GCC Code Coverage Report
Directory: . Exec Total Coverage
File: src/prop/minisat/core/Solver.cc Lines: 856 1027 83.3 %
Date: 2021-09-17 Branches: 1178 2784 42.3 %

Line Exec Source
1
/***************************************************************************************[Solver.cc]
2
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
3
Copyright (c) 2007-2010, Niklas Sorensson
4
5
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
6
associated documentation files (the "Software"), to deal in the Software without restriction,
7
including without limitation the rights to use, copy, modify, merge, publish, distribute,
8
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
9
furnished to do so, subject to the following conditions:
10
11
The above copyright notice and this permission notice shall be included in all copies or
12
substantial portions of the Software.
13
14
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
15
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
16
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
17
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
18
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
**************************************************************************************************/
20
21
#include "prop/minisat/core/Solver.h"
22
23
#include <math.h>
24
25
#include <iostream>
26
#include <unordered_set>
27
28
#include "base/check.h"
29
#include "base/output.h"
30
#include "options/base_options.h"
31
#include "options/main_options.h"
32
#include "options/prop_options.h"
33
#include "options/smt_options.h"
34
#include "proof/clause_id.h"
35
#include "prop/minisat/minisat.h"
36
#include "prop/minisat/mtl/Sort.h"
37
#include "prop/theory_proxy.h"
38
39
using namespace cvc5::prop;
40
41
namespace cvc5 {
42
namespace Minisat {
43
44
namespace {
45
/*
46
 * Returns true if the solver should add all clauses at the current assertion
47
 * level.
48
 *
49
 * FIXME: This is a workaround. Currently, our resolution proofs do not
50
 * handle clauses with a lower-than-assertion-level correctly because the
51
 * resolution proofs get removed when popping the context but the SAT solver
52
 * keeps using them.
53
 */
54
12456746
bool assertionLevelOnly()
55
{
56
17533760
  return (options::produceProofs() || options::unsatCores())
57
19836488
         && options::incrementalSolving();
58
}
59
60
//=================================================================================================
61
// Helper functions for decision tree tracing
62
63
// Writes to Trace macro for decision tree tracing
64
static inline void dtviewDecisionHelper(size_t level,
65
                                        const Node& node,
66
                                        const char* decisiontype)
67
{
68
  Trace("dtview") << std::string(level - (options::incrementalSolving() ? 1 : 0), '*')
69
                  << " " << node << " :" << decisiontype << "-DECISION:" << std::endl;
70
}
71
72
// Writes to Trace macro for propagation tracing
73
static inline void dtviewPropagationHeaderHelper(size_t level)
74
{
75
  Trace("dtview::prop") << std::string(level + 1 - (options::incrementalSolving() ? 1 : 0),
76
                                       '*')
77
                        << " /Propagations/" << std::endl;
78
}
79
80
// Writes to Trace macro for propagation tracing
81
static inline void dtviewBoolPropagationHelper(size_t level,
82
                                               Lit& l,
83
                                               cvc5::prop::TheoryProxy* proxy)
84
{
85
  Trace("dtview::prop") << std::string(
86
      level + 1 - (options::incrementalSolving() ? 1 : 0), ' ')
87
                        << ":BOOL-PROP: "
88
                        << proxy->getNode(MinisatSatSolver::toSatLiteral(l))
89
                        << std::endl;
