if (confl != CRef_Undef) {
1189
        return confl;
1190
      }
1191
    }
1192
1193
    // If this is the final check, no need for Boolean propagation and
1194
    // theory propagation
1195
3619047
    if (type == CHECK_FINAL) {
1196
      // Do the theory check
1197
77244
      theoryCheck(cvc5::theory::Theory::EFFORT_FULL);
1198
      // Pick up the theory propagated literals (there could be some,
1199
      // if new lemmas are added)
1200
77233
      propagateTheory();
1201
      // If there are lemmas (or conflicts) update them
1202
77233
      if (lemmas.size() > 0) {
1203
60653
        recheck = true;
1204
60653
        confl = updateLemmas();
1205
60653
        return confl;
1206
      } else {
1207
16580
        recheck = d_proxy->theoryNeedCheck();
1208
16580
        return confl;
1209
      }
1210
    }
1211
1212
    // Keep running until we have checked everything, we
1213
    // have no conflict and no new literals have been asserted
1214
953180
    do {
1215
        // Propagate on the clauses
1216
4494983
        confl = propagateBool();
1217
        // If no conflict, do the theory check
1218
4494983
        if (confl == CRef_Undef && type != CHECK_WITHOUT_THEORY) {
1219
            // Do the theory check
1220
4113765
            if (type == CHECK_FINAL_FAKE) {
1221
              theoryCheck(cvc5::theory::Theory::EFFORT_FULL);
1222
            } else {
1223
4113765
              theoryCheck(cvc5::theory::Theory::EFFORT_STANDARD);
1224
            }
1225
            // Pick up the theory propagated literals
1226
4113762
            propagateTheory();
1227
            // If there are lemmas (or conflicts) update them
1228
8227524
            if (lemmas.size() > 0) {
1229
202639
              confl = updateLemmas();
1230
            }
1231
        } else {
1232
          // if dumping decision tree, print the conflict
1233
381218
          if (Trace.isOn("dtview::conflict"))
1234
          {
1235
            if (confl != CRef_Undef)
1236
            {
1237
              dtviewPropConflictHelper(decisionLevel(), ca[confl], d_proxy);
1238
            }
1239
          }
1240
          // Even though in conflict, we still need to discharge the lemmas
1241
381218
          if (lemmas.size() > 0) {
1242
            // Remember the trail size
1243
            int oldLevel = decisionLevel();
1244
            // Update the lemmas
1245
            CRef lemmaConflict = updateLemmas();
1246
            // If we get a conflict, we prefer it since it's earlier in the trail
1247
            if (lemmaConflict != CRef_Undef) {
1248
              // Lemma conflict takes precedence, since it's earlier in the trail
1249
              confl = lemmaConflict;
1250
            } else {
1251
              // Otherwise, the Boolean conflict is canceled in the case we popped the trail
1252
              if (oldLevel > decisionLevel()) {
1253
                confl = CRef_Undef;
1254
              }
1255
            }
1256
          }
1257
        }
1258
4494980
    } while (confl == CRef_Undef && qhead < trail.size());
1259
3541800
    return confl;
1260
}
1261
1262
4190995
void Solver::propagateTheory() {
1263
8381990
  SatClause propagatedLiteralsClause;
1264
  // Doesn't actually call propagate(); that's done in theoryCheck() now that combination
1265
  // is online.  This just incorporates those propagations previously discovered.
1266
4190995
  d_proxy->theoryPropagate(propagatedLiteralsClause);
1267
1268
8381990
  vec<Lit> propagatedLiterals;
1269
4190995
  MinisatSatSolver::toMinisatClause(propagatedLiteralsClause, propagatedLiterals);
1270
1271
4190995
  int oldTrailSize = trail.size();
1272
4190995
  Debug("minisat") << "old trail size is " << oldTrailSize << ", propagating " << propagatedLiterals.size() << " lits..." << std::endl;
1273
11394364
  for (unsigned i = 0, i_end = propagatedLiterals.size(); i < i_end; ++ i) {
1274
7203369
    Debug("minisat") << "Theory propagated: " << propagatedLiterals[i] << std::endl;
1275
    // multiple theories can propagate the same literal
1276
7203369
    Lit p = propagatedLiterals[i];
1277
7203369
    if (value(p) == l_Undef) {
1278
3655006
      uncheckedEnqueue(p, CRef_Lazy);
1279
    } else {
1280
3548363
      if (value(p) == l_False) {
1281
74492
        Debug("minisat") << "Conflict in theory propagation" << std::endl;
1282
148984
        SatClause explanation_cl;
1283
74492
        d_proxy->explainPropagation(MinisatSatSolver::toSatLiteral(p),
1284
                                    explanation_cl);
1285
148984
        vec<Lit> explanation;
1286
74492
        MinisatSatSolver::toMinisatClause(explanation_cl, explanation);
1287
        ClauseId id; // FIXME: mark it as explanation here somehow?
1288
74492
        addClause(explanation, true, id);
1289
      }
1290
    }
1291
  }
1292
4190995
}
1293
1294
/*_________________________________________________________________________________________________
1295
|
1296
|  theoryCheck: [void]  ->  [Clause*]
1297
|
1298
|  Description:
1299
|    Checks all enqueued theory facts for satisfiability. If a conflict arises, the conflicting
1300
|    clause is returned, otherwise NULL.
