GCC Code Coverage Report
Directory: . Exec Total Coverage
File: src/prop/minisat/core/Solver.cc Lines: 855 1026 83.3 %
Date: 2021-09-13 Branches: 1177 2782 42.3 %

Line Exec Source
1
/***************************************************************************************[Solver.cc]
2
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
3
Copyright (c) 2007-2010, Niklas Sorensson
4
5
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
6
associated documentation files (the "Software"), to deal in the Software without restriction,
7
including without limitation the rights to use, copy, modify, merge, publish, distribute,
8
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
9
furnished to do so, subject to the following conditions:
10
11
The above copyright notice and this permission notice shall be included in all copies or
12
substantial portions of the Software.
13
14
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
15
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
16
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
17
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
18
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
**************************************************************************************************/
20
21
#include "prop/minisat/core/Solver.h"
22
23
#include <math.h>
24
25
#include <iostream>
26
#include <unordered_set>
27
28
#include "base/check.h"
29
#include "base/output.h"
30
#include "options/base_options.h"
31
#include "options/main_options.h"
32
#include "options/prop_options.h"
33
#include "options/smt_options.h"
34
#include "proof/clause_id.h"
35
#include "prop/minisat/minisat.h"
36
#include "prop/minisat/mtl/Sort.h"
37
#include "prop/theory_proxy.h"
38
39
using namespace cvc5::prop;
40
41
namespace cvc5 {
42
namespace Minisat {
43
44
namespace {
45
/*
46
 * Returns true if the solver should add all clauses at the current assertion
47
 * level.
48
 *
49
 * FIXME: This is a workaround. Currently, our resolution proofs do not
50
 * handle clauses with a lower-than-assertion-level correctly because the
51
 * resolution proofs get removed when popping the context but the SAT solver
52
 * keeps using them.
53
 */
54
12440899
bool assertionLevelOnly()
55
{
56
17500575
  return (options::produceProofs() || options::unsatCores())
57
19822132
         && options::incrementalSolving();
58
}
59
60
//=================================================================================================
61
// Helper functions for decision tree tracing
62
63
// Writes to Trace macro for decision tree tracing
64
static inline void dtviewDecisionHelper(size_t level,
65
                                        const Node& node,
66
                                        const char* decisiontype)
67
{
68
  Trace("dtview") << std::string(level - (options::incrementalSolving() ? 1 : 0), '*')
69
                  << " " << node << " :" << decisiontype << "-DECISION:" << std::endl;
70
}
71
72
// Writes to Trace macro for propagation tracing
73
static inline void dtviewPropagationHeaderHelper(size_t level)
74
{
75
  Trace("dtview::prop") << std::string(level + 1 - (options::incrementalSolving() ? 1 : 0),
76
                                       '*')
77
                        << " /Propagations/" << std::endl;
78
}
79
80
// Writes to Trace macro for propagation tracing
81
static inline void dtviewBoolPropagationHelper(size_t level,
82
                                               Lit& l,
83
                                               cvc5::prop::TheoryProxy* proxy)
84
{
85
  Trace("dtview::prop") << std::string(
86
      level + 1 - (options::incrementalSolving() ? 1 : 0), ' ')
87
                        << ":BOOL-PROP: "
88
                        << proxy->getNode(MinisatSatSolver::toSatLiteral(l))
89
                        << std::endl;
90
}
91
92
// Writes to Trace macro for conflict tracing
93
static inline void dtviewPropConflictHelper(size_t level,
94
                                            Clause& confl,
95
                                            cvc5::prop::TheoryProxy* proxy)
96
{
97
  Trace("dtview::conflict")
98
      << std::string(level + 1 - (options::incrementalSolving() ? 1 : 0), ' ')
99
      << ":PROP-CONFLICT: (or";
100
  for (int i = 0; i < confl.size(); i++)
101
  {
102
    Trace("dtview::conflict")
103
        << " " << proxy->getNode(MinisatSatSolver::toSatLiteral(confl[i]));
104
  }
105
  Trace("dtview::conflict") << ")" << std::endl;
106
}
107
108
}  // namespace
109
110
//=================================================================================================
111
// Options:
112
113
static const char* _cat = "CORE";
114
115
9838
static DoubleOption  opt_var_decay         (_cat, "var-decay",   "The variable activity decay factor",            0.95,     DoubleRange(0, false, 1, false));
116
9838
static DoubleOption  opt_clause_decay      (_cat, "cla-decay",   "The clause activity decay factor",              0.999,    DoubleRange(0, false, 1, false));
117
9838
static DoubleOption  opt_random_var_freq   (_cat, "rnd-freq",    "The frequency with which the decision heuristic tries to choose a random variable", 0, DoubleRange(0, true, 1, true));
118
9838
static DoubleOption  opt_random_seed       (_cat, "rnd-seed",    "Used by the random variable selection",         91648253, DoubleRange(0, false, HUGE_VAL, false));
119
9838
static IntOption     opt_ccmin_mode        (_cat, "ccmin-mode",  "Controls conflict clause minimization (0=none, 1=basic, 2=deep)", 2, IntRange(0, 2));
120
9838
static IntOption     opt_phase_saving      (_cat, "phase-saving", "Controls the level of phase saving (0=none, 1=limited, 2=full)", 2, IntRange(0, 2));
121
9838
static BoolOption    opt_rnd_init_act      (_cat, "rnd-init",    "Randomize the initial activity", false);
122
9838
static BoolOption    opt_luby_restart      (_cat, "luby",        "Use the Luby restart sequence", true);
123
9838
static IntOption     opt_restart_first     (_cat, "rfirst",      "The base restart interval", 25, IntRange(1, INT32_MAX));
124
9838
static DoubleOption  opt_restart_inc       (_cat, "rinc",        "Restart interval increase factor", 3, DoubleRange(1, false, HUGE_VAL, false));
125
9838
static DoubleOption  opt_garbage_frac      (_cat, "gc-frac",     "The fraction of wasted memory allowed before a garbage collection is triggered",  0.20, DoubleRange(0, false, HUGE_VAL, false));
126
127
//=================================================================================================
128
// Proof declarations
129
CRef Solver::TCRef_Undef = CRef_Undef;
130
CRef Solver::TCRef_Lazy = CRef_Lazy;
131
132
class ScopedBool
133
{
134
  bool& d_watch;
135
  bool d_oldValue;
136
137
 public:
138
3776419
  ScopedBool(bool& watch, bool newValue) : d_watch(watch), d_oldValue(watch)
139
  {
140
3776419
    watch = newValue;
141
3776419
  }
142
3776419
  ~ScopedBool() { d_watch = d_oldValue; }
143
};
144
145
//=================================================================================================
146
// Constructor/Destructor:
147
148
9984
Solver::Solver(cvc5::prop::TheoryProxy* proxy,
149
               cvc5::context::Context* context,
150
               cvc5::context::UserContext* userContext,
151
               ProofNodeManager* pnm,
152
9984
               bool enableIncremental)
153
    : d_proxy(proxy),
154
      d_context(context),
155
      assertionLevel(0),
156
      d_pfManager(nullptr),
157
      d_enable_incremental(enableIncremental),
158
      minisat_busy(false)
159
      // Parameters (user settable):
160
      //
161
      ,
162
      verbosity(0),
163
      var_decay(opt_var_decay),
164
      clause_decay(opt_clause_decay),
165
      random_var_freq(opt_random_var_freq),
166
      random_seed(opt_random_seed),
167
      luby_restart(opt_luby_restart),
168
      ccmin_mode(opt_ccmin_mode),
169
      phase_saving(opt_phase_saving),
170
      rnd_pol(false),
171
      rnd_init_act(opt_rnd_init_act),
172
      garbage_frac(opt_garbage_frac),
173
      restart_first(opt_restart_first),
174
      restart_inc(opt_restart_inc)
175
176
      // Parameters (the rest):
177
      //
178
      ,
179
      learntsize_factor(1),
180
      learntsize_inc(1.5)
181
182
      // Parameters (experimental):
183
      //
184
      ,
185
      learntsize_adjust_start_confl(100),
186
      learntsize_adjust_inc(1.5)
187
188
      // Statistics: (formerly in 'SolverStats')
189
      //
190
      ,
191
      solves(0),
192
      starts(0),
193
      decisions(0),
194
      rnd_decisions(0),
195
      propagations(0),
196
      conflicts(0),
197
      resources_consumed(0),
198
      dec_vars(0),
199
      clauses_literals(0),
200
      learnts_literals(0),
201
      max_literals(0),
202
      tot_literals(0)
203
204
      ,
205
      ok(true),
206
      cla_inc(1),
207
      var_inc(1),
208
19968
      watches(WatcherDeleted(ca)),
209
      qhead(0),
210
      simpDB_assigns(-1),
211
      simpDB_props(0),
212
19968
      order_heap(VarOrderLt(activity)),
213
      progress_estimate(0),
214
9984
      remove_satisfied(!enableIncremental)
215
216
      // Resource constraints:
217
      //
218
      ,
219
      conflict_budget(-1),
220
      propagation_budget(-1),
221
59904
      asynch_interrupt(false)
222
{
223
9984
  if (pnm)
224
  {
225
2498
    d_pfManager.reset(
226
1249
        new SatProofManager(this, proxy->getCnfStream(), userContext, pnm));
227
  }
228
229
  // Create the constant variables
230
9984
  varTrue = newVar(true, false, false);
231
9984
  varFalse = newVar(false, false, false);