90
}
91
92
// Writes to Trace macro for conflict tracing
93
static inline void dtviewPropConflictHelper(size_t level,
94
                                            Clause& confl,
95
                                            cvc5::prop::TheoryProxy* proxy)
96
{
97
  Trace("dtview::conflict")
98
      << std::string(level + 1 - (options::incrementalSolving() ? 1 : 0), ' ')
99
      << ":PROP-CONFLICT: (or";
100
  for (int i = 0; i < confl.size(); i++)
101
  {
102
    Trace("dtview::conflict")
103
        << " " << proxy->getNode(MinisatSatSolver::toSatLiteral(confl[i]));
104
  }
105
  Trace("dtview::conflict") << ")" << std::endl;
106
}
107
108
}  // namespace
109
110
//=================================================================================================
111
// Options:
112
113
static const char* _cat = "CORE";
114
115
9859
static DoubleOption  opt_var_decay         (_cat, "var-decay",   "The variable activity decay factor",            0.95,     DoubleRange(0, false, 1, false));
116
9859
static DoubleOption  opt_clause_decay      (_cat, "cla-decay",   "The clause activity decay factor",              0.999,    DoubleRange(0, false, 1, false));
117
9859
static DoubleOption  opt_random_var_freq   (_cat, "rnd-freq",    "The frequency with which the decision heuristic tries to choose a random variable", 0, DoubleRange(0, true, 1, true));
118
9859
static DoubleOption  opt_random_seed       (_cat, "rnd-seed",    "Used by the random variable selection",         91648253, DoubleRange(0, false, HUGE_VAL, false));
119
9859
static IntOption     opt_ccmin_mode        (_cat, "ccmin-mode",  "Controls conflict clause minimization (0=none, 1=basic, 2=deep)", 2, IntRange(0, 2));
120
9859
static IntOption     opt_phase_saving      (_cat, "phase-saving", "Controls the level of phase saving (0=none, 1=limited, 2=full)", 2, IntRange(0, 2));
121
9859
static BoolOption    opt_rnd_init_act      (_cat, "rnd-init",    "Randomize the initial activity", false);
122
9859
static BoolOption    opt_luby_restart      (_cat, "luby",        "Use the Luby restart sequence", true);
123
9859
static IntOption     opt_restart_first     (_cat, "rfirst",      "The base restart interval", 25, IntRange(1, INT32_MAX));
124
9859
static DoubleOption  opt_restart_inc       (_cat, "rinc",        "Restart interval increase factor", 3, DoubleRange(1, false, HUGE_VAL, false));
125
9859
static DoubleOption  opt_garbage_frac      (_cat, "gc-frac",     "The fraction of wasted memory allowed before a garbage collection is triggered",  0.20, DoubleRange(0, false, HUGE_VAL, false));
126
127
//=================================================================================================
128
// Proof declarations
129
CRef Solver::TCRef_Undef = CRef_Undef;
130
CRef Solver::TCRef_Lazy = CRef_Lazy;
131
132
class ScopedBool
133
{
134
  bool& d_watch;
135
  bool d_oldValue;
136
137
 public:
138
3774507
  ScopedBool(bool& watch, bool newValue) : d_watch(watch), d_oldValue(watch)
139
  {
140
3774507
    watch = newValue;
141
3774507
  }
142
3774507
  ~ScopedBool() { d_watch = d_oldValue; }
143
};
144
145
//=================================================================================================
146
// Constructor/Destructor:
147
148
10009
Solver::Solver(cvc5::prop::TheoryProxy* proxy,
149
               cvc5::context::Context* context,
150
               cvc5::context::UserContext* userContext,
151
               ProofNodeManager* pnm,
152
10009
               bool enableIncremental)
153
    : d_proxy(proxy),
154
      d_context(context),
155
      assertionLevel(0),
156
      d_pfManager(nullptr),
157
      d_enable_incremental(enableIncremental),
158
      minisat_busy(false)
159
      // Parameters (user settable):
160
      //
161
      ,
162
      verbosity(0),
163
      var_decay(opt_var_decay),
164