1301
|
1302
|    Note: the propagation queue might be NOT empty
1303
|________________________________________________________________________________________________@*/
1304
4191009
void Solver::theoryCheck(cvc5::theory::Theory::Effort effort)
1305
{
1306
4191009
  d_proxy->theoryCheck(effort);
1307
4190995
}
1308
1309
/*_________________________________________________________________________________________________
1310
|
1311
|  propagateBool : [void]  ->  [Clause*]
1312
|
1313
|  Description:
1314
|    Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
1315
|    otherwise CRef_Undef.
1316
|
1317
|    Post-conditions:
1318
|      * the propagation queue is empty, even if there was a conflict.
1319
|________________________________________________________________________________________________@*/
1320
4494983
CRef Solver::propagateBool()
1321
{
1322
4494983
    CRef    confl     = CRef_Undef;
1323
4494983
    int     num_props = 0;
1324
4494983
    watches.cleanAll();
1325
1326
227799615
    while (qhead < trail.size()){
1327
111652316
        Lit            p   = trail[qhead++];     // 'p' is enqueued fact to propagate.
1328
111652316
        vec<Watcher>&  ws  = watches[p];
1329
        Watcher        *i, *j, *end;
1330
111652316
        num_props++;
1331
1332
        // if propagation tracing enabled, print boolean propagation
1333
111652316
        if (Trace.isOn("dtview::prop"))
1334
        {
1335
          dtviewBoolPropagationHelper(decisionLevel(), p, d_proxy);
1336
        }
1337
1338
911653013
        for (i = j = (Watcher*)ws, end = i + ws.size();  i != end;){
1339
            // Try to avoid inspecting the clause:
1340
800000697
            Lit blocker = i->blocker;
1341
1302076818
            if (value(blocker) == l_True){
1342
1532136043
                *j++ = *i++; continue; }
1343
1344
            // Make sure the false literal is data[1]:
1345
297924576
            CRef     cr        = i->cref;
1346
297924576
            Clause&  c         = ca[cr];
1347
297924576
            Lit      false_lit = ~p;
1348
297924576
            if (c[0] == false_lit)
1349
85572447
                c[0] = c[1], c[1] = false_lit;
1350
297924576
            Assert(c[1] == false_lit);
1351
297924576
            i++;
1352
1353
            // If 0th watch is true, then clause is already satisfied.
1354
297924576
            Lit     first = c[0];
1355
297924576
            Watcher w     = Watcher(cr, first);
1356
323832256
            if (first != blocker && value(first) == l_True){
1357
51815360
                *j++ = w; continue; }
1358
1359
            // Look for new watch:
1360
272016896
            Assert(c.size() >= 2);
1361
1257718361
            for (int k = 2; k < c.size(); k++)
1362
1147470150
                if (value(c[k]) != l_False){
1363
161768685
                    c[1] = c[k]; c[k] = false_lit;
1364
161768685
                    watches[~c[1]].push(w);
1365
161768685
                    goto NextClause; }
1366
1367
            // Did not find watch -- clause is unit under assignment:
1368
110248211
            *j++ = w;
1369
110248211
            if (value(first) == l_False){
1370
246781
                confl = cr;
1371
246781
                qhead = trail.size();
1372
                // Copy the remaining watches:
1373
6039355
                while (i < end)
1374
2896287
                    *j++ = *i++;
1375
            }else
1376
110001430
                uncheckedEnqueue(first, cr);
1377
1378
272016896
        NextClause:;
1379
        }
1380
111652316
        ws.shrink(i - j);
1381
    }
1382
4494983
    propagations += num_props;
1383
4494983
    simpDB_props -= num_props;
1384
1385
4494983
    return confl;
1386
}
1387
1388
1389
/*_________________________________________________________________________________________________
1390
|
1391
|  reduceDB : ()  ->  [void]
1392
|
1393
|  Description:
1394
|    Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
1395
|    clauses are clauses that are reason to some assignment. Binary clauses are never removed.