232
233
  // Assert the constants
234
9984
  uncheckedEnqueue(mkLit(varTrue, false));
235
9984
  uncheckedEnqueue(mkLit(varFalse, true));
236
9984
}
237
238
239
9981
Solver::~Solver()
240
{
241
9981
}
242
243
244
//=================================================================================================
245
// Minor methods:
246
247
248
// Creates a new SAT variable in the solver. If 'decision_var' is cleared, variable will not be
249
// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
250
//
251
1291835
Var Solver::newVar(bool sign, bool dvar, bool isTheoryAtom, bool preRegister, bool canErase)
252
{
253
1291835
    int v = nVars();
254
255
1291835
    watches  .init(mkLit(v, false));
256
1291835
    watches  .init(mkLit(v, true ));
257
1291835
    assigns  .push(l_Undef);
258
1291835
    vardata  .push(VarData(CRef_Undef, -1, -1, assertionLevel, -1));
259
1291835
    activity .push(rnd_init_act ? drand(random_seed) * 0.00001 : 0);
260
1291835
    seen     .push(0);
261
1291835
    polarity .push(sign);
262
1291835
    decision .push();
263
1291835
    trail    .capacity(v+1);
264
    // push whether it corresponds to a theory atom
265
1291835
    theory.push(isTheoryAtom);
266
267
1291835
    setDecisionVar(v, dvar);
268
269
1291835
    Debug("minisat") << "new var " << v << std::endl;
270
271
    // If the variable is introduced at non-zero level, we need to reintroduce it on backtracks
272
1291835
    if (preRegister)
273
    {
274
1205588
      Debug("minisat") << "  To register at level " << decisionLevel()
275
602794
                       << std::endl;
276
602794
      variables_to_register.push(VarIntroInfo(v, decisionLevel()));
277
    }
278
279
1291835
    return v;
280
}
281
282
4869
void Solver::resizeVars(int newSize) {
283
4869
  Assert(d_enable_incremental);
284
4869
  Assert(decisionLevel() == 0);
285
4869
  Assert(newSize >= 2) << "always keep true/false";
286
4869
  if (newSize < nVars()) {
287
3067
    int shrinkSize = nVars() - newSize;
288
289
    // Resize watches up to the negated last literal
290
3067
    watches.resizeTo(mkLit(newSize-1, true));
291
292
    // Resize all info arrays
293
3067
    assigns.shrink(shrinkSize);
294
3067
    vardata.shrink(shrinkSize);
295
3067
    activity.shrink(shrinkSize);
296
3067
    seen.shrink(shrinkSize);
297
3067
    polarity.shrink(shrinkSize);
298
3067
    decision.shrink(shrinkSize);
299
3067
    theory.shrink(shrinkSize);
300
  }
301
302
4869
  if (Debug.isOn("minisat::pop")) {
303
    for (int i = 0; i < trail.size(); ++ i) {
304
      Assert(var(trail[i]) < nVars());
305
    }
306
  }
307
4869
}
308
309
170036456
CRef Solver::reason(Var x) {
310
170036456
  Trace("pf::sat") << "Solver::reason(" << x << ")" << std::endl;
311
312
  // If we already have a reason, just return it
313
170036456
  if (vardata[x].d_reason != CRef_Lazy)
314
  {
315
169990166
    if (Trace.isOn("pf::sat"))
316
    {
317
      Trace("pf::sat") << "  Solver::reason: " << vardata[x].d_reason << ", ";
318
      if (vardata[x].d_reason == CRef_Undef)
319
      {
320
        Trace("pf::sat") << "CRef_Undef";
321
      }
322
      else
323
      {
324
        for (unsigned i = 0, size = ca[vardata[x].d_reason].size(); i < size;
325
             ++i)
326
        {
327
          Trace("pf::sat") << ca[vardata[x].d_reason][i] << " ";
328
        }
329
      }
330
      Trace("pf::sat") << "\n";
331
    }
332
169990166
    return vardata[x].d_reason;
333
  }
334
  // What's the literal we are trying to explain
335
46290
  Lit l = mkLit(x, value(x) != l_True);
336
337
  // Get the explanation from the theory
338
92580
  SatClause explanation_cl;
339
  // FIXME: at some point return a tag with the theory that spawned you
340
46290
  d_proxy->explainPropagation(MinisatSatSolver::toSatLiteral(l),
341
                              explanation_cl);
342
92580
  vec<Lit> explanation;
343
46290
  MinisatSatSolver::toMinisatClause(explanation_cl, explanation);
344
345
92580
  Trace("pf::sat") << "Solver::reason: explanation_cl = " << explanation_cl
346
46290
                   << std::endl;
347
348
  // Sort the literals by trail index level
349
46290
  lemma_lt lt(*this);
350
46290
  sort(explanation, lt);
351
46290
  Assert(explanation[0] == l);
352
353
  // Compute the assertion level for this clause
354
46290
  int explLevel = 0;
355
46290
  if (assertionLevelOnly())
356
  {
357
1585
    explLevel = assertionLevel;
358
    }
359
    else
360
    {
361
      int i, j;
362
44705
      Lit prev = lit_Undef;
363
323971
      for (i = 0, j = 0; i < explanation.size(); ++i)
364
      {
365
        // This clause is valid theory propagation, so its level is the level of
366
        // the top literal
367
279266
        explLevel = std::max(explLevel, intro_level(var(explanation[i])));
368
369
279266
        Assert(value(explanation[i]) != l_Undef);
370
279266
        Assert(i == 0
371
               || trail_index(var(explanation[0]))
372
                      > trail_index(var(explanation[i])));
373
374
        // Always keep the first literal
375
323971
        if (i == 0)
376
        {
377
44705
          prev = explanation[j++] = explanation[i];
378
44705
          continue;
379
        }
380
        // Ignore duplicate literals
381
234561
        if (explanation[i] == prev)
382
        {
383
          continue;
384
        }
385
        // Ignore zero level literals
386
469122
        if (level(var(explanation[i])) == 0
387
234561
            && user_level(var(explanation[i]) == 0))
388
        {
389
          continue;
390
        }
391
        // Keep this literal
392
234561
        prev = explanation[j++] = explanation[i];
393
      }
394
44705
      explanation.shrink(i - j);
395
396
44705
      Trace("pf::sat") << "Solver::reason: explanation = ";
397
323971
      for (int k = 0; k < explanation.size(); ++k)
398
      {
399
279266
        Trace("pf::sat") << explanation[k] << " ";
400
      }
401
44705
      Trace("pf::sat") << std::endl;
402
403
      // We need an explanation clause so we add a fake literal
404
44705
      if (j == 1)
405
      {
406
        // Add not TRUE to the clause
407
        explanation.push(mkLit(varTrue, true));
408
      }
409
    }
410
411
    // Construct the reason
412
46290
    CRef real_reason = ca.alloc(explLevel, explanation, true);
413
46290
    vardata[x] = VarData(real_reason, level(x), user_level(x), intro_level(x), trail_index(x));
414
46290
    clauses_removable.push(real_reason);
415
46290
    attachClause(real_reason);
416
417
46290
    return real_reason;
418
}
419
420
3836675
bool Solver::addClause_(vec<Lit>& ps, bool removable, ClauseId& id)
421
{
422
3836675
    if (!ok) return false;
423
424
    // Check if clause is satisfied and remove false/duplicate literals:
425
3836675
    sort(ps);
426
    Lit p; int i, j;
427
428
    // Which user-level to assert this clause at
429
3836675
    int clauseLevel = (removable && !assertionLevelOnly()) ? 0 : assertionLevel;
430
431
    // Check the clause for tautologies and similar
432
3836675
    int falseLiteralsCount = 0;
433
15339965
    for (i = j = 0, p = lit_Undef; i < ps.size(); i++) {
434
      // Update the level
435
23380952
      clauseLevel = assertionLevelOnly()
436
22760445
                        ? assertionLevel
437
22760445
                        : std::max(clauseLevel, intro_level(var(ps[i])));
438
      // Tautologies are ignored
439
11690476
      if (ps[i] == ~p) {
440
17631
        id = ClauseIdUndef;
441
        // Clause can be ignored
442
17631
        return true;
443
      }
444
      // Clauses with 0-level true literals are also ignored
445
11672845
      if (value(ps[i]) == l_True && level(var(ps[i])) == 0 && user_level(var(ps[i])) == 0) {
446
169555
        id = ClauseIdUndef;
447
169555
        return true;
448
      }
449
      // Ignore repeated literals
450
11503290
      if (ps[i] == p) {
451
19349
        continue;
452
      }
453
      // If a literal is false at 0 level (both sat and user level) we also
454
      // ignore it, unless we are tracking the SAT solver's reasoning
455
11483941
      if (value(ps[i]) == l_False) {
456
7558889
        if (!options::unsatCores() && !needProof() && level(var(ps[i])) == 0
457
3723738
            && user_level(var(ps[i])) == 0)
458
        {
459
783332
          continue;
460
        }
461
        else
462
        {
463
          // If we decide to keep it, we count it into the false literals
464
2136546
          falseLiteralsCount++;
465
        }
466
      }
467
      // This literal is a keeper
468
10700609
      ps[j++] = p = ps[i];
469
    }
470
471
    // Fit to size
472
3649489
    ps.shrink(i - j);
473
474
    // If we are in solve_ or propagate
475
3649489
    if (minisat_busy)
476
    {
477
2171224
      Trace("pf::sat") << "Add clause adding a new lemma: ";
478
8952560
      for (int k = 0; k < ps.size(); ++k) {
479
6781336
        Trace("pf::sat") << ps[k] << " ";
480
      }
481
2171224
      Trace("pf::sat") << std::endl;
482
483
2171224
      lemmas.push();
484
2171224
      ps.copyTo(lemmas.last());
485
2171224
      lemmas_removable.push(removable);
486
    } else {
487
1478265
      Assert(decisionLevel() == 0);
488
489
      // If all false, we're in conflict
490
1478265
      if (ps.size() == falseLiteralsCount) {
491
1341
        if (options::unsatCores() || needProof())
492
        {
493
          // Take care of false units here; otherwise, we need to
494
          // construct the clause below to give to the proof manager
495
          // as the final conflict.