      clause_decay(opt_clause_decay),
165
      random_var_freq(opt_random_var_freq),
166
      random_seed(opt_random_seed),
167
      luby_restart(opt_luby_restart),
168
      ccmin_mode(opt_ccmin_mode),
169
      phase_saving(opt_phase_saving),
170
      rnd_pol(false),
171
      rnd_init_act(opt_rnd_init_act),
172
      garbage_frac(opt_garbage_frac),
173
      restart_first(opt_restart_first),
174
      restart_inc(opt_restart_inc)
175
176
      // Parameters (the rest):
177
      //
178
      ,
179
      learntsize_factor(1),
180
      learntsize_inc(1.5)
181
182
      // Parameters (experimental):
183
      //
184
      ,
185
      learntsize_adjust_start_confl(100),
186
      learntsize_adjust_inc(1.5)
187
188
      // Statistics: (formerly in 'SolverStats')
189
      //
190
      ,
191
      solves(0),
192
      starts(0),
193
      decisions(0),
194
      rnd_decisions(0),
195
      propagations(0),
196
      conflicts(0),
197
      resources_consumed(0),
198
      dec_vars(0),
199
      clauses_literals(0),
200
      learnts_literals(0),
201
      max_literals(0),
202
      tot_literals(0)
203
204
      ,
205
      ok(true),
206
      cla_inc(1),
207
      var_inc(1),
208
20018
      watches(WatcherDeleted(ca)),
209
      qhead(0),
210
      simpDB_assigns(-1),
211
      simpDB_props(0),
212
20018
      order_heap(VarOrderLt(activity)),
213
      progress_estimate(0),
214
10009
      remove_satisfied(!enableIncremental)
215
216
      // Resource constraints:
217
      //
218
      ,
219
      conflict_budget(-1),
220
      propagation_budget(-1),
221
60054
      asynch_interrupt(false)
222
{
223
10009
  if (pnm)
224
  {
225
2504
    d_pfManager.reset(
226
1252
        new SatProofManager(this, proxy->getCnfStream(), userContext, pnm));
227
  }
228
229
  // Create the constant variables
230
10009
  varTrue = newVar(true, false, false);
231
10009
  varFalse = newVar(false, false, false);
232
233
  // Assert the constants
234
10009
  uncheckedEnqueue(mkLit(varTrue, false));
235
10009
  uncheckedEnqueue(mkLit(varFalse, true));
236
10009
}
237
238
239
10006
Solver::~Solver()
240
{
241
10006
}
242
243
244
//=================================================================================================
245
// Minor methods:
246
247
248
// Creates a new SAT variable in the solver. If 'decision_var' is cleared, variable will not be
249
// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
250
//
251
1294478
Var Solver::newVar(bool sign, bool dvar, bool isTheoryAtom, bool preRegister, bool canErase)
252
{
253
1294478
    int v = nVars();
254
255
1294478
    watches  .init(mkLit(v, false));
256
1294478
    watches  .init(mkLit(v, true ));
257
1294478
    assigns  .push(l_Undef);
258
1294478
    vardata  .push(VarData(CRef_Undef, -1, -1, assertionLevel, -1));
259
1294478
    activity .push(rnd_init_act ? drand(random_seed) * 0.00001 : 0);
260
1294478
    seen     .push(0);
261
1294478
    polarity .push(sign);
262
1294478
    decision .push();
263
1294478
    trail    .capacity(v+1);
264
    // push whether it corresponds to a theory atom
265
1294478
    theory.push(isTheoryAtom);
266
267
1294478
    setDecisionVar(v, dvar);
268
269
1294478
    Debug("minisat") << "new var " << v << std::endl;
270
271
    // If the variable is introduced at non-zero level, we need to reintroduce it on backtracks
272
1294478
    if (preRegister)
273
    {
274
1206210
      Debug("minisat") << "  To register at level " << decisionLevel()
275
603105
                       << std::endl;
276
603105
      variables_to_register.push(VarIntroInfo(v, decisionLevel()));
277
    }
278
279
1294478
    return v;
280
}
281
282
4869
void Solver::resizeVars(int newSize) {
283
4869
  Assert(d_enable_incremental);
284
4869
  Assert(decisionLevel() == 0);
285
4869
  Assert(newSize >= 2) << "always keep true/false";