1396
|________________________________________________________________________________________________@*/
1397
struct reduceDB_lt {
1398
    ClauseAllocator& ca;
1399
4043
    reduceDB_lt(ClauseAllocator& ca_) : ca(ca_) {}
1400
5486949
    bool operator () (CRef x, CRef y) {
1401
5486949
        return ca[x].size() > 2 && (ca[y].size() == 2 || ca[x].activity() < ca[y].activity()); }
1402
};
1403
4043
void Solver::reduceDB()
1404
{
1405
    int     i, j;
1406
4043
    double  extra_lim = cla_inc / clauses_removable.size();    // Remove any clause below this activity
1407
1408
4043
    sort(clauses_removable, reduceDB_lt(ca));
1409
    // Don't delete binary or locked clauses. From the rest, delete clauses from the first half
1410
    // and clauses with activity smaller than 'extra_lim':
1411
520084
    for (i = j = 0; i < clauses_removable.size(); i++){
1412
516041
        Clause& c = ca[clauses_removable[i]];
1413
516041
        if (c.size() > 2 && !locked(c) && (i < clauses_removable.size() / 2 || c.activity() < extra_lim))
1414
212311
            removeClause(clauses_removable[i]);
1415
        else
1416
303730
            clauses_removable[j++] = clauses_removable[i];
1417
    }
1418
4043
    clauses_removable.shrink(i - j);
1419
4043
    checkGarbage();
1420
4043
}
1421
1422
1423
18263
void Solver::removeSatisfied(vec<CRef>& cs)
1424
{
1425
    int i, j;
1426
487284
    for (i = j = 0; i < cs.size(); i++){
1427
469021
        Clause& c = ca[cs[i]];
1428
469021
        if (satisfied(c)) {
1429
45217
          removeClause(cs[i]);
1430
        }
1431
        else
1432
        {
1433
423804
          cs[j++] = cs[i];
1434
        }
1435
    }
1436
18263
    cs.shrink(i - j);
1437
18263
}
1438
1439
9738
void Solver::removeClausesAboveLevel(vec<CRef>& cs, int level)
1440
{
1441
    int i, j;
1442
836980
    for (i = j = 0; i < cs.size(); i++){
1443
827242
        Clause& c = ca[cs[i]];
1444
827242
        if (c.level() > level) {
1445
250310
          Assert(!locked(c));
1446
250310
          removeClause(cs[i]);
1447
        } else {
1448
576932
            cs[j++] = cs[i];
1449
        }
1450
    }
1451
9738
    cs.shrink(i - j);
1452
9738
}
1453
1454
18263
void Solver::rebuildOrderHeap()
1455
{
1456
36526
    vec<Var> vs;
1457
2936028
    for (Var v = 0; v < nVars(); v++)
1458
2917765
        if (decision[v] && value(v) == l_Undef)
1459
2226790
            vs.push(v);
1460
18263
    order_heap.build(vs);
1461
18263
}
1462
1463
1464
/*_________________________________________________________________________________________________
1465
|
1466
|  simplify : [void]  ->  [bool]
1467
|
1468
|  Description:
1469
|    Simplify the clause database according to the current top-level assigment. Currently, the only
1470
|    thing done here is the removal of satisfied clauses, but more things can be put here.
1471
|________________________________________________________________________________________________@*/
1472
45851
bool Solver::simplify()
1473
{
1474
45851
  Assert(decisionLevel() == 0);
1475
1476
45851
  if (!ok || propagate(CHECK_WITHOUT_THEORY) != CRef_Undef) return ok = false;
1477
1478
45614
  if (nAssigns() == simpDB_assigns || (simpDB_props > 0)) return true;
1479
1480
  // Remove satisfied clauses:
1481
18263
  removeSatisfied(clauses_removable);
1482
18263
  if (remove_satisfied)  // Can be turned off.
1483
    removeSatisfied(clauses_persistent);
1484
18263
  checkGarbage();
1485
18263
  rebuildOrderHeap();
1486
1487
18263
  simpDB_assigns = nAssigns();
1488
18263
  simpDB_props =
1489
18263
      clauses_literals + learnts_literals;  // (shouldn't depend on stats
1490
                                            // really, but it will do for now)
1491
1492
18263
  return true;
1493
}
1494
1495
1496
/*_________________________________________________________________________________________________
1497
|
1498
|  search : (nof_conflicts : int) (params : const SearchParams&)  ->  [lbool]
1499
|
1500
|  Description:
1501
|    Search for a model the specified number of conflicts.
1502
|    NOTE! Use negative value for 'nof_conflicts' indicate infinity.
1503
|
1504
|  Output:
1505
|    'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If
1506
|    all variables are decision variables, this means that the clause set is satisfiable. 'l_False'
1507
|    if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached.
1508
|________________________________________________________________________________________________@*/
1509
16288
lbool Solver::search(int nof_conflicts)
1510
{
1511
16288
  Assert(ok);
1512
  int backtrack_level;
1513
16288
  int conflictC = 0;
1514
32576
  vec<Lit> learnt_clause;
1515
16288
  starts++;
1516
1517
16288
  TheoryCheckType check_type = CHECK_WITH_THEORY;
1518
  for (;;)
1519
  {
1520
    // Propagate and call the theory solvers
1521
3484569
    CRef confl = propagate(check_type);
1522
3484555
    Assert(lemmas.size() == 0);
1523
1524
3484555
    if (confl != CRef_Undef)
1525
    {
1526
304276
      conflicts++;
1527
304276
      conflictC++;
1528
1529
304276
      if (decisionLevel() == 0)
1530
      {
1531
3394
        if (needProof())
1532
        {
1533
858
          if (confl == CRef_Lazy)
1534
          {
1535
48
            d_pfManager->finalizeProof();
1536
          }
1537
          else
1538
          {
1539
810
            d_pfManager->finalizeProof(ca[confl]);
1540
          }
1541
        }
1542
3394
        return l_False;
1543
      }
1544
1545
      // Analyze the conflict
1546
300882
      learnt_clause.clear();
1547
300882
      int max_level = analyze(confl, learnt_clause, backtrack_level);
1548
300882
      cancelUntil(backtrack_level);
1549
1550
      // Assert the conflict clause and the asserting literal
1551
300882
      if (learnt_clause.size() == 1)
1552
      {
1553
5962
        uncheckedEnqueue(learnt_clause[0]);
1554
5962
        if (needProof())
1555