496
489
          if(falseLiteralsCount == 1) {
497
470
            if (needProof())
498
            {
499
470
              d_pfManager->finalizeProof(ps[0], true);
500
            }
501
83964
            return ok = false;
502
          }
503
        }
504
        else
505
        {
506
852
          return ok = false;
507
        }
508
      }
509
510
1476943
      CRef cr = CRef_Undef;
511
512
      // If not unit, add the clause
513
1476943
      if (ps.size() > 1) {
514
515
1398117
        lemma_lt lt(*this);
516
1398117
        sort(ps, lt);
517
518
1398117
        cr = ca.alloc(clauseLevel, ps, false);
519
1398117
        clauses_persistent.push(cr);
520
1398117
        attachClause(cr);
521
522
1398117
        if (options::unsatCores() || needProof())
523
        {
524
661653
          if (ps.size() == falseLiteralsCount)
525
          {
526
19
            if (needProof())
527
            {
528
19
              d_pfManager->finalizeProof(ca[cr], true);
529
            }
530
19
            return ok = false;
531
          }
532
        }
533
      }
534
535
      // Check if it propagates
536
1476924
      if (ps.size() == falseLiteralsCount + 1) {
537
82153
        if(assigns[var(ps[0])] == l_Undef) {
538
79811
          Assert(assigns[var(ps[0])] != l_False);
539
79811
          uncheckedEnqueue(ps[0], cr);
540
159622
          Debug("cores") << "i'm registering a unit clause, maybe input"
541
79811
                         << std::endl;
542
79811
          if (ps.size() == 1)
543
          {
544
            // We need to do this so that the closedness check, if being done,
545
            // goes through when we have unit assumptions whose literal has
546
            // already been registered, as the ProofCnfStream will not register
547
            // them and as they are not the result of propagation will be left
548
            // hanging in assumptions accumulator
549
77310
            if (needProof())
550
            {
551
23603
              d_pfManager->registerSatLitAssumption(ps[0]);
552
            }
553
          }
554
79811
          CRef confl = propagate(CHECK_WITHOUT_THEORY);
555
79811
          if(! (ok = (confl == CRef_Undef)) ) {
556
38
            if (needProof())
557
            {
558
13
              if (ca[confl].size() == 1)
559
              {
560
                d_pfManager->finalizeProof(ca[confl][0]);
561
              }
562
              else
563
              {
564
13
                d_pfManager->finalizeProof(ca[confl]);
565
              }
566
            }
567
          }
568
79811
          return ok;
569
        } else {
570
2342
          return ok;
571
        }
572
      }
573
    }
574
575
3565995
    return true;
576
}
577
578
579
3936283
void Solver::attachClause(CRef cr) {
580
3936283
    const Clause& c = ca[cr];
581
3936283
    if (Debug.isOn("minisat"))
582
    {
583
      Debug("minisat") << "Solver::attachClause(" << c << "): ";
584
      for (unsigned i = 0, size = c.size(); i < size; ++i)
585
      {
586
        Debug("minisat") << c[i] << " ";
587
      }
588
      Debug("minisat") << ", level " << c.level() << "\n";
589
    }
590
3936283
    Assert(c.size() > 1);
591
3936283
    watches[~c[0]].push(Watcher(cr, c[1]));
592
3936283
    watches[~c[1]].push(Watcher(cr, c[0]));
593
3936283
    if (c.removable()) learnts_literals += c.size();
594
3392498
    else            clauses_literals += c.size();
595
3936283
}
596
597
598
854597
void Solver::detachClause(CRef cr, bool strict) {
599
854597
    const Clause& c = ca[cr];
600
854597
    Debug("minisat") << "Solver::detachClause(" << c << ")" << std::endl;
601
854597
    if (Debug.isOn("minisat"))
602
    {
603
      Debug("minisat") << "Solver::detachClause(" << c << "), CRef " << cr
604
                       << ", clause ";
605
      for (unsigned i = 0, size = c.size(); i < size; ++i)
606
      {
607
        Debug("minisat") << c[i] << " ";
608
      }
609
610
      Debug("minisat") << "\n";
611
    }
612
854597
    Assert(c.size() > 1);
613
614
854597
    if (strict){
615
89047
        remove(watches[~c[0]], Watcher(cr, c[1]));
616
89047
        remove(watches[~c[1]], Watcher(cr, c[0]));
617
    }else{
618
        // Lazy detaching: (NOTE! Must clean all watcher lists before garbage collecting this clause)
619
765550
        watches.smudge(~c[0]);
620
765550
        watches.smudge(~c[1]);
621
    }
622
623
854597
    if (c.removable()) learnts_literals -= c.size();
624
583895
    else            clauses_literals -= c.size(); }
625
626
627
765550
void Solver::removeClause(CRef cr) {
628
765550
    Clause& c = ca[cr];
629
765550
    if (Debug.isOn("minisat"))
630
    {
631
      Debug("minisat") << "Solver::removeClause(" << c << "), CRef " << cr
632
                       << ", clause ";
633
      for (unsigned i = 0, size = c.size(); i < size; ++i)
634
      {
635
        Debug("minisat") << c[i] << " ";
636
      }
637
      Debug("minisat") << "\n";
638
    }
639
765550
    detachClause(cr);
640
    // Don't leave pointers to free'd memory!
641
765550
    if (locked(c))
642
    {
643
      // a locked clause c is one whose first literal c[0] is true and is
644
      // propagated by c itself, i.e. vardata[var(c[0])].d_reason == c. Because
645
      // of this if we need to justify the propagation of c[0], via
646
      // Solver::reason, if it appears in a resolution chain built lazily we
647
      // will be unable to do so after the step below. Thus we eagerly justify
648
      // this propagation here.
649
11059
      if (needProof())
650
      {
651
2554
        Trace("pf::sat")
652
1277
            << "Solver::removeClause: eagerly compute propagation of " << c[0]
653
1277
            << "\n";
654
1277
        d_pfManager->startResChain(c);
655
5847
        for (unsigned i = 1, size = c.size(); i < size; ++i)
656
        {
657
4570
          d_pfManager->addResolutionStep(c[i]);
658
        }
659
1277
        d_pfManager->endResChain(c[0]);
660
      }
661
11059
      vardata[var(c[0])].d_reason = CRef_Undef;
662
    }
663
765550
    c.mark(1);
664
765550
    ca.free(cr);
665
765550
}
666
667
668
471145
bool Solver::satisfied(const Clause& c) const {
669
21602583
    for (int i = 0; i < c.size(); i++)
670
21176655
        if (value(c[i]) == l_True)
671
45217
            return true;
672
425928
    return false; }
673
674
675
// Revert to the state at given level (keeping all assignment at 'level' but not beyond).
676
//
677
589174
void Solver::cancelUntil(int level) {
678
589174
    Debug("minisat") << "minisat::cancelUntil(" << level << ")" << std::endl;
679
680
589174
    if (decisionLevel() > level){
681
        // Pop the SMT context
682
3665471
        for (int l = trail_lim.size() - level; l > 0; --l) {
683
3203121
          d_context->pop();
684
        }
685
118116023
        for (int c = trail.size()-1; c >= trail_lim[level]; c--){
686
117653673
            Var      x  = var(trail[c]);
687
117653673
            assigns [x] = l_Undef;
688
117653673
            vardata[x].d_trail_index = -1;
689
235307346
            if ((phase_saving > 1 ||
690
                 ((phase_saving == 1) && c > trail_lim.last())
691
235307346
                 ) && ((polarity[x] & 0x2) == 0)) {
692
116694741
              polarity[x] = sign(trail[c]);
693
            }
694
117653673
            insertVarOrder(x);
695
        }
696
462350
        qhead = trail_lim[level];
697
462350
        trail.shrink(trail.size() - trail_lim[level]);
698
462350
        trail_lim.shrink(trail_lim.size() - level);
699
462350
        flipped.shrink(flipped.size() - level);
700
701
        // Register variables that have not been registered yet
702
462350
        int currentLevel = decisionLevel();
703
922776
        for (int i = variables_to_register.size() - 1;
704
922776
             i >= 0 && variables_to_register[i].d_level > currentLevel;
705
             --i)
706
        {
707
460426
          variables_to_register[i].d_level = currentLevel;
708
920852
          d_proxy->variableNotify(
709
460426
              MinisatSatSolver::toSatVariable(variables_to_register[i].d_var));
710
        }
711
    }
712
589174
}
713
714
15225
void Solver::resetTrail() { cancelUntil(0); }
715
716
//=================================================================================================
717
// Major methods:
718
719
720
2927286
Lit Solver::pickBranchLit()
721
{
722
    Lit nextLit;
723
724
    // Theory requests
725
2927284
    nextLit =
726
2927286
        MinisatSatSolver::toMinisatLit(d_proxy->getNextTheoryDecisionRequest());
727
2948000
    while (nextLit != lit_Undef) {
728
62326
      if(value(var(nextLit)) == l_Undef) {
729
103936
        Debug("theoryDecision")
730
51968
            << "getNextTheoryDecisionRequest(): now deciding on " << nextLit
731
51968
            << std::endl;
732
51968
        decisions++;
733
734
        // org-mode tracing -- theory decision
735
51968
        if (Trace.isOn("dtview"))
736
        {
737
          dtviewDecisionHelper(
738
              d_context->getLevel(),
739
              d_proxy->getNode(MinisatSatSolver::toSatLiteral(nextLit)),
740
              "THEORY");
741
        }
742
743
51968
        if (Trace.isOn("dtview::prop"))
744
        {
745
          dtviewPropagationHeaderHelper(d_context->getLevel());
746
        }
747
748
51968
        return nextLit;
749
      } else {
750
20716
        Debug("theoryDecision")
751
10358
            << "getNextTheoryDecisionRequest(): would decide on " << nextLit
752
10358
            << " but it already has an assignment" << std::endl;
753
      }
754
10358
      nextLit = MinisatSatSolver::toMinisatLit(
755
10358
          d_proxy->getNextTheoryDecisionRequest());
756
    }
757
5750632
    Debug("theoryDecision")
758
2875316
        << "getNextTheoryDecisionRequest(): decide on another literal"
759
2875316
        << std::endl;
760
761
    // DE requests
762
2875316
    bool stopSearch = false;
763
2875316
    nextLit = MinisatSatSolver::toMinisatLit(
764
2875316
        d_proxy->getNextDecisionEngineRequest(stopSearch));
765
2875316
    if(stopSearch) {
766
53203
      return lit_Undef;
767
    }
768
2822113
    if(nextLit != lit_Undef) {
769
1178456
      Assert(value(var(nextLit)) == l_Undef)
770
          << "literal to decide already has value";
771
1178456
      decisions++;
772
1178456
      Var next = var(nextLit);
773
1178456
      if(polarity[next] & 0x2) {
774
225535
        nextLit = mkLit(next, polarity[next] & 0x1);
775
      }
776
777
      // org-mode tracing -- decision engine decision
778
1178456
      if (Trace.isOn("dtview"))
779
      {
780
        dtviewDecisionHelper(
781
            d_context->getLevel(),
782
            d_proxy->getNode(MinisatSatSolver::toSatLiteral(nextLit)),
783
            "DE");
784
      }
785
786
1178456
      if (Trace.isOn("dtview::prop"))
787
      {
788
        dtviewPropagationHeaderHelper(d_context->getLevel());
789
      }
790
791
1178456
      return nextLit;
792
    }
793
794
1643657
    Var next = var_Undef;
795
796
    // Random decision:
797
1643657
    if (drand(random_seed) < random_var_freq && !order_heap.empty()){
798
        next = order_heap[irand(random_seed,order_heap.size())];
799
        if (value(next) == l_Undef && decision[next])
800
            rnd_decisions++; }
801
802
    // Activity based decision:
803
12156205
    while (next >= nVars() || next == var_Undef || value(next) != l_Undef || !decision[next]) {
804
5276233
        if (order_heap.empty()){
805
19959
            next = var_Undef;
806
19959
            break;
807
        }else {
808
5256274
            next = order_heap.removeMin();
809
        }
810
811
5256274
        if(!decision[next]) continue;
812
        // Check with decision engine about relevancy
813
10487244
        if (d_proxy->isDecisionRelevant(MinisatSatSolver::toSatVariable(next))
814
5243622
            == false)
815
        {
816
          next = var_Undef;
817
        }
818
    }
819
820
1643657
    if(next == var_Undef) {
821
19959
      return lit_Undef;
822
    } else {
823
1623698
      decisions++;
824
      // Check with decision engine if it can tell polarity
825
      lbool dec_pol = MinisatSatSolver::toMinisatlbool(
826
1623698
          d_proxy->getDecisionPolarity(MinisatSatSolver::toSatVariable(next)));
827
      Lit decisionLit;
828
1623698
      if(dec_pol != l_Undef) {
829
        Assert(dec_pol == l_True || dec_pol == l_False);
830
        decisionLit = mkLit(next, (dec_pol == l_True));
831
      }
832
      else
833
      {
834
        // If it can't use internal heuristic to do that
835
1623698
        decisionLit = mkLit(
836
1623698
            next, rnd_pol ? drand(random_seed) < 0.5 : (polarity[next] & 0x1));
837
      }
838
839
      // org-mode tracing -- decision engine decision
840
1623698
      if (Trace.isOn("dtview"))
841
      {
842
        dtviewDecisionHelper(
843
            d_context->getLevel(),
844
            d_proxy->getNode(MinisatSatSolver::toSatLiteral(decisionLit)),
845
            "DE");
846
      }
847
848
1623698
      if (Trace.isOn("dtview::prop"))
849
      {
850
        dtviewPropagationHeaderHelper(d_context->getLevel());
851
      }
852
853
1623698
      return decisionLit;
854
    }
855
}
856
857
858
/*_________________________________________________________________________________________________
859
|
860
|  analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&)  ->  [void]
861
|
862
|  Description:
863
|    Analyze conflict and produce a reason clause.