286
4869
  if (newSize < nVars()) {
287
3067
    int shrinkSize = nVars() - newSize;
288
289
    // Resize watches up to the negated last literal
290
3067
    watches.resizeTo(mkLit(newSize-1, true));
291
292
    // Resize all info arrays
293
3067
    assigns.shrink(shrinkSize);
294
3067
    vardata.shrink(shrinkSize);
295
3067
    activity.shrink(shrinkSize);
296
3067
    seen.shrink(shrinkSize);
297
3067
    polarity.shrink(shrinkSize);
298
3067
    decision.shrink(shrinkSize);
299
3067
    theory.shrink(shrinkSize);
300
  }
301
302
4869
  if (Debug.isOn("minisat::pop")) {
303
    for (int i = 0; i < trail.size(); ++ i) {
304
      Assert(var(trail[i]) < nVars());
305
    }
306
  }
307
4869
}
308
309
170027210
CRef Solver::reason(Var x) {
310
170027210
  Trace("pf::sat") << "Solver::reason(" << x << ")" << std::endl;
311
312
  // If we already have a reason, just return it
313
170027210
  if (vardata[x].d_reason != CRef_Lazy)
314
  {
315
169981072
    if (Trace.isOn("pf::sat"))
316
    {
317
      Trace("pf::sat") << "  Solver::reason: " << vardata[x].d_reason << ", ";
318
      if (vardata[x].d_reason == CRef_Undef)
319
      {
320
        Trace("pf::sat") << "CRef_Undef";
321
      }
322
      else
323
      {
324
        for (unsigned i = 0, size = ca[vardata[x].d_reason].size(); i < size;
325
             ++i)
326
        {
327
          Trace("pf::sat") << ca[vardata[x].d_reason][i] << " ";
328
        }
329
      }
330
      Trace("pf::sat") << "\n";
331
    }
332
169981072
    return vardata[x].d_reason;
333
  }
334
  // What's the literal we are trying to explain
335
46138
  Lit l = mkLit(x, value(x) != l_True);
336
337
  // Get the explanation from the theory
338
92276
  SatClause explanation_cl;
339
  // FIXME: at some point return a tag with the theory that spawned you
340
46138
  d_proxy->explainPropagation(MinisatSatSolver::toSatLiteral(l),
341
                              explanation_cl);
342
92276
  vec<Lit> explanation;
343
46138
  MinisatSatSolver::toMinisatClause(explanation_cl, explanation);
344
345
92276
  Trace("pf::sat") << "Solver::reason: explanation_cl = " << explanation_cl
346
46138
                   << std::endl;
347
348
  // Sort the literals by trail index level
349
46138
  lemma_lt lt(*this);
350
46138
  sort(explanation, lt);
351
46138
  Assert(explanation[0] == l);
352
353
  // Compute the assertion level for this clause
354
46138
  int explLevel = 0;
355
46138
  if (assertionLevelOnly())
356
  {
357
1603
    explLevel = assertionLevel;
358
    }
359
    else
360
    {
361
      int i, j;
362
44535
      Lit prev = lit_Undef;
363
322262
      for (i = 0, j = 0; i < explanation.size(); ++i)
364
      {
365
        // This clause is valid theory propagation, so its level is the level of
366
        // the top literal
367
277727
        explLevel = std::max(explLevel, intro_level(var(explanation[i])));
368
369
277727
        Assert(value(explanation[i]) != l_Undef);
370
277727
        Assert(i == 0
371
               || trail_index(var(explanation[0]))
372
                      > trail_index(var(explanation[i])));
373
374
        // Always keep the first literal
375
322262
        if (i == 0)
376
        {
377
44535
          prev = explanation[j++] = explanation[i];
378
44535
          continue;
379
        }
380
        // Ignore duplicate literals
381
233192
        if (explanation[i] == prev)
382
        {
383
          continue;
384
        }
385
        // Ignore zero level literals
386
466384
        if (level(var(explanation[i])) == 0
387
233192
            && user_level(var(explanation[i]) == 0))
388
        {
389
          continue;
390
        }
391
        // Keep this literal
392
233192
        prev = explanation[j++] = explanation[i];
393
      }
394
44535
      explanation.shrink(i - j);
395
396
44535