        {
1556
1491
          d_pfManager->endResChain(learnt_clause[0]);
1557
        }
1558
      }
1559
      else
1560
      {
1561
294920
        CRef cr = ca.alloc(assertionLevelOnly() ? assertionLevel : max_level,
1562
                           learnt_clause,
1563
294920
                           true);
1564
294920
        clauses_removable.push(cr);
1565
294920
        attachClause(cr);
1566
294920
        claBumpActivity(ca[cr]);
1567
294920
        uncheckedEnqueue(learnt_clause[0], cr);
1568
294920
        if (needProof())
1569
        {
1570
20867
          d_pfManager->endResChain(ca[cr]);
1571
        }
1572
      }
1573
1574
300882
      varDecayActivity();
1575
300882
      claDecayActivity();
1576
1577
300882
      if (--learntsize_adjust_cnt == 0)
1578
      {
1579
566
        learntsize_adjust_confl *= learntsize_adjust_inc;
1580
566
        learntsize_adjust_cnt = (int)learntsize_adjust_confl;
1581
566
        max_learnts *= learntsize_inc;
1582
1583
566
        if (verbosity >= 1)
1584
          printf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |\n",
1585
                 (int)conflicts,
1586
                 (int)dec_vars
1587
                     - (trail_lim.size() == 0 ? trail.size() : trail_lim[0]),
1588
                 nClauses(),
1589
                 (int)clauses_literals,
1590
                 (int)max_learnts,
1591
                 nLearnts(),
1592
                 (double)learnts_literals / nLearnts(),
1593
                 progressEstimate() * 100);
1594
      }
1595
1596
300882
      if (theoryConflict && options::sat_refine_conflicts())
1597
      {
1598
        check_type = CHECK_FINAL_FAKE;
1599
      }
1600
      else
1601
      {
1602
300882
        check_type = CHECK_WITH_THEORY;
1603
      }
1604
    }
1605
    else
1606
    {
1607
      // If this was a final check, we are satisfiable
1608
3180279
      if (check_type == CHECK_FINAL)
1609
      {
1610
        // Note that we are done making decisions when there are no pending decisions
1611
        // on assumptions, and the decision engine indicates it is done.
1612
67747
        bool decisionEngineDone = (decisionLevel() >= assumptions.size())
1613
67747
                                  && d_proxy->isDecisionEngineDone();
1614
        // Unless a lemma has added more stuff to the queues
1615
189573
        if (!decisionEngineDone
1616
67747
            && (!order_heap.empty() || qhead < trail.size()))
1617
        {
1618
54079
          check_type = CHECK_WITH_THEORY;
1619
185402
          continue;
1620
        }
1621
13668
        else if (recheck)
1622
        {
1623
          // There some additional stuff added, so we go for another
1624
          // full-check
1625
6188
          continue;
1626
        }
1627
        else
1628
        {
1629
          // Yes, we're truly satisfiable
1630
7480
          return l_True;
1631
        }
1632
      }
1633
3112532
      else if (check_type == CHECK_FINAL_FAKE)
1634
      {
1635
        check_type = CHECK_WITH_THEORY;
1636
      }
1637
1638
6225064
      if ((nof_conflicts >= 0 && conflictC >= nof_conflicts)
1639
6222402
          || !withinBudget(Resource::SatConflictStep))
1640
      {
1641
        // Reached bound on number of conflicts:
1642
2662
        progress_estimate = progressEstimate();
1643
2662
        cancelUntil(0);
1644
        // [mdeters] notify theory engine of restarts for deferred
1645
        // theory processing
1646
2662
        d_proxy->notifyRestart();
1647
2662
        return l_Undef;
1648
      }
1649
1650
      // Simplify the set of problem clauses:
1651
3109870
      if (decisionLevel() == 0 && !simplify())
1652
      {
1653
        return l_False;
1654
      }
1655
1656
3109870
      if (clauses_removable.size() - nAssigns() >= max_learnts)
1657
      {
1658
        // Reduce the set of learnt clauses:
1659
4043
        reduceDB();
1660
      }
1661
1662
3109870
      Lit next = lit_Undef;
1663
3169052
      while (decisionLevel() < assumptions.size())
1664
      {
1665
        // Perform user provided assumption:
1666
351723
        Lit p = assumptions[decisionLevel()];
1667
351723
        if (value(p) == l_True)
1668
        {
1669
          // Dummy decision level:
1670
29591
          newDecisionLevel();
1671
        }
1672
322132
        else if (value(p) == l_False)
1673
        {
1674
2736
          analyzeFinal(~p, d_conflict);
1675
2736
          return l_False;
1676
        }
1677
        else
1678
        {
1679
319396
          next = p;
1680
319396
          break;
1681
        }
1682
      }
1683
1684
3107134
      if (next == lit_Undef)
1685
      {
1686
        // New variable decision:
1687
2787738
        next = pickBranchLit();
1688
1689
2858792
        if (next == lit_Undef)
1690
        {
1691
          // We need to do a full theory check to confirm
1692
142112
          Debug("minisat::search")
1693
71056
              << "Doing a full theory check..." << std::endl;
1694
71056
          check_type = CHECK_FINAL;
1695
71056
          continue;
1696
        }
1697
      }
1698
1699
      // Increase decision level and enqueue 'next'
1700
3036076
      newDecisionLevel();
1701
3036076
      uncheckedEnqueue(next);
1702
    }
1703
3468281
  }
1704
}
1705
1706
1707
2662
double Solver::progressEstimate() const
1708
{
1709
2662
    double  progress = 0;
1710
2662
    double  F = 1.0 / nVars();
1711
1712
191817
    for (int i = 0; i <= decisionLevel(); i++){
1713
189155
        int beg = i == 0 ? 0 : trail_lim[i - 1];
1714
189155
        int end = i == decisionLevel() ? trail.size() : trail_lim[i];
1715
189155
        progress += pow(F, i) * (end - beg);
1716
    }
1717
1718
2662
    return progress / nVars();
1719
}
1720
1721
/*
1722
  Finite subsequences of the Luby-sequence:
1723
1724
  0: 1
1725
  1: 1 1 2
1726
  2: 1 1 2 1 1 2 4
1727
  3: 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8
1728
  ...