864
|
865
|    Pre-conditions:
866
|      * 'out_learnt' is assumed to be cleared.
867
|      * Current decision level must be greater than root level.
868
|
869
|    Post-conditions:
870
|      * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
871
|      * If out_learnt.size() > 1 then 'out_learnt[1]' has the greatest decision level of the
872
|        rest of literals. There may be others from the same level though.
873
|      * returns the maximal level of the resolved clauses
874
|
875
|________________________________________________________________________________________________@*/
876
302562
int Solver::analyze(CRef confl, vec<Lit>& out_learnt, int& out_btlevel)
877
{
878
605124
  Trace("pf::sat") << "Solver::analyze: starting with " << confl
879
302562
                   << " with decision level " << decisionLevel() << "\n";
880
881
302562
  int pathC = 0;
882
302562
  Lit p = lit_Undef;
883
884
  // Generate conflict clause:
885
  //
886
302562
  out_learnt.push();  // (leave room for the asserting literal)
887
302562
  int index = trail.size() - 1;
888
889
302562
  int max_resolution_level = 0;  // Maximal level of the resolved clauses
890
891
302562
    if (needProof())
892
    {
893
22358
      d_pfManager->startResChain(ca[confl]);
894
    }
895
33336751
    do{
896
33639313
      Assert(confl != CRef_Undef);  // (otherwise should be UIP)
897
898
      {
899
        // ! IMPORTANT !
900
        // It is not safe to use c after this block of code because
901
        // resolveOutUnit() below may lead to clauses being allocated, which
902
        // in turn may lead to reallocations that invalidate c.
903
33639313
        Clause& c = ca[confl];
904
33639313
        max_resolution_level = std::max(max_resolution_level, c.level());
905
906
33639313
        if (c.removable()) claBumpActivity(c);
907
      }
908
909
33639313
        if (Trace.isOn("pf::sat"))
910
        {
911
          Trace("pf::sat") << "Solver::analyze: conflict clause ";
912
          for (unsigned i = 0, size = ca[confl].size(); i < size; ++i)
913
          {
914
            Trace("pf::sat") << ca[confl][i] << " ";
915
          }
916
          Trace("pf::sat") << "\n";
917
        }
918
919
33639313
        Trace("pf::sat") << cvc5::push;
920
230093691
        for (int j = (p == lit_Undef) ? 0 : 1, size = ca[confl].size();
921
230093691
             j < size;
922
             j++)
923
        {
924
196454378
          Lit q = ca[confl][j];
925
926
392908756
          Trace("pf::sat") << "Lit " << q
927
392908756
                           << " seen/level: " << (seen[var(q)] ? 1 : 0) << " / "
928
196454378
                           << level(var(q)) << "\n";
929
196454378
          if (!seen[var(q)] && level(var(q)) > 0)
930
          {
931
60329571
            varBumpActivity(var(q));
932
60329571
            seen[var(q)] = 1;
933
60329571
            if (level(var(q)) >= decisionLevel())
934
33639313
              pathC++;
935
            else
936
26690258
              out_learnt.push(q);
937
          }
938
          else
939
          {
940
            // We could be resolving a literal propagated by a clause/theory
941
            // using information from a higher level
942
136124807
            if (!seen[var(q)] && level(var(q)) == 0)
943
            {
944
397808
              max_resolution_level =
945
795616
                  std::max(max_resolution_level, user_level(var(q)));
946
            }
947
948
            // FIXME: can we do it lazily if we actually need the proof?
949
136124807
            if (level(var(q)) == 0 && needProof())
950
            {
951
137084
              d_pfManager->addResolutionStep(q);
952
            }
953
          }
954
        }
955
33639313
        Trace("pf::sat") << cvc5::pop;
956
957
        // Select next clause to look at:
958
94296383
        while (!seen[var(trail[index--])]);
959
33639313
        p     = trail[index+1];
960
33639313
        confl = reason(var(p));
961
33639313
        seen[var(p)] = 0;
962
33639313
        pathC--;
963
964
33639313
        if (pathC > 0 && confl != CRef_Undef && needProof())
965
        {
966
286308
          d_pfManager->addResolutionStep(ca[confl], p);
967
        }
968
969
33639313
    } while (pathC > 0);
970
302562
    out_learnt[0] = ~p;
971
302562
    if (Debug.isOn("newproof::sat"))
972
    {
973
      Debug("newproof::sat") << "finished with learnt clause ";
974
      for (unsigned i = 0, size = out_learnt.size(); i < size; ++i)
975
      {
976
        prop::SatLiteral satLit = toSatLiteral<Minisat::Solver>(out_learnt[i]);
977
        Debug("newproof::sat") << satLit << " ";
978
      }
979
      Debug("newproof::sat") << "\n";
980
    }
981
982
    // Simplify conflict clause:
983
    int i, j;
984
302562
    out_learnt.copyTo(analyze_toclear);
985
302562
    if (ccmin_mode == 2){
986
302562
        uint32_t abstract_level = 0;
987
26992820
        for (i = 1; i < out_learnt.size(); i++)
988
26690258
            abstract_level |= abstractLevel(var(out_learnt[i])); // (maintain an abstraction of levels involved in conflict)
989
990
26992820
        for (i = j = 1; i < out_learnt.size(); i++) {
991
26690258
            if (reason(var(out_learnt[i])) == CRef_Undef) {
992
4547601
                out_learnt[j++] = out_learnt[i];
993
            } else {
994
              // Check if the literal is redundant
995
22142657
              if (!litRedundant(out_learnt[i], abstract_level)) {
996
                // Literal is not redundant
997
19841048
                out_learnt[j++] = out_learnt[i];
998
              } else {
999
2301609
                if (needProof())
1000
                {
1001
66712
                  Debug("newproof::sat")
1002
33356
                      << "Solver::analyze: redundant lit "
1003
33356
                      << toSatLiteral<Minisat::Solver>(out_learnt[i]) << "\n";
1004
33356
                  d_pfManager->addResolutionStep(out_learnt[i], true);
1005
                }
1006
                // Literal is redundant, to be safe, mark the level as current assertion level
1007
                // TODO: maybe optimize
1008
2301609
                max_resolution_level = std::max(max_resolution_level, user_level(var(out_learnt[i])));
1009
              }
1010
            }
1011
        }
1012
1013
    }else if (ccmin_mode == 1){
1014
        Unreachable();
1015
        for (i = j = 1; i < out_learnt.size(); i++){
1016
            Var x = var(out_learnt[i]);
1017
1018
            if (reason(x) == CRef_Undef)
1019
                out_learnt[j++] = out_learnt[i];
1020
            else{
1021
                Clause& c = ca[reason(var(out_learnt[i]))];
1022
                for (int k = 1; k < c.size(); k++)
1023
                    if (!seen[var(c[k])] && level(var(c[k])) > 0){
1024
                        out_learnt[j++] = out_learnt[i];
1025
                        break; }
1026
            }
1027
        }
1028
    }else
1029
        i = j = out_learnt.size();
1030
1031
302562
    max_literals += out_learnt.size();
1032
302562
    out_learnt.shrink(i - j);
1033
302562
    tot_literals += out_learnt.size();
1034
1035
    // Find correct backtrack level:
1036
    //
1037
302562
    if (out_learnt.size() == 1)
1038
5964
        out_btlevel = 0;
1039
    else{
1040
296598
        int max_i = 1;
1041
        // Find the first literal assigned at the next-highest level:
1042
24388649
        for (int k = 2; k < out_learnt.size(); k++)
1043
24092051
          if (level(var(out_learnt[k])) > level(var(out_learnt[max_i])))
1044
664727
            max_i = k;
1045
        // Swap-in this literal at index 1:
1046
296598
        Lit p2 = out_learnt[max_i];
1047
296598
        out_learnt[max_i] = out_learnt[1];
1048
296598
        out_learnt[1] = p2;
1049
296598
        out_btlevel = level(var(p2));
1050
    }
1051
1052
29578838
    for (int k = 0; k < analyze_toclear.size(); k++)
1053
29276276
      seen[var(analyze_toclear[k])] = 0;  // ('seen[]' is now cleared)
1054
1055
    // Return the maximal resolution level
1056
302562
    return max_resolution_level;
1057
}
1058
1059
1060
// Check if 'p' can be removed. 'abstract_levels' is used to abort early if the algorithm is
1061
// visiting literals at levels that cannot be removed later.
1062
22142657
bool Solver::litRedundant(Lit p, uint32_t abstract_levels)
1063
{
1064
22142657
    analyze_stack.clear(); analyze_stack.push(p);
1065
22142657
    int top = analyze_toclear.size();
1066
59626425
    while (analyze_stack.size() > 0){
1067
38582932
        CRef c_reason = reason(var(analyze_stack.last()));
1068
38582932
        Assert(c_reason != CRef_Undef);
1069
38582932
        Clause& c = ca[c_reason];
1070
38582932
        int c_size = c.size();
1071
38582932
        analyze_stack.pop();
1072
1073
        // Since calling reason might relocate to resize, c is not necesserily the right reference, we must
1074
        // use the allocator each time
1075
149025596
        for (int i = 1; i < c_size; i++){
1076
130283712
          Lit p2 = ca[c_reason][i];
1077
130283712
          if (!seen[var(p2)] && level(var(p2)) > 0)
1078
          {
1079
141808842
            if (reason(var(p2)) != CRef_Undef
1080
70904421
                && (abstractLevel(var(p2)) & abstract_levels) != 0)
1081
            {
1082
51063373
              seen[var(p2)] = 1;
1083
51063373
              analyze_stack.push(p2);
1084
51063373
              analyze_toclear.push(p2);
1085
            }
1086
            else
1087
            {
1088
68620965
              for (int j = top; j < analyze_toclear.size(); j++)
1089
48779917
                seen[var(analyze_toclear[j])] = 0;
1090
19841048
              analyze_toclear.shrink(analyze_toclear.size() - top);
1091
19841048
              return false;
1092
            }
1093
          }
1094
        }
1095
    }
1096
1097
2301609
    return true;
1098
}
1099
1100
1101
/*_________________________________________________________________________________________________
1102
|
1103
|  analyzeFinal : (p : Lit)  ->  [void]
1104
|
1105
|  Description:
1106
|    Specialized analysis procedure to express the final conflict in terms of assumptions.
1107
|    Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
1108
|    stores the result in 'out_conflict'.