      Trace("pf::sat") << "Solver::reason: explanation = ";
397
322262
      for (int k = 0; k < explanation.size(); ++k)
398
      {
399
277727
        Trace("pf::sat") << explanation[k] << " ";
400
      }
401
44535
      Trace("pf::sat") << std::endl;
402
403
      // We need an explanation clause so we add a fake literal
404
44535
      if (j == 1)
405
      {
406
        // Add not TRUE to the clause
407
        explanation.push(mkLit(varTrue, true));
408
      }
409
    }
410
411
    // Construct the reason
412
46138
    CRef real_reason = ca.alloc(explLevel, explanation, true);
413
46138
    vardata[x] = VarData(real_reason, level(x), user_level(x), intro_level(x), trail_index(x));
414
46138
    clauses_removable.push(real_reason);
415
46138
    attachClause(real_reason);
416
417
46138
    return real_reason;
418
}
419
420
3843880
bool Solver::addClause_(vec<Lit>& ps, bool removable, ClauseId& id)
421
{
422
3843880
    if (!ok) return false;
423
424
    // Check if clause is satisfied and remove false/duplicate literals:
425
3843880
    sort(ps);
426
    Lit p; int i, j;
427
428
    // Which user-level to assert this clause at
429
3843880
    int clauseLevel = (removable && !assertionLevelOnly()) ? 0 : assertionLevel;
430
431
    // Check the clause for tautologies and similar
432
3843880
    int falseLiteralsCount = 0;
433
15360613
    for (i = j = 0, p = lit_Undef; i < ps.size(); i++) {
434
      // Update the level
435
23410020
      clauseLevel = assertionLevelOnly()
436
22787796
                        ? assertionLevel
437
22787796
                        : std::max(clauseLevel, intro_level(var(ps[i])));
438
      // Tautologies are ignored
439
11705010
      if (ps[i] == ~p) {
440
17643
        id = ClauseIdUndef;
441
        // Clause can be ignored
442
17643
        return true;
443
      }
444
      // Clauses with 0-level true literals are also ignored
445
11687367
      if (value(ps[i]) == l_True && level(var(ps[i])) == 0 && user_level(var(ps[i])) == 0) {
446
170634
        id = ClauseIdUndef;
447
170634
        return true;
448
      }
449
      // Ignore repeated literals
450
11516733
      if (ps[i] == p) {
451
19933
        continue;
452
      }
453
      // If a literal is false at 0 level (both sat and user level) we also
454
      // ignore it, unless we are tracking the SAT solver's reasoning
455
11496800
      if (value(ps[i]) == l_False) {
456
7586894
        if (!options::unsatCores() && !needProof() && level(var(ps[i])) == 0
457
3738315
            && user_level(var(ps[i])) == 0)
458
        {
459
785625
          continue;
460
        }
461
        else
462
        {
463
          // If we decide to keep it, we count it into the false literals
464
2146570
          falseLiteralsCount++;
465
        }
466
      }
467
      // This literal is a keeper
468
10711175
      ps[j++] = p = ps[i];
469
    }
470
471
    // Fit to size
472
3655603
    ps.shrink(i - j);
473
474
    // If we are in solve_ or propagate
475
3655603
    if (minisat_busy)
476
    {
477
2177235
      Trace("pf::sat") << "Add clause adding a new lemma: ";
478
8968908
      for (int k = 0; k < ps.size(); ++k) {
479
6791673
        Trace("pf::sat") << ps[k] << " ";
480
      }
481
2177235
      Trace("pf::sat") << std::endl;
482
483
2177235
      lemmas.push();
484
2177235
      ps.copyTo(lemmas.last());
485
2177235
      lemmas_removable.push(removable);
486
    } else {
487
1478368
      Assert(decisionLevel() == 0);
488
489
      // If all false, we're in conflict
490
1478368
      if (ps.size() == falseLiteralsCount) {
491
1343
        if (options::unsatCores() || needProof())
492
        {
493
          // Take care of false units here; otherwise, we need to
494
          // construct the clause below to give to the proof manager
495
          // as the final conflict.