1729
1730
1731
 */
1732
1733
16288
static double luby(double y, int x){
1734
1735
    // Find the finite subsequence that contains index 'x', and the
1736
    // size of that subsequence:
1737
    int size, seq;
1738
16288
    for (size = 1, seq = 0; size < x+1; seq++, size = 2*size+1);
1739
1740
27836
    while (size-1 != x){
1741
5774
        size = (size-1)>>1;
1742
5774
        seq--;
1743
5774
        x = x % size;
1744
    }
1745
1746
16288
    return pow(y, seq);
1747
}
1748
1749
// NOTE: assumptions passed in member-variable 'assumptions'.
1750
14996
lbool Solver::solve_()
1751
{
1752
14996
    Debug("minisat") << "nvars = " << nVars() << std::endl;
1753
1754
29992
    ScopedBool scoped_bool(minisat_busy, true);
1755
1756
14996
    Assert(decisionLevel() == 0);
1757
1758
14996
    model.clear();
1759
14996
    d_conflict.clear();
1760
14996
    if (!ok){
1761
1370
      minisat_busy = false;
1762
1370
      return l_False;
1763
    }
1764
1765
13626
    solves++;
1766
1767
13626
    max_learnts               = nClauses() * learntsize_factor;
1768
13626
    learntsize_adjust_confl   = learntsize_adjust_start_confl;
1769
13626
    learntsize_adjust_cnt     = (int)learntsize_adjust_confl;
1770
13626
    lbool   status            = l_Undef;
1771
1772
13626
    if (verbosity >= 1){
1773
1
        printf("============================[ Search Statistics ]==============================\n");
1774
1
        printf("| Conflicts |          ORIGINAL         |          LEARNT          | Progress |\n");
1775
1
        printf("|           |    Vars  Clauses Literals |    Limit  Clauses Lit/Cl |          |\n");
1776
1
        printf("===============================================================================\n");
1777
    }
1778
1779
    // Search:
1780
13626
    int curr_restarts = 0;
1781
46170
    while (status == l_Undef){
1782
16288
        double rest_base = luby_restart ? luby(restart_inc, curr_restarts) : pow(restart_inc, curr_restarts);
1783
16288
        status = search(rest_base * restart_first);
1784
16272
        if (!withinBudget(Resource::SatConflictStep))
1785
          break;  // FIXME add restart option?
1786
16272
        curr_restarts++;
1787
    }
1788
1789
13610
    if (!withinBudget(Resource::SatConflictStep))
1790
      status = l_Undef;
1791
1792
13610
    if (verbosity >= 1)
1793
1
        printf("===============================================================================\n");
1794
1795
1796
13610
    if (status == l_True){
1797
        // Extend & copy model:
1798
7480
        model.growTo(nVars());
1799
624382
        for (int i = 0; i < nVars(); i++) {
1800
616902
          model[i] = value(i);
1801
616902
          Debug("minisat") << i << " = " << model[i] << std::endl;
1802
        }
1803
    }
1804
6130
    else if (status == l_False && d_conflict.size() == 0)
1805
3394
      ok = false;
1806
1807
13610
    return status;
1808
}
1809
1810
//=================================================================================================
1811
// Writing CNF to DIMACS:
1812
//
1813
// FIXME: this needs to be rewritten completely.
1814
1815
static Var mapVar(Var x, vec<Var>& map, Var& max)
1816
{
1817
    if (map.size() <= x || map[x] == -1){
1818
        map.growTo(x+1, -1);
1819
        map[x] = max++;
1820
    }
1821
    return map[x];
1822
}
1823
1824
1825
void Solver::toDimacs(FILE* f, Clause& c, vec<Var>& map, Var& max)
1826
{
1827
    if (satisfied(c)) return;
1828
1829
    for (int i = 0; i < c.size(); i++)
1830
        if (value(c[i]) != l_False)
1831
            fprintf(f, "%s%d ", sign(c[i]) ? "-" : "", mapVar(var(c[i]), map, max)+1);
1832
    fprintf(f, "0\n");
1833
}
1834
1835
1836
void Solver::toDimacs(const char *file, const vec<Lit>& assumps)
1837
{
1838
    FILE* f = fopen(file, "wr");
1839
    if (f == NULL)
1840
        fprintf(stderr, "could not open file %s\n", file), exit(1);
1841
    toDimacs(f, assumps);
1842
    fclose(f);
1843
}
1844
1845
1846
void Solver::toDimacs(FILE* f, const vec<Lit>& assumps)
1847
{
1848
    // Handle case when solver is in contradictory state:
1849
    if (!ok){
1850
        fprintf(f, "p cnf 1 2\n1 0\n-1 0\n");
1851
        return; }
1852
1853
    vec<Var> map; Var max = 0;
1854
1855
    // Cannot use removeClauses here because it is not safe
1856
    // to deallocate them at this point. Could be improved.