1109
|________________________________________________________________________________________________@*/
1110
2738
void Solver::analyzeFinal(Lit p, vec<Lit>& out_conflict)
1111
{
1112
2738
    out_conflict.clear();
1113
2738
    out_conflict.push(p);
1114
1115
2738
    if (decisionLevel() == 0)
1116
920
        return;
1117
1118
1818
    seen[var(p)] = 1;
1119
1120
133022
    for (int i = trail.size()-1; i >= trail_lim[0]; i--){
1121
131204
        Var x = var(trail[i]);
1122
131204
        if (seen[x]){
1123
28684
            if (reason(x) == CRef_Undef){
1124
10592
              Assert(level(x) > 0);
1125
10592
              out_conflict.push(~trail[i]);
1126
            }else{
1127
18092
                Clause& c = ca[reason(x)];
1128
57635
                for (int j = 1; j < c.size(); j++)
1129
39543
                    if (level(var(c[j])) > 0)
1130
38498
                        seen[var(c[j])] = 1;
1131
            }
1132
28684
            seen[x] = 0;
1133
        }
1134
    }
1135
1136
1818
    seen[var(p)] = 0;
1137
}
1138
1139
117988939
void Solver::uncheckedEnqueue(Lit p, CRef from)
1140
{
1141
117988939
  if (Debug.isOn("minisat"))
1142
  {
1143
    Debug("minisat") << "unchecked enqueue of " << p << " ("
1144
                     << trail_index(var(p)) << ") trail size is "
1145
                     << trail.size() << " cap is " << trail.capacity()
1146
                     << ", reason is " << from << ", ";
1147
    if (from == CRef_Lazy)
1148
    {
1149
      Debug("minisat") << "CRef_Lazy";
1150
    }
1151
    else if (from == CRef_Undef)
1152
    {
1153
      Debug("minisat") << "CRef_Undef";
1154
    }
1155
    else
1156
    {
1157
      for (unsigned i = 0, size = ca[from].size(); i < size; ++i)
1158
      {
1159
        Debug("minisat") << ca[from][i] << " ";
1160
      }
1161
    }
1162
    Debug("minisat") << "\n";
1163
  }
1164
117988939
  Assert(value(p) == l_Undef);
1165
117988939
  Assert(var(p) < nVars());
1166
117988939
  assigns[var(p)] = lbool(!sign(p));
1167
117988939
  vardata[var(p)] = VarData(
1168
      from, decisionLevel(), assertionLevel, intro_level(var(p)), trail.size());
1169
117988939
  trail.push_(p);
1170
117988939
  if (theory[var(p)])
1171
  {
1172
    // Enqueue to the theory
1173
17934763
    d_proxy->enqueueTheoryLiteral(MinisatSatSolver::toSatLiteral(p));
1174
  }
1175
117988939
}
1176
1177
3761421
CRef Solver::propagate(TheoryCheckType type)
1178
{
1179
3761421
    CRef confl = CRef_Undef;
1180
3761421
    recheck = false;
1181
3761421
    theoryConflict = false;
1182
1183
7522842
    ScopedBool scoped_bool(minisat_busy, true);
1184
1185
    // Add lemmas that we're left behind
1186
3761421
    if (lemmas.size() > 0) {
1187
145
      confl = updateLemmas();
1188
145
      if (confl != CRef_Undef) {
1189
        return confl;
1190
      }
1191
    }
1192
1193
    // If this is the final check, no need for Boolean propagation and
1194
    // theory propagation
1195
3761421
    if (type == CHECK_FINAL) {
1196
      // Do the theory check
1197
79350
      theoryCheck(cvc5::theory::Theory::EFFORT_FULL);
1198
      // Pick up the theory propagated literals (there could be some,
1199
      // if new lemmas are added)
1200
79339
      propagateTheory();
1201
      // If there are lemmas (or conflicts) update them
1202
79339
      if (lemmas.size() > 0) {
1203
62743
        recheck = true;
1204
62743
        confl = updateLemmas();
1205
62743
        return confl;
1206
      } else {
1207
16596
        recheck = d_proxy->theoryNeedCheck();
1208
16596
        return confl;
1209
      }
1210
    }
1211
1212
    // Keep running until we have checked everything, we
1213
    // have no conflict and no new literals have been asserted
1214
999110
    do {
1215
        // Propagate on the clauses
1216
4681181
        confl = propagateBool();
1217
        // If no conflict, do the theory check
1218
4681181
        if (confl == CRef_Undef && type != CHECK_WITHOUT_THEORY) {
1219
            // Do the theory check
1220
4299411
            if (type == CHECK_FINAL_FAKE) {
1221
              theoryCheck(cvc5::theory::Theory::EFFORT_FULL);
1222
            } else {
1223
4299411
              theoryCheck(cvc5::theory::Theory::EFFORT_STANDARD);
1224
            }
1225
            // Pick up the theory propagated literals
1226
4299408
            propagateTheory();
1227
            // If there are lemmas (or conflicts) update them
1228
8598816
            if (lemmas.size() > 0) {
1229
205745
              confl = updateLemmas();
1230
            }
1231
        } else {
1232
          // if dumping decision tree, print the conflict
1233
381770
          if (Trace.isOn("dtview::conflict"))
1234
          {
1235
            if (confl != CRef_Undef)
1236
            {
1237
              dtviewPropConflictHelper(decisionLevel(), ca[confl], d_proxy);
1238
            }
1239
          }
1240
          // Even though in conflict, we still need to discharge the lemmas
1241
381770
          if (lemmas.size() > 0) {
1242
            // Remember the trail size
1243
            int oldLevel = decisionLevel();
1244
            // Update the lemmas
1245
            CRef lemmaConflict = updateLemmas();
1246
            // If we get a conflict, we prefer it since it's earlier in the trail
1247
            if (lemmaConflict != CRef_Undef) {
1248
              // Lemma conflict takes precedence, since it's earlier in the trail
1249
              confl = lemmaConflict;
1250
            } else {
1251
              // Otherwise, the Boolean conflict is canceled in the case we popped the trail
1252
              if (oldLevel > decisionLevel()) {
1253
                confl = CRef_Undef;
1254
              }
1255
            }
1256
          }
1257
        }
1258
4681178
    } while (confl == CRef_Undef && qhead < trail.size());
1259
3682068
    return confl;
1260
}
1261
1262
4378747
void Solver::propagateTheory() {
1263
8757494
  SatClause propagatedLiteralsClause;
1264
  // Doesn't actually call propagate(); that's done in theoryCheck() now that combination
1265
  // is online.  This just incorporates those propagations previously discovered.
1266
4378747
  d_proxy->theoryPropagate(propagatedLiteralsClause);
1267
1268
8757494
  vec<Lit> propagatedLiterals;
1269
4378747
  MinisatSatSolver::toMinisatClause(propagatedLiteralsClause, propagatedLiterals);
1270
1271
4378747
  int oldTrailSize = trail.size();
1272
4378747
  Debug("minisat") << "old trail size is " << oldTrailSize << ", propagating " << propagatedLiterals.size() << " lits..." << std::endl;
1273
12015316
  for (unsigned i = 0, i_end = propagatedLiterals.size(); i < i_end; ++ i) {
1274
7636569
    Debug("minisat") << "Theory propagated: " << propagatedLiterals[i] << std::endl;
1275
    // multiple theories can propagate the same literal
1276
7636569
    Lit p = propagatedLiterals[i];
1277
7636569
    if (value(p) == l_Undef) {
1278
3895878
      uncheckedEnqueue(p, CRef_Lazy);
1279
    } else {
1280
3740691
      if (value(p) == l_False) {
1281
74618
        Debug("minisat") << "Conflict in theory propagation" << std::endl;
1282
149236
        SatClause explanation_cl;
1283
74618
        d_proxy->explainPropagation(MinisatSatSolver::toSatLiteral(p),
1284
                                    explanation_cl);
1285
149236
        vec<Lit> explanation;
1286
74618
        MinisatSatSolver::toMinisatClause(explanation_cl, explanation);
1287
        ClauseId id; // FIXME: mark it as explanation here somehow?
1288
74618
        addClause(explanation, true, id);
1289
      }
1290
    }
1291
  }
1292
4378747
}
1293
1294
/*_________________________________________________________________________________________________
1295
|
1296
|  theoryCheck: [void]  ->  [Clause*]
1297
|
1298
|  Description:
1299
|    Checks all enqueued theory facts for satisfiability. If a conflict arises, the conflicting
1300
|    clause is returned, otherwise NULL.
1301
|
1302
|    Note: the propagation queue might be NOT empty
1303
|________________________________________________________________________________________________@*/
1304
4378761
void Solver::theoryCheck(cvc5::theory::Theory::Effort effort)
1305
{
1306
4378761
  d_proxy->theoryCheck(effort);
1307
4378747
}
1308
1309
/*_________________________________________________________________________________________________
1310
|
1311
|  propagateBool : [void]  ->  [Clause*]
1312
|
1313
|  Description:
1314
|    Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
1315
|    otherwise CRef_Undef.
1316
|
1317
|    Post-conditions:
1318
|      * the propagation queue is empty, even if there was a conflict.
1319
|________________________________________________________________________________________________@*/
1320
4681181
CRef Solver::propagateBool()
1321
{
1322
4681181
    CRef    confl     = CRef_Undef;
1323
4681181
    int     num_props = 0;
1324
4681181
    watches.cleanAll();
1325
1326
229181489
    while (qhead < trail.size()){
1327
112250154
        Lit            p   = trail[qhead++];     // 'p' is enqueued fact to propagate.
1328
112250154
        vec<Watcher>&  ws  = watches[p];
1329
        Watcher        *i, *j, *end;
1330
112250154
        num_props++;
1331
1332
        // if propagation tracing enabled, print boolean propagation
1333
112250154
        if (Trace.isOn("dtview::prop"))
1334
        {
1335
          dtviewBoolPropagationHelper(decisionLevel(), p, d_proxy);
1336
        }
1337
1338
913532297
        for (i = j = (Watcher*)ws, end = i + ws.size();  i != end;){
1339
            // Try to avoid inspecting the clause:
1340
801282143
            Lit blocker = i->blocker;
1341
1304236564
            if (value(blocker) == l_True){
1342
1534814597
                *j++ = *i++; continue; }
1343
1344
            // Make sure the false literal is data[1]:
1345
298327722
            CRef     cr        = i->cref;
1346
298327722
            Clause&  c         = ca[cr];
1347
298327722
            Lit      false_lit = ~p;
1348
298327722
            if (c[0] == false_lit)
1349
85684339
                c[0] = c[1], c[1] = false_lit;
1350
298327722
            Assert(c[1] == false_lit);
1351
298327722
            i++;
1352
1353
            // If 0th watch is true, then clause is already satisfied.