496
489
          if(falseLiteralsCount == 1) {
497
470
            if (needProof())
498
            {
499
470
              d_pfManager->finalizeProof(ps[0], true);
500
            }
501
83975
            return ok = false;
502
          }
503
        }
504
        else
505
        {
506
854
          return ok = false;
507
        }
508
      }
509
510
1477044
      CRef cr = CRef_Undef;
511
512
      // If not unit, add the clause
513
1477044
      if (ps.size() > 1) {
514
515
1398209
        lemma_lt lt(*this);
516
1398209
        sort(ps, lt);
517
518
1398209
        cr = ca.alloc(clauseLevel, ps, false);
519
1398209
        clauses_persistent.push(cr);
520
1398209
        attachClause(cr);
521
522
1398209
        if (options::unsatCores() || needProof())
523
        {
524
661667
          if (ps.size() == falseLiteralsCount)
525
          {
526
19
            if (needProof())
527
            {
528
19
              d_pfManager->finalizeProof(ca[cr], true);
529
            }
530
19
            return ok = false;
531
          }
532
        }
533
      }
534
535
      // Check if it propagates
536
1477025
      if (ps.size() == falseLiteralsCount + 1) {
537
82162
        if(assigns[var(ps[0])] == l_Undef) {
538
79820
          Assert(assigns[var(ps[0])] != l_False);
539
79820
          uncheckedEnqueue(ps[0], cr);
540
159640
          Debug("cores") << "i'm registering a unit clause, maybe input"
541
79820
                         << std::endl;
542
79820
          if (ps.size() == 1)
543
          {
544
            // We need to do this so that the closedness check, if being done,
545
            // goes through when we have unit assumptions whose literal has
546
            // already been registered, as the ProofCnfStream will not register
547
            // them and as they are not the result of propagation will be left
548
            // hanging in assumptions accumulator
549
77319
            if (needProof())
550
            {
551
23606
              d_pfManager->registerSatLitAssumption(ps[0]);
552
            }
553
          }
554
79820
          CRef confl = propagate(CHECK_WITHOUT_THEORY);
555
79820
          if(! (ok = (confl == CRef_Undef)) ) {
556
38
            if (needProof())
557
            {
558
13
              if (ca[confl].size() == 1)
559
              {
560
                d_pfManager->finalizeProof(ca[confl][0]);
561
              }
562
              else
563
              {
564
13
                d_pfManager->finalizeProof(ca[confl]);
565
              }
566
            }
567
          }
568
79820
          return ok;
569
        } else {
570
2342
          return ok;
571
        }
572
      }
573
    }
574
575
3572098
    return true;
576
}
577
578
579
3941091
void Solver::attachClause(CRef cr) {
580
3941091
    const Clause& c = ca[cr];
581
3941091
    if (Debug.isOn("minisat"))
582
    {
583
      Debug("minisat") << "Solver::attachClause(" << c << "): ";
584
      for (unsigned i = 0, size = c.size(); i < size; ++i)
585
      {
586
        Debug("minisat") << c[i] << " ";
587
      }
588
      Debug("minisat") << ", level " << c.level() << "\n";
589
    }
590
3941091
    Assert(c.size() > 1);
591
3941091
    watches[~c[0]].push(Watcher(cr, c[1]));
592
3941091
    watches[~c[1]].push(Watcher(cr, c[0]));
593
3941091
    if (c.removable()) learnts_literals += c.size();
594
3396791
    else            clauses_literals += c.size();
595
3941091
}
596
597
598
855178
void Solver::detachClause(CRef cr, bool strict) {
599
855178
    const Clause& c = ca[cr];
600
855178
    Debug("minisat") << "Solver::detachClause(" << c << ")" << std::endl;
601
855178
    if (Debug.isOn("minisat"))
602
    {
603
      Debug("minisat") << "Solver::detachClause(" << c << "), CRef " << cr
604
                       << ", clause ";
605
      for (unsigned i = 0, size = c.size(); i < size; ++i)
606
      {
607
        Debug("minisat") << c[i] << " ";
608
      }
609
610
      Debug("minisat") << "\n";
611
    }
612
855178
    Assert(c.size() > 1);
613
614
855178
    if (strict){
615
89050
        remove(watches[~c[0]], Watcher(cr, c[1]));
616
89050
        remove(watches[~c[1]], Watcher(cr, c[0]));
617
    }else{
618
        // Lazy detaching: (NOTE! Must clean all watcher lists before garbage collecting this clause)
619
766128
        watches.smudge(~c[0]);
620
766128
        watches.smudge(~c[1]);
621
    }
622
623
855178
    if (c.removable()) learnts_literals -= c.size();
624
583886
    else            clauses_literals -= c.size(); }
625
626
627
766128
void Solver::removeClause(CRef cr) {
628
766128
    Clause& c = ca[cr];
629
766128
    if (Debug.isOn("minisat"))
630
    {
631
      Debug("minisat") << "Solver::removeClause(" << c << "), CRef " << cr
632
                       << ", clause ";
633
      for (unsigned i = 0, size = c.size(); i < size; ++i)
634
      {
635
        Debug("minisat") << c[i] << " ";
636
      }
637
      Debug("minisat") << "\n";
638
    }
639
766128
    detachClause(cr);
640
    // Don't leave pointers to free'd memory!