1857
    int cnt = 0;
1858
    for (int i = 0; i < clauses_persistent.size(); i++)
1859
        if (!satisfied(ca[clauses_persistent[i]]))
1860
            cnt++;
1861
1862
    for (int i = 0; i < clauses_persistent.size(); i++)
1863
        if (!satisfied(ca[clauses_persistent[i]])){
1864
            Clause& c = ca[clauses_persistent[i]];
1865
            for (int j = 0; j < c.size(); j++)
1866
                if (value(c[j]) != l_False)
1867
                    mapVar(var(c[j]), map, max);
1868
        }
1869
1870
    // Assumptions are added as unit clauses:
1871
    cnt += assumptions.size();
1872
1873
    fprintf(f, "p cnf %d %d\n", max, cnt);
1874
1875
    for (int i = 0; i < assumptions.size(); i++){
1876
      Assert(value(assumptions[i]) != l_False);
1877
      fprintf(f,
1878
              "%s%d 0\n",
1879
              sign(assumptions[i]) ? "-" : "",
1880
              mapVar(var(assumptions[i]), map, max) + 1);
1881
    }
1882
1883
    for (int i = 0; i < clauses_persistent.size(); i++)
1884
        toDimacs(f, ca[clauses_persistent[i]], map, max);
1885
1886
    if (verbosity > 0)
1887
        printf("Wrote %d clauses with %d variables.\n", cnt, max);
1888
}
1889
1890
1891
//=================================================================================================
1892
// Garbage Collection methods:
1893
1894
2897
void Solver::relocAll(ClauseAllocator& to)
1895
{
1896
    // All watchers:
1897
    //
1898
    // for (int i = 0; i < watches.size(); i++)
1899
2897
    watches.cleanAll();
1900
927246
    for (int v = 0; v < nVars(); v++)
1901
2773047
        for (int s = 0; s < 2; s++){
1902
1848698
            Lit p = mkLit(v, s);
1903
            // printf(" >>> RELOCING: %s%d\n", sign(p)?"-":"", var(p)+1);
1904
1848698
            vec<Watcher>& ws = watches[p];
1905
5724230
            for (int j = 0; j < ws.size(); j++)
1906
            {
1907
3875532
              ca.reloc(ws[j].cref, to);
1908
            }
1909
        }
1910
1911
    // All reasons:
1912
    //
1913
200730
    for (int i = 0; i < trail.size(); i++){
1914
197833
        Var v = var(trail[i]);
1915
1916
395666
        if (hasReasonClause(v)
1917
197833
            && (ca[reason(v)].reloced() || locked(ca[reason(v)])))
1918
        {
1919
46718
          ca.reloc(vardata[v].d_reason, to);
1920
        }
1921
    }
1922
    // All learnt:
1923
    //
1924
200758
    for (int i = 0; i < clauses_removable.size(); i++)
1925
    {
1926
197861
      ca.reloc(clauses_removable[i], to);
1927
    }
1928
    // All original:
1929
    //
1930
1742802
    for (int i = 0; i < clauses_persistent.size(); i++)
1931
    {
1932
1739905
      ca.reloc(clauses_persistent[i], to);
1933
    }
1934
2897
}
1935
1936
1937
void Solver::garbageCollect()
1938
{
1939
    // Initialize the next region to a size corresponding to the estimated utilization degree. This
1940
    // is not precise but should avoid some unnecessary reallocations for the new region:
1941
    ClauseAllocator to(ca.size() - ca.wasted());
1942
1943
    relocAll(to);
1944
    if (verbosity >= 2)
1945
        printf("|  Garbage collection:   %12d bytes => %12d bytes             |\n",
1946
               ca.size()*ClauseAllocator::Unit_Size, to.size()*ClauseAllocator::Unit_Size);
1947
    to.moveTo(ca);
1948
}
1949
1950
4869
void Solver::push()
1951
{
1952
4869
  Assert(d_enable_incremental);
1953
4869
  Assert(decisionLevel() == 0);
1954
1955
4869
  ++assertionLevel;
1956
4869
  Debug("minisat") << "in user push, increasing assertion level to " << assertionLevel << std::endl;
1957
4869
  trail_ok.push(ok);
1958
4869
  assigns_lim.push(assigns.size());
1959
1960
4869
  d_context->push();  // SAT context for cvc5
1961
1962
4869
  Debug("minisat") << "MINISAT PUSH assertionLevel is " << assertionLevel << ", trail.size is " << trail.size() << std::endl;
1963
4869
}
1964
1965
4869
void Solver::pop()
1966
{
1967
4869
  Assert(d_enable_incremental);
1968
1969
4869
  Assert(decisionLevel() == 0);
1970
1971
  // Pop the trail below the user level
1972
4869
  --assertionLevel;
1973
9738
  Debug("minisat") << "in user pop, decreasing assertion level to "
1974
4869
                   << assertionLevel << "\n"
1975
4869
                   << cvc5::push;
1976
  while (true) {
1977
57161
    Debug("minisat") << "== unassigning " << trail.last() << std::endl;
1978
57161
    Var      x  = var(trail.last());
1979
57161