1354
298327722
            Lit     first = c[0];
1355
298327722
            Watcher w     = Watcher(cr, first);
1356
324279056
            if (first != blocker && value(first) == l_True){
1357
51902668
                *j++ = w; continue; }
1358
1359
            // Look for new watch:
1360
272376388
            Assert(c.size() >= 2);
1361
1258669353
            for (int k = 2; k < c.size(); k++)
1362
1148200634
                if (value(c[k]) != l_False){
1363
161907669
                    c[1] = c[k]; c[k] = false_lit;
1364
161907669
                    watches[~c[1]].push(w);
1365
161907669
                    goto NextClause; }
1366
1367
            // Did not find watch -- clause is unit under assignment:
1368
110468719
            *j++ = w;
1369
110468719
            if (value(first) == l_False){
1370
247303
                confl = cr;
1371
247303
                qhead = trail.size();
1372
                // Copy the remaining watches:
1373
6043637
                while (i < end)
1374
2898167
                    *j++ = *i++;
1375
            }else
1376
110221416
                uncheckedEnqueue(first, cr);
1377
1378
272376388
        NextClause:;
1379
        }
1380
112250154
        ws.shrink(i - j);
1381
    }
1382
4681181
    propagations += num_props;
1383
4681181
    simpDB_props -= num_props;
1384
1385
4681181
    return confl;
1386
}
1387
1388
1389
/*_________________________________________________________________________________________________
1390
|
1391
|  reduceDB : ()  ->  [void]
1392
|
1393
|  Description:
1394
|    Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
1395
|    clauses are clauses that are reason to some assignment. Binary clauses are never removed.
1396
|________________________________________________________________________________________________@*/
1397
struct reduceDB_lt {
1398
    ClauseAllocator& ca;
1399
4053
    reduceDB_lt(ClauseAllocator& ca_) : ca(ca_) {}
1400
5602735
    bool operator () (CRef x, CRef y) {
1401
5602735
        return ca[x].size() > 2 && (ca[y].size() == 2 || ca[x].activity() < ca[y].activity()); }
1402
};
1403
4053
void Solver::reduceDB()
1404
{
1405
    int     i, j;
1406
4053
    double  extra_lim = cla_inc / clauses_removable.size();    // Remove any clause below this activity
1407
1408
4053
    sort(clauses_removable, reduceDB_lt(ca));
1409
    // Don't delete binary or locked clauses. From the rest, delete clauses from the first half
1410
    // and clauses with activity smaller than 'extra_lim':
1411
528696
    for (i = j = 0; i < clauses_removable.size(); i++){
1412
524643
        Clause& c = ca[clauses_removable[i]];
1413
524643
        if (c.size() > 2 && !locked(c) && (i < clauses_removable.size() / 2 || c.activity() < extra_lim))
1414
216533
            removeClause(clauses_removable[i]);
1415
        else
1416
308110
            clauses_removable[j++] = clauses_removable[i];
1417
    }
1418
4053
    clauses_removable.shrink(i - j);
1419
4053
    checkGarbage();
1420
4053
}
1421
1422
1423
18267
void Solver::removeSatisfied(vec<CRef>& cs)
1424
{
1425
    int i, j;
1426
489412
    for (i = j = 0; i < cs.size(); i++){
1427
471145
        Clause& c = ca[cs[i]];
1428
471145
        if (satisfied(c)) {
1429
45217
          removeClause(cs[i]);
1430
        }
1431
        else
1432
        {
1433
425928
          cs[j++] = cs[i];
1434
        }
1435
    }
1436
18267
    cs.shrink(i - j);
1437
18267
}
1438
1439
9738
void Solver::removeClausesAboveLevel(vec<CRef>& cs, int level)
1440
{
1441
    int i, j;
1442
836980
    for (i = j = 0; i < cs.size(); i++){
1443
827242
        Clause& c = ca[cs[i]];
1444
827242
        if (c.level() > level) {
1445
250310
          Assert(!locked(c));
1446
250310
          removeClause(cs[i]);
1447
        } else {
1448
576932
            cs[j++] = cs[i];
1449
        }
1450
    }
1451
9738
    cs.shrink(i - j);
1452
9738
}
1453
1454
18267
void Solver::rebuildOrderHeap()
1455
{
1456
36534
    vec<Var> vs;
1457
2937490
    for (Var v = 0; v < nVars(); v++)
1458
2919223
        if (decision[v] && value(v) == l_Undef)
1459
2228238
            vs.push(v);
1460
18267
    order_heap.build(vs);
1461
18267
}
1462
1463
1464
/*_________________________________________________________________________________________________
1465
|
1466
|  simplify : [void]  ->  [bool]
1467
|
1468
|  Description:
1469
|    Simplify the clause database according to the current top-level assigment. Currently, the only
1470
|    thing done here is the removal of satisfied clauses, but more things can be put here.
1471
|________________________________________________________________________________________________@*/
1472
45881
bool Solver::simplify()
1473
{
1474
45881
  Assert(decisionLevel() == 0);
1475
1476
45881
  if (!ok || propagate(CHECK_WITHOUT_THEORY) != CRef_Undef) return ok = false;
1477
1478
45644
  if (nAssigns() == simpDB_assigns || (simpDB_props > 0)) return true;
1479
1480
  // Remove satisfied clauses:
1481
18267
  removeSatisfied(clauses_removable);
1482
18267
  if (remove_satisfied)  // Can be turned off.
1483
    removeSatisfied(clauses_persistent);
1484
18267
  checkGarbage();
1485
18267
  rebuildOrderHeap();
1486
1487
18267
  simpDB_assigns = nAssigns();
1488
18267
  simpDB_props =
1489
18267
      clauses_literals + learnts_literals;  // (shouldn't depend on stats
1490
                                            // really, but it will do for now)
1491
1492
18267
  return true;
1493
}
1494
1495
1496
/*_________________________________________________________________________________________________
1497
|
1498
|  search : (nof_conflicts : int) (params : const SearchParams&)  ->  [lbool]
1499
|
1500
|  Description:
1501
|    Search for a model the specified number of conflicts.
1502
|    NOTE! Use negative value for 'nof_conflicts' indicate infinity.
1503
|
1504
|  Output:
1505
|    'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If
1506
|    all variables are decision variables, this means that the clause set is satisfiable. 'l_False'
1507
|    if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached.
1508
|________________________________________________________________________________________________@*/
1509
16316
lbool Solver::search(int nof_conflicts)
1510
{
1511
16316
  Assert(ok);
1512
  int backtrack_level;
1513
16316
  int conflictC = 0;
1514
32632
  vec<Lit> learnt_clause;
1515
16316
  starts++;
1516
1517
16316
  TheoryCheckType check_type = CHECK_WITH_THEORY;
1518
  for (;;)
1519
  {
1520
    // Propagate and call the theory solvers
1521
3626913
    CRef confl = propagate(check_type);
1522
3626899
    Assert(lemmas.size() == 0);
1523
1524
3626899
    if (confl != CRef_Undef)
1525
    {
1526
305956
      conflicts++;
1527
305956
      conflictC++;
1528
1529
305956
      if (decisionLevel() == 0)
1530
      {
1531
3394
        if (needProof())
1532
        {
1533
858
          if (confl == CRef_Lazy)
1534
          {
1535
48
            d_pfManager->finalizeProof();
1536
          }
1537
          else
1538
          {
1539
810
            d_pfManager->finalizeProof(ca[confl]);
1540
          }
1541
        }
1542
3394
        return l_False;
1543
      }
1544
1545
      // Analyze the conflict
1546
302562
      learnt_clause.clear();
1547
302562
      int max_level = analyze(confl, learnt_clause, backtrack_level);
1548
302562
      cancelUntil(backtrack_level);
1549
1550
      // Assert the conflict clause and the asserting literal
1551
302562
      if (learnt_clause.size() == 1)
1552
      {
1553
5964
        uncheckedEnqueue(learnt_clause[0]);
1554
5964
        if (needProof())
1555
        {
1556
1491
          d_pfManager->endResChain(learnt_clause[0]);
1557
        }
1558
      }
1559
      else
1560
      {
1561
296598
        CRef cr = ca.alloc(assertionLevelOnly() ? assertionLevel : max_level,
1562
                           learnt_clause,
1563
296598
                           true);
1564
296598
        clauses_removable.push(cr);
1565
296598
        attachClause(cr);
1566
296598
        claBumpActivity(ca[cr]);
1567
296598
        uncheckedEnqueue(learnt_clause[0], cr);
1568
296598
        if (needProof())
1569
        {
1570
20867
          d_pfManager->endResChain(ca[cr]);
1571
        }
1572
      }
1573
1574
302562
      varDecayActivity();
1575
302562
      claDecayActivity();
1576
1577
302562
      if (--learntsize_adjust_cnt == 0)
1578
      {
1579
574
        learntsize_adjust_confl *= learntsize_adjust_inc;
1580
574
        learntsize_adjust_cnt = (int)learntsize_adjust_confl;
1581
574
        max_learnts *= learntsize_inc;
1582
1583
574
        if (verbosity >= 1)
1584
          printf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |\n",
1585
                 (int)conflicts,
1586
                 (int)dec_vars
1587
                     - (trail_lim.size() == 0 ? trail.size() : trail_lim[0]),
1588
                 nClauses(),
1589
                 (int)clauses_literals,
1590
                 (int)max_learnts,
1591
                 nLearnts(),
1592
                 (double)learnts_literals / nLearnts(),
1593
                 progressEstimate() * 100);
1594
      }
1595
1596
302562
      if (theoryConflict && options::sat_refine_conflicts())
1597
      {
1598
        check_type = CHECK_FINAL_FAKE;
1599
      }
1600
      else
1601
      {
1602
302562
        check_type = CHECK_WITH_THEORY;
1603
      }
1604
    }
1605
    else
1606
    {
1607
      // If this was a final check, we are satisfiable
1608
3320943
      if (check_type == CHECK_FINAL)
1609
      {
1610
        // Note that we are done making decisions when there are no pending decisions
1611
        // on assumptions, and the decision engine indicates it is done.