641
766128
    if (locked(c))
642
    {
643
      // a locked clause c is one whose first literal c[0] is true and is
644
      // propagated by c itself, i.e. vardata[var(c[0])].d_reason == c. Because
645
      // of this if we need to justify the propagation of c[0], via
646
      // Solver::reason, if it appears in a resolution chain built lazily we
647
      // will be unable to do so after the step below. Thus we eagerly justify
648
      // this propagation here.
649
11060
      if (needProof())
650
      {
651
2556
        Trace("pf::sat")
652
1278
            << "Solver::removeClause: eagerly compute propagation of " << c[0]
653
1278
            << "\n";
654
1278
        d_pfManager->startResChain(c);
655
5851
        for (unsigned i = 1, size = c.size(); i < size; ++i)
656
        {
657
4573
          d_pfManager->addResolutionStep(c[i]);
658
        }
659
1278
        d_pfManager->endResChain(c[0]);
660
      }
661
11060
      vardata[var(c[0])].d_reason = CRef_Undef;
662
    }
663
766128
    c.mark(1);
664
766128
    ca.free(cr);
665
766128
}
666
667
668
470944
bool Solver::satisfied(const Clause& c) const {
669
21600825
    for (int i = 0; i < c.size(); i++)
670
21175135
        if (value(c[i]) == l_True)
671
45254
            return true;
672
425690
    return false; }
673
674
675
// Revert to the state at given level (keeping all assignment at 'level' but not beyond).
676
//
677
589628
void Solver::cancelUntil(int level) {
678
589628
    Debug("minisat") << "minisat::cancelUntil(" << level << ")" << std::endl;
679
680
589628
    if (decisionLevel() > level){
681
        // Pop the SMT context
682
3663785
        for (int l = trail_lim.size() - level; l > 0; --l) {
683
3201165
          d_context->pop();
684
        }
685
118119851
        for (int c = trail.size()-1; c >= trail_lim[level]; c--){
686
117657231
            Var      x  = var(trail[c]);
687
117657231
            assigns [x] = l_Undef;
688
117657231
            vardata[x].d_trail_index = -1;
689
235314462
            if ((phase_saving > 1 ||
690
                 ((phase_saving == 1) && c > trail_lim.last())
691
235314462
                 ) && ((polarity[x] & 0x2) == 0)) {
692
116690827
              polarity[x] = sign(trail[c]);
693
            }
694
117657231
            insertVarOrder(x);
695
        }
696
462620
        qhead = trail_lim[level];
697
462620
        trail.shrink(trail.size() - trail_lim[level]);
698
462620
        trail_lim.shrink(trail_lim.size() - level);
699
462620
        flipped.shrink(flipped.size() - level);
700
701
        // Register variables that have not been registered yet
702
462620
        int currentLevel = decisionLevel();
703
923497
        for (int i = variables_to_register.size() - 1;
704
923497
             i >= 0 && variables_to_register[i].d_level > currentLevel;
705
             --i)
706
        {
707
460877
          variables_to_register[i].d_level = currentLevel;
708
921754
          d_proxy->variableNotify(
709
460877
              MinisatSatSolver::toSatVariable(variables_to_register[i].d_var));
710
        }
711
    }
712
589628
}
713
714
15248
void Solver::resetTrail() { cancelUntil(0); }
715
716
//=================================================================================================
717