    if (user_level(x) > assertionLevel) {
1980
52292
      assigns[x] = l_Undef;
1981
52292
      vardata[x] = VarData(CRef_Undef, -1, -1, intro_level(x), -1);
1982
52292
      if(phase_saving >= 1 && (polarity[x] & 0x2) == 0)
1983
51166
        polarity[x] = sign(trail.last());
1984
52292
      insertVarOrder(x);
1985
52292
      trail.pop();
1986
    } else {
1987
4869
      break;
1988
    }
1989
52292
  }
1990
1991
  // The head should be at the trail top
1992
4869
  qhead = trail.size();
1993
1994
  // Remove the clauses
1995
4869
  removeClausesAboveLevel(clauses_persistent, assertionLevel);
1996
4869
  removeClausesAboveLevel(clauses_removable, assertionLevel);
1997
4869
  Debug("minisat") << cvc5::pop;
1998
  // Pop the SAT context to notify everyone
1999
4869
  d_context->pop();  // SAT context for cvc5
2000
2001
9738
  Debug("minisat") << "MINISAT POP assertionLevel is " << assertionLevel
2002
4869
                   << ", trail.size is " << trail.size() << "\n";
2003
  // Pop the created variables
2004
4869
  resizeVars(assigns_lim.last());
2005
4869
  assigns_lim.pop();
2006
4869
  variables_to_register.clear();
2007
2008
  // Pop the OK
2009
4869
  ok = trail_ok.last();
2010
4869
  trail_ok.pop();
2011
4869
}
2012
2013
263437
CRef Solver::updateLemmas() {
2014
2015
263437
  Debug("minisat::lemmas") << "Solver::updateLemmas() begin" << std::endl;
2016
2017
  // Avoid adding lemmas indefinitely without resource-out
2018
263437
  d_proxy->spendResource(Resource::LemmaStep);
2019
2020
263437
  CRef conflict = CRef_Undef;
2021
2022
  // Decision level to backtrack to
2023
263437
  int backtrackLevel = decisionLevel();
2024
2025
  // We use this comparison operator
2026
263437
  lemma_lt lt(*this);
2027
2028
  // Check for propagation and level to backtrack to
2029
263437
  int i = 0;
2030
790443
  while (i < lemmas.size()) {
2031
    // We need this loop as when we backtrack, due to registration more lemmas could be added
2032
4594309
    for (; i < lemmas.size(); ++ i)
2033
    {
2034
      // The current lemma
2035
2165403
      vec<Lit>& lemma = lemmas[i];
2036
2037
2165403
      Trace("pf::sat") << "Solver::updateLemmas: working on lemma: ";
2038
8890716
      for (int k = 0; k < lemma.size(); ++k) {
2039
6725313
        Trace("pf::sat") << lemma[k] << " ";
2040
      }
2041
2165403
      Trace("pf::sat") << std::endl;
2042
2043
      // If it's an empty lemma, we have a conflict at zero level
2044
2166643
      if (lemma.size() == 0) {
2045
1240
        Assert(!options::unsatCores() && !needProof());
2046
1240
        conflict = CRef_Lazy;
2047
1240
        backtrackLevel = 0;
2048
1240
        Debug("minisat::lemmas") << "Solver::updateLemmas(): found empty clause" << std::endl;
2049
1240
        continue;
2050
      }
2051
      // Sort the lemma to be able to attach
2052
2164163
      sort(lemma, lt);
2053
      // See if the lemma propagates something
2054
2164163
      if (lemma.size() == 1 || value(lemma[1]) == l_False) {
2055
469559
        Debug("minisat::lemmas") << "found unit " << lemma.size() << std::endl;
2056
        // This lemma propagates, see which level we need to backtrack to
2057
469559
        int currentBacktrackLevel = lemma.size() == 1 ? 0 : level(var(lemma[1]));
2058
        // Even if the first literal is true, we should propagate it at this level (unless it's set at a lower level)
2059
469559
        if (value(lemma[0]) != l_True || level(var(lemma[0])) > currentBacktrackLevel) {
2060
452535
          if (currentBacktrackLevel < backtrackLevel) {
2061
153430
            backtrackLevel = currentBacktrackLevel;
2062
          }
2063
        }
2064
      }
2065
    }
2066
2067
    // Pop so that propagation would be current
2068
263503
    Debug("minisat::lemmas") << "Solver::updateLemmas(): backtracking to " << backtrackLevel << " from " << decisionLevel() << std::endl;
2069
263503
    cancelUntil(backtrackLevel);
2070
  }
2071
2072
  // Last index in the trail
2073
263437
  int backtrack_index = trail.size();
2074
2075
  // Attach all the clauses and enqueue all the propagations
2076
2428840
  for (int j = 0; j < lemmas.size(); ++j)
2077
  {
2078
    // The current lemma
2079
2165403
    vec<Lit>& lemma = lemmas[j];
2080
2165403
    bool removable = lemmas_removable[j];
2081
2082
    // Attach it if non-unit
2083
2165403
    CRef lemma_ref = CRef_Undef;
2084
2165403
    if (lemma.size() > 1) {
2085