1612
68807
        bool decisionEngineDone = (decisionLevel() >= assumptions.size())
1613
68807
                                  && d_proxy->isDecisionEngineDone();
1614
        // Unless a lemma has added more stuff to the queues
1615
192753
        if (!decisionEngineDone
1616
68807
            && (!order_heap.empty() || qhead < trail.size()))
1617
        {
1618
55139
          check_type = CHECK_WITH_THEORY;
1619
189628
          continue;
1620
        }
1621
13668
        else if (recheck)
1622
        {
1623
          // There some additional stuff added, so we go for another
1624
          // full-check
1625
6188
          continue;
1626
        }
1627
        else
1628
        {
1629
          // Yes, we're truly satisfiable
1630
7480
          return l_True;
1631
        }
1632
      }
1633
3252136
      else if (check_type == CHECK_FINAL_FAKE)
1634
      {
1635
        check_type = CHECK_WITH_THEORY;
1636
      }
1637
1638
6504272
      if ((nof_conflicts >= 0 && conflictC >= nof_conflicts)
1639
6501584
          || !withinBudget(Resource::SatConflictStep))
1640
      {
1641
        // Reached bound on number of conflicts:
1642
2688
        progress_estimate = progressEstimate();
1643
2688
        cancelUntil(0);
1644
        // [mdeters] notify theory engine of restarts for deferred
1645
        // theory processing
1646
2688
        d_proxy->notifyRestart();
1647
2688
        return l_Undef;
1648
      }
1649
1650
      // Simplify the set of problem clauses:
1651
3249448
      if (decisionLevel() == 0 && !simplify())
1652
      {
1653
        return l_False;
1654
      }
1655
1656
3249448
      if (clauses_removable.size() - nAssigns() >= max_learnts)
1657
      {
1658
        // Reduce the set of learnt clauses:
1659
4053
        reduceDB();
1660
      }
1661
1662
3249448
      Lit next = lit_Undef;
1663
3308778
      while (decisionLevel() < assumptions.size())
1664
      {
1665
        // Perform user provided assumption:
1666
351827
        Lit p = assumptions[decisionLevel()];
1667
351827
        if (value(p) == l_True)
1668
        {
1669
          // Dummy decision level:
1670
29665
          newDecisionLevel();
1671
        }
1672
322162
        else if (value(p) == l_False)
1673
        {
1674
2738
          analyzeFinal(~p, d_conflict);
1675
2738
          return l_False;
1676
        }
1677
        else
1678
        {
1679
319424
          next = p;
1680
319424
          break;
1681
        }
1682
      }
1683
1684
3246710
      if (next == lit_Undef)
1685
      {
1686
        // New variable decision:
1687
2927286
        next = pickBranchLit();
1688
1689
3000446
        if (next == lit_Undef)
1690
        {
1691
          // We need to do a full theory check to confirm
1692
146324
          Debug("minisat::search")
1693
73162
              << "Doing a full theory check..." << std::endl;
1694
73162
          check_type = CHECK_FINAL;
1695
73162
          continue;
1696
        }
1697
      }
1698
1699
      // Increase decision level and enqueue 'next'
1700
3173546
      newDecisionLevel();
1701
3173546
      uncheckedEnqueue(next);
1702
    }
1703
3610597
  }
1704
}
1705
1706
1707
2688
double Solver::progressEstimate() const
1708
{
1709
2688
    double  progress = 0;
1710
2688
    double  F = 1.0 / nVars();
1711
1712
192101
    for (int i = 0; i <= decisionLevel(); i++){
1713
189413
        int beg = i == 0 ? 0 : trail_lim[i - 1];
1714
189413
        int end = i == decisionLevel() ? trail.size() : trail_lim[i];
1715
189413
        progress += pow(F, i) * (end - beg);
1716
    }
1717
1718
2688
    return progress / nVars();
1719
}
1720
1721
/*
1722
  Finite subsequences of the Luby-sequence:
1723
1724
  0: 1
1725
  1: 1 1 2
1726
  2: 1 1 2 1 1 2 4
1727
  3: 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8
1728
  ...
1729
1730
1731
 */
1732
1733
16316
static double luby(double y, int x){
1734
1735
    // Find the finite subsequence that contains index 'x', and the
1736
    // size of that subsequence:
1737
    int size, seq;
1738
16316
    for (size = 1, seq = 0; size < x+1; seq++, size = 2*size+1);
1739
1740
27956
    while (size-1 != x){
1741
5820
        size = (size-1)>>1;
1742
5820
        seq--;
1743
5820
        x = x % size;
1744
    }
1745
1746
16316
    return pow(y, seq);
1747
}
1748
1749
// NOTE: assumptions passed in member-variable 'assumptions'.
1750
14998
lbool Solver::solve_()
1751
{
1752
14998
    Debug("minisat") << "nvars = " << nVars() << std::endl;
1753
1754
29996
    ScopedBool scoped_bool(minisat_busy, true);
1755
1756
14998
    Assert(decisionLevel() == 0);
1757
1758
14998
    model.clear();
1759
14998
    d_conflict.clear();
1760
14998
    if (!ok){
1761
1370
      minisat_busy = false;
1762
1370
      return l_False;
1763
    }
1764
1765
13628
    solves++;
1766
1767
13628
    max_learnts               = nClauses() * learntsize_factor;
1768
13628
    learntsize_adjust_confl   = learntsize_adjust_start_confl;
1769
13628
    learntsize_adjust_cnt     = (int)learntsize_adjust_confl;
1770
13628
    lbool   status            = l_Undef;
1771
1772
13628
    if (verbosity >= 1){
1773
1
        printf("============================[ Search Statistics ]==============================\n");
1774
1
        printf("| Conflicts |          ORIGINAL         |          LEARNT          | Progress |\n");
1775
1
        printf("|           |    Vars  Clauses Literals |    Limit  Clauses Lit/Cl |          |\n");
1776
1
        printf("===============================================================================\n");
1777
    }
1778
1779
    // Search:
1780
13628
    int curr_restarts = 0;
1781
46228
    while (status == l_Undef){
1782
16316
        double rest_base = luby_restart ? luby(restart_inc, curr_restarts) : pow(restart_inc, curr_restarts);
1783
16316
        status = search(rest_base * restart_first);
1784
16300
        if (!withinBudget(Resource::SatConflictStep))
1785
          break;  // FIXME add restart option?
1786
16300
        curr_restarts++;
1787
    }
1788
1789
13612
    if (!withinBudget(Resource::SatConflictStep))
1790
      status = l_Undef;
1791
1792
13612
    if (verbosity >= 1)
1793
1
        printf("===============================================================================\n");
1794
1795
1796
13612
    if (status == l_True){
1797
        // Extend & copy model:
1798
7480
        model.growTo(nVars());
1799
624382
        for (int i = 0; i < nVars(); i++) {
1800
616902
          model[i] = value(i);
1801
616902
          Debug("minisat") << i << " = " << model[i] << std::endl;
1802
        }
1803
    }
1804
6132
    else if (status == l_False && d_conflict.size() == 0)
1805
3394
      ok = false;
1806
1807
13612
    return status;
1808
}
1809
1810
//=================================================================================================
1811
// Writing CNF to DIMACS:
1812
//
1813
// FIXME: this needs to be rewritten completely.
1814
1815
static Var mapVar(Var x, vec<Var>& map, Var& max)
1816
{
1817
    if (map.size() <= x || map[x] == -1){
1818
        map.growTo(x+1, -1);
1819
        map[x] = max++;
1820
    }
1821
    return map[x];
1822
}
1823
1824
1825
void Solver::toDimacs(FILE* f, Clause& c, vec<Var>& map, Var& max)
1826
{
1827
    if (satisfied(c)) return;
1828
1829
    for (int i = 0; i < c.size(); i++)
1830
        if (value(c[i]) != l_False)
1831
            fprintf(f, "%s%d ", sign(c[i]) ? "-" : "", mapVar(var(c[i]), map, max)+1);
1832
    fprintf(f, "0\n");
1833
}
1834
1835
1836
void Solver::toDimacs(const char *file, const vec<Lit>& assumps)
1837
{
1838
    FILE* f = fopen(file, "wr");
1839
    if (f == NULL)
1840
        fprintf(stderr, "could not open file %s\n", file), exit(1);
1841
    toDimacs(f, assumps);
1842
    fclose(f);
1843
}
1844
1845
1846
void Solver::toDimacs(FILE* f, const vec<Lit>& assumps)
1847
{
1848
    // Handle case when solver is in contradictory state:
1849
    if (!ok){
1850
        fprintf(f, "p cnf 1 2\n1 0\n-1 0\n");
1851
        return; }
1852
1853
    vec<Var> map; Var max = 0;
1854
1855
    // Cannot use removeClauses here because it is not safe
1856
    // to deallocate them at this point. Could be improved.
1857
    int cnt = 0;
1858
    for (int i = 0; i < clauses_persistent.size(); i++)
1859
        if (!satisfied(ca[clauses_persistent[i]]))
1860
            cnt++;
1861
1862
    for (int i = 0; i < clauses_persistent.size(); i++)
1863
        if (!satisfied(ca[clauses_persistent[i]])){
1864
            Clause& c = ca[clauses_persistent[i]];
1865
            for (int j = 0; j < c.size(); j++)
1866
                if (value(c[j]) != l_False)
1867
                    mapVar(var(c[j]), map, max);
1868
        }
1869
1870
    // Assumptions are added as unit clauses:
1871
    cnt += assumptions.size();
1872
1873
    fprintf(f, "p cnf %d %d\n", max, cnt);
1874
1875
    for (int i = 0; i < assumptions.size(); i++){
1876
      Assert(value(assumptions[i]) != l_False);
1877
      fprintf(f,
1878
              "%s%d 0\n",
1879
              sign(assumptions[i]) ? "-" : "",
1880
              mapVar(var(assumptions[i]), map, max) + 1);
1881
    }
1882
1883
    for (int i = 0; i < clauses_persistent.size(); i++)
1884
        toDimacs(f, ca[clauses_persistent[i]], map, max);
1885
1886
    if (verbosity > 0)
1887
        printf("Wrote %d clauses with %d variables.\n", cnt, max);
1888
}
1889
1890
1891
//=================================================================================================
1892
// Garbage Collection methods:
1893
1894
2907
void Solver::relocAll(ClauseAllocator& to)
1895
{
1896
    // All watchers:
1897
    //
1898
    // for (int i = 0; i < watches.size(); i++)
1899
2907
    watches.cleanAll();
1900
931478
    for (int v = 0; v < nVars(); v++)
1901
2785713
        for (int s = 0; s < 2; s++){
1902
1857142
            Lit p = mkLit(v, s);
1903
            // printf(" >>> RELOCING: %s%d\n", sign(p)?"-":"", var(p)+1);
1904
1857142
            vec<Watcher>& ws = watches[p];
1905
5756270
            for (int j = 0; j < ws.size(); j++)
1906
            {
1907
3899128
              ca.reloc(ws[j].cref, to);
1908
            }
1909
        }
1910
1911
    // All reasons:
1912
    //
1913
201608
    for (int i = 0; i < trail.size(); i++){
1914
198701
        Var v = var(trail[i]);
1915
1916
397402
        if (hasReasonClause(v)
1917
198701
            && (ca[reason(v)].reloced() || locked(ca[reason(v)])))
1918
        {
1919
47384
          ca.reloc(vardata[v].d_reason, to);
1920
        }
1921
    }
1922
    // All learnt:
1923
    //
1924
205148
    for (int i = 0; i < clauses_removable.size(); i++)
1925
    {
1926
202241
      ca.reloc(clauses_removable[i], to);
1927
    }
1928
    // All original:
1929
    //
1930
1750230
    for (int i = 0; i < clauses_persistent.size(); i++)
1931
    {
1932
1747323
      ca.reloc(clauses_persistent[i], to);
1933
    }
1934
2907
}
1935
1936
1937
void Solver::garbageCollect()
1938
{
1939
    // Initialize the next region to a size corresponding to the estimated utilization degree. This
1940
    // is not precise but should avoid some unnecessary reallocations for the new region:
1941
    ClauseAllocator to(ca.size() - ca.wasted());
1942
1943
    relocAll(to);
1944
    if (verbosity >= 2)
1945
        printf("|  Garbage collection:   %12d bytes => %12d bytes             |\n",
1946
               ca.size()*ClauseAllocator::Unit_Size, to.size()*ClauseAllocator::Unit_Size);
1947
    to.moveTo(ca);
1948
}
1949
1950
4869
void Solver::push()
1951
{
1952
4869
  Assert(d_enable_incremental);
1953
4869
  Assert(decisionLevel() == 0);
1954
1955
4869
  ++assertionLevel;
1956
4869
  Debug("minisat") << "in user push, increasing assertion level to " << assertionLevel << std::endl;
1957
4869
  trail_ok.push(ok);
1958
4869
  assigns_lim.push(assigns.size());
1959
1960
4869
  d_context->push();  // SAT context for cvc5
1961
1962
4869
  Debug("minisat") << "MINISAT PUSH assertionLevel is " << assertionLevel << ", trail.size is " << trail.size() << std::endl;
1963
4869
}
1964
1965
4869
void Solver::pop()
1966
{
1967
4869
  Assert(d_enable_incremental);
1968
1969
4869
  Assert(decisionLevel() == 0);
1970
1971
  // Pop the trail below the user level
1972
4869
  --assertionLevel;
1973
9738
  Debug("minisat") << "in user pop, decreasing assertion level to "
1974
4869
                   << assertionLevel << "\n"
1975
4869
                   << cvc5::push;
1976
  while (true) {
1977
57161
    Debug("minisat") << "== unassigning " << trail.last() << std::endl;
1978
57161
    Var      x  = var(trail.last());
1979
57161
    if (user_level(x) > assertionLevel) {
1980
52292
      assigns[x] = l_Undef;
1981
52292
      vardata[x] = VarData(CRef_Undef, -1, -1, intro_level(x), -1);
1982
52292
      if(phase_saving >= 1 && (polarity[x] & 0x2) == 0)
1983
51166
        polarity[x] = sign(trail.last());
1984
52292
      insertVarOrder(x);
1985
52292
      trail.pop();
1986
    } else {
1987
4869
      break;
1988
    }
1989
52292
  }
1990
1991
  // The head should be at the trail top
1992
4869
  qhead = trail.size();
1993
1994
  // Remove the clauses
1995
4869
  removeClausesAboveLevel(clauses_persistent, assertionLevel);
1996
4869
  removeClausesAboveLevel(clauses_removable, assertionLevel);
1997
4869
  Debug("minisat") << cvc5::pop;
1998
  // Pop the SAT context to notify everyone
1999
4869
  d_context->pop();  // SAT context for cvc5
2000
2001
9738
  Debug("minisat") << "MINISAT POP assertionLevel is " << assertionLevel
2002
4869
                   << ", trail.size is " << trail.size() << "\n";
2003
  // Pop the created variables
2004
4869
  resizeVars(assigns_lim.last());
2005
4869
  assigns_lim.pop();
2006
4869
  variables_to_register.clear();
2007
2008
  // Pop the OK
2009
4869
  ok = trail_ok.last();
2010
4869
  trail_ok.pop();
2011
4869
}
2012
2013
268633
CRef Solver::updateLemmas() {
2014
2015
268633
  Debug("minisat::lemmas") << "Solver::updateLemmas() begin" << std::endl;
2016
2017
  // Avoid adding lemmas indefinitely without resource-out
2018
268633
  d_proxy->spendResource(Resource::LemmaStep);
2019
2020
268633
  CRef conflict = CRef_Undef;
2021
2022
  // Decision level to backtrack to
2023
268633
  int backtrackLevel = decisionLevel();
2024
2025
  // We use this comparison operator
2026
268633
  lemma_lt lt(*this);
2027
2028
  // Check for propagation and level to backtrack to
2029
268633
  int i = 0;
2030
806031
  while (i < lemmas.size()) {
2031
    // We need this loop as when we backtrack, due to registration more lemmas could be added
2032
4611093
    for (; i < lemmas.size(); ++ i)
2033
    {
2034
      // The current lemma
2035
2171197
      vec<Lit>& lemma = lemmas[i];
2036
2037
2171197
      Trace("pf::sat") << "Solver::updateLemmas: working on lemma: ";
2038
8952494
      for (int k = 0; k < lemma.size(); ++k) {
2039
6781297
        Trace("pf::sat") << lemma[k] << " ";
2040
      }
2041
2171197
      Trace("pf::sat") << std::endl;
2042
2043
      // If it's an empty lemma, we have a conflict at zero level
2044
2172437
      if (lemma.size() == 0) {
2045
1240
        Assert(!options::unsatCores() && !needProof());
2046
1240
        conflict = CRef_Lazy;
2047
1240
        backtrackLevel = 0;
2048
1240
        Debug("minisat::lemmas") << "Solver::updateLemmas(): found empty clause" << std::endl;
2049
1240
        continue;
2050
      }
2051
      // Sort the lemma to be able to attach
2052
2169957
      sort(lemma, lt);
2053
      // See if the lemma propagates something
2054
2169957
      if (lemma.size() == 1 || value(lemma[1]) == l_False) {
2055
475201
        Debug("minisat::lemmas") << "found unit " << lemma.size() << std::endl;
2056
        // This lemma propagates, see which level we need to backtrack to
2057
475201
        int currentBacktrackLevel = lemma.size() == 1 ? 0 : level(var(lemma[1]));
2058
        // Even if the first literal is true, we should propagate it at this level (unless it's set at a lower level)
2059
475201
        if (value(lemma[0]) != l_True || level(var(lemma[0])) > currentBacktrackLevel) {
2060
458081
          if (currentBacktrackLevel < backtrackLevel) {
2061
157542
            backtrackLevel = currentBacktrackLevel;
2062
          }
2063
        }
2064
      }
2065
    }
2066
2067
    // Pop so that propagation would be current
2068
268699
    Debug("minisat::lemmas") << "Solver::updateLemmas(): backtracking to " << backtrackLevel << " from " << decisionLevel() << std::endl;
2069
268699
    cancelUntil(backtrackLevel);
2070
  }
2071
2072
  // Last index in the trail
2073
268633
  int backtrack_index = trail.size();
2074
2075
  // Attach all the clauses and enqueue all the propagations
2076
2439830
  for (int j = 0; j < lemmas.size(); ++j)
2077
  {
2078
    // The current lemma
2079
2171197
    vec<Lit>& lemma = lemmas[j];
2080
2171197
    bool removable = lemmas_removable[j];
2081
2082
    // Attach it if non-unit
2083
2171197
    CRef lemma_ref = CRef_Undef;
2084
2171197
    if (lemma.size() > 1) {
2085
      // If the lemmas is removable, we can compute its level by the level
2086
2106231
      int clauseLevel = assertionLevel;
2087
2106231
      if (removable && !assertionLevelOnly())
2088
      {
2089
193022
        clauseLevel = 0;
2090
1653788
        for (int k = 0; k < lemma.size(); ++k)
2091
        {
2092
1460766
          clauseLevel = std::max(clauseLevel, intro_level(var(lemma[k])));
2093
        }
2094
      }
2095
2096
2106231
      lemma_ref = ca.alloc(clauseLevel, lemma, removable);
2097
2106231
      if (removable) {
2098
200897
        clauses_removable.push(lemma_ref);
2099
      } else {
2100
1905334
        clauses_persistent.push(lemma_ref);
2101
      }
2102
2106231
      attachClause(lemma_ref);
2103
    }
2104
2105
    // If the lemma is propagating enqueue its literal (or set the conflict)
2106
2171197
    if (conflict == CRef_Undef && value(lemma[0]) != l_True) {
2107
2082301
      if (lemma.size() == 1 || (value(lemma[1]) == l_False && trail_index(var(lemma[1])) < backtrack_index)) {
2108
705566
        Trace("pf::sat") << "Solver::updateLemmas: unit theory lemma: "
2109
352783
                         << lemma[0] << std::endl;
2110
352783
        if (value(lemma[0]) == l_False) {
2111
          // We have a conflict
2112
57541
          if (lemma.size() > 1) {
2113
56972
            Debug("minisat::lemmas") << "Solver::updateLemmas(): conflict" << std::endl;
2114
56972
            conflict = lemma_ref;
2115
          } else {
2116
569
            Debug("minisat::lemmas") << "Solver::updateLemmas(): unit conflict or empty clause" << std::endl;
2117
569
            conflict = CRef_Lazy;
2118
569
            if (needProof())
2119
            {
2120
48
              d_pfManager->storeUnitConflict(lemma[0]);
2121
            }
2122
          }
2123
        } else {
2124
295242
          Debug("minisat::lemmas") << "lemma size is " << lemma.size() << std::endl;
2125
295242
          Debug("minisat::lemmas") << "lemma ref is " << lemma_ref << std::endl;
2126
295242
          uncheckedEnqueue(lemma[0], lemma_ref);
2127
        }
2128
      }
2129
    }
2130
  }
2131
2132
  // Clear the lemmas
2133
268633
  lemmas.clear();
2134
268633
  lemmas_removable.clear();
2135
2136
268633
  if (conflict != CRef_Undef) {
2137
58694
    theoryConflict = true;
2138
  }
2139
2140
268633
  Debug("minisat::lemmas") << "Solver::updateLemmas() end" << std::endl;
2141
2142
268633
  return conflict;
2143
}
2144
2145
6536216
void ClauseAllocator::reloc(CRef& cr, ClauseAllocator& to)
2146
{
2147
6536216
  Debug("minisat") << "ClauseAllocator::reloc: cr " << cr << std::endl;
2148
  // FIXME what is this CRef_lazy
2149
6536216
  if (cr == CRef_Lazy) return;
2150
2151
6536216
  Clause& c = operator[](cr);
2152
6536216
  if (c.reloced()) { cr = c.relocation(); return; }
2153
2154
1950325
  cr = to.alloc(c.level(), c, c.removable());
2155
1950325
  c.relocate(cr);
2156
  // Copy extra data-fields:
2157
  // (This could be cleaned-up. Generalize Clause-constructor to be applicable here instead?)
2158
1950325
  to[cr].mark(c.mark());
2159
1950325
  if (to[cr].removable())         to[cr].activity() = c.activity();
2160
1748084
  else if (to[cr].has_extra()) to[cr].calcAbstraction();
2161
}
2162
2163
3279360
inline bool Solver::withinBudget(Resource r) const
2164
{
2165
3279360
  Assert(d_proxy);
2166
  // spendResource sets async_interrupt or throws UnsafeInterruptException
2167
  // depending on whether hard-limit is enabled
2168
3279360
  d_proxy->spendResource(r);
2169
2170
3279360
  bool within_budget =
2171
6558720
      !asynch_interrupt && (conflict_budget < 0 || conflicts < conflict_budget)
2172
6558720
      && (propagation_budget < 0 || propagations < propagation_budget);
2173
3279360
  return within_budget;
2174
}
2175
2176
2498
SatProofManager* Solver::getProofManager()
2177
{
2178
2498
  return isProofEnabled() ? d_pfManager.get() : nullptr;
2179
}
2180
2181
2823
std::shared_ptr<ProofNode> Solver::getProof()
2182
{
2183
2823
  return isProofEnabled() ? d_pfManager->getProof() : nullptr;
2184
}
2185
2186
39197161
bool Solver::isProofEnabled() const { return d_pfManager != nullptr; }
2187
2188
39191840
bool Solver::needProof() const
2189
{
2190
39191840
  return isProofEnabled()
2191
39191840
         && options::unsatCoresMode() != options::UnsatCoresMode::ASSUMPTIONS;
2192
}
2193
2194
}  // namespace Minisat
2195
29514
}  // namespace cvc5