      // If the lemmas is removable, we can compute its level by the level
2086
2100437
      int clauseLevel = assertionLevel;
2087
2100437
      if (removable && !assertionLevelOnly())
2088
      {
2089
188694
        clauseLevel = 0;
2090
1598582
        for (int k = 0; k < lemma.size(); ++k)
2091
        {
2092
1409888
          clauseLevel = std::max(clauseLevel, intro_level(var(lemma[k])));
2093
        }
2094
      }
2095
2096
2100437
      lemma_ref = ca.alloc(clauseLevel, lemma, removable);
2097
2100437
      if (removable) {
2098
196569
        clauses_removable.push(lemma_ref);
2099
      } else {
2100
1903868
        clauses_persistent.push(lemma_ref);
2101
      }
2102
2100437
      attachClause(lemma_ref);
2103
    }
2104
2105
    // If the lemma is propagating enqueue its literal (or set the conflict)
2106
2165403
    if (conflict == CRef_Undef && value(lemma[0]) != l_True) {
2107
2076739
      if (lemma.size() == 1 || (value(lemma[1]) == l_False && trail_index(var(lemma[1])) < backtrack_index)) {
2108
694802
        Trace("pf::sat") << "Solver::updateLemmas: unit theory lemma: "
2109
347401
                         << lemma[0] << std::endl;
2110
347401
        if (value(lemma[0]) == l_False) {
2111
          // We have a conflict
2112
56383
          if (lemma.size() > 1) {
2113
55814
            Debug("minisat::lemmas") << "Solver::updateLemmas(): conflict" << std::endl;
2114
55814
            conflict = lemma_ref;
2115
          } else {
2116
569
            Debug("minisat::lemmas") << "Solver::updateLemmas(): unit conflict or empty clause" << std::endl;
2117
569
            conflict = CRef_Lazy;
2118
569
            if (needProof())
2119
            {
2120
48
              d_pfManager->storeUnitConflict(lemma[0]);
2121
            }
2122
          }
2123
        } else {
2124
291018
          Debug("minisat::lemmas") << "lemma size is " << lemma.size() << std::endl;
2125
291018
          Debug("minisat::lemmas") << "lemma ref is " << lemma_ref << std::endl;
2126
291018
          uncheckedEnqueue(lemma[0], lemma_ref);
2127
        }
2128
      }
2129
    }
2130
  }
2131
2132
  // Clear the lemmas
2133
263437
  lemmas.clear();
2134
263437
  lemmas_removable.clear();
2135
2136
263437
  if (conflict != CRef_Undef) {
2137
57536
    theoryConflict = true;
2138
  }
2139
2140
263437
  Debug("minisat::lemmas") << "Solver::updateLemmas() end" << std::endl;
2141
2142
263437
  return conflict;
2143
}
2144
2145
6500156
void ClauseAllocator::reloc(CRef& cr, ClauseAllocator& to)
2146
{
2147
6500156
  Debug("minisat") << "ClauseAllocator::reloc: cr " << cr << std::endl;
2148
  // FIXME what is this CRef_lazy
2149
6500156
  if (cr == CRef_Lazy) return;
2150
2151
6500156
  Clause& c = operator[](cr);
2152
6500156
  if (c.reloced()) { cr = c.relocation(); return; }
2153
2154
1938527
  cr = to.alloc(c.level(), c, c.removable());
2155
1938527
  c.relocate(cr);
2156
  // Copy extra data-fields:
2157
  // (This could be cleaned-up. Generalize Clause-constructor to be applicable here instead?)
2158
1938527
  to[cr].mark(c.mark());
2159
1938527
  if (to[cr].removable())         to[cr].activity() = c.activity();
2160
1740666
  else if (to[cr].has_extra()) to[cr].calcAbstraction();
2161
}
2162
2163
3139752
inline bool Solver::withinBudget(Resource r) const
2164
{
2165
3139752
  Assert(d_proxy);
2166
  // spendResource sets async_interrupt or throws UnsafeInterruptException
2167
  // depending on whether hard-limit is enabled
2168
3139752
  d_proxy->spendResource(r);
2169
2170
3139752
  bool within_budget =
2171
6279504
      !asynch_interrupt && (conflict_budget < 0 || conflicts < conflict_budget)
2172
6279504
      && (propagation_budget < 0 || propagations < propagation_budget);
2173
3139752
  return within_budget;
2174
}
2175
2176
2498
SatProofManager* Solver::getProofManager()
2177
{
2178
2498
  return isProofEnabled() ? d_pfManager.get() : nullptr;
2179
}
2180
2181
2823
std::shared_ptr<ProofNode> Solver::getProof()
2182
{
2183
2823
  return isProofEnabled() ? d_pfManager->getProof() : nullptr;
2184
}
2185
2186
39176453
bool Solver::isProofEnabled() const { return d_pfManager != nullptr; }
2187
2188
39171132
bool Solver::needProof() const
2189
{
2190
39171132
  return isProofEnabled()
2191
39171132
         && options::unsatCoresMode() != options::UnsatCoresMode::ASSUMPTIONS;
2192
}
2193
2194
}  // namespace Minisat
2195
29511
}  // namespace cvc5