// Major methods:
718
719
720
2925346
Lit Solver::pickBranchLit()
721
{
722
    Lit nextLit;
723
724
    // Theory requests
725
2925344
    nextLit =
726
2925346
        MinisatSatSolver::toMinisatLit(d_proxy->getNextTheoryDecisionRequest());
727
2946088
    while (nextLit != lit_Undef) {
728
62364
      if(value(var(nextLit)) == l_Undef) {
729
103984
        Debug("theoryDecision")
730
51992
            << "getNextTheoryDecisionRequest(): now deciding on " << nextLit
731
51992
            << std::endl;
732
51992
        decisions++;
733
734
        // org-mode tracing -- theory decision
735
51992
        if (Trace.isOn("dtview"))
736
        {
737
          dtviewDecisionHelper(
738
              d_context->getLevel(),
739
              d_proxy->getNode(MinisatSatSolver::toSatLiteral(nextLit)),
740
              "THEORY");
741
        }
742
743
51992
        if (Trace.isOn("dtview::prop"))
744
        {
745
          dtviewPropagationHeaderHelper(d_context->getLevel());
746
        }
747
748
51992
        return nextLit;
749
      } else {
750
20744
        Debug("theoryDecision")
751
10372
            << "getNextTheoryDecisionRequest(): would decide on " << nextLit
752
10372
            << " but it already has an assignment" << std::endl;
753
      }
754
10372
      nextLit = MinisatSatSolver::toMinisatLit(
755
10372
          d_proxy->getNextTheoryDecisionRequest());
756
    }
757
5746704
    Debug("theoryDecision")
758
2873352
        << "getNextTheoryDecisionRequest(): decide on another literal"
759
2873352
        << std::endl;
760
761
    // DE requests
762
2873352
    bool stopSearch = false;
763
2873352
    nextLit = MinisatSatSolver::toMinisatLit(
764
2873352
        d_proxy->getNextDecisionEngineRequest(stopSearch));
765
2873352
    if(stopSearch) {
766
53268
      return lit_Undef;
767
    }
768
2820084
    if(nextLit != lit_Undef) {
769
1176471
      Assert(value(var(nextLit)) == l_Undef)
770
          << "literal to decide already has value";
771
1176471
      decisions++;
772
1176471
      Var next = var(nextLit);
773
1176471
      if(polarity[next] & 0x2) {
774
226139
        nextLit = mkLit(next, polarity[next] & 0x1);
775
      }
776
777
      // org-mode tracing -- decision engine decision
778
1176471
      if (Trace.isOn("dtview"))
779
      {
780
        dtviewDecisionHelper(
781
            d_context->getLevel(),
782
            d_proxy->getNode(MinisatSatSolver::toSatLiteral(nextLit)),
783
            "DE");
784
      }
785
786
1176471
      if (Trace.isOn("dtview::prop"))
787
      {
788
        dtviewPropagationHeaderHelper(d_context->getLevel());
789
      }
790
791
1176471
      return nextLit;
792
    }
793
794
1643613
    Var next = var_Undef;
795
796
    // Random decision:
797
1643613
    if (drand(random_seed) < random_var_freq && !order_heap.empty()){
798
        next = order_heap[irand(random_seed,order_heap.size())];
799
        if (value(next) == l_Undef && decision[next])
800
            rnd_decisions++; }
801
802
    // Activity based decision:
803
12155963
    while (next >= nVars() || next == var_Undef || value(next) != l_Undef || !decision[next]) {
804
5276136
        if (order_heap.empty()){
805
19961
            next = var_Undef;
806
19961
            break;
807
        }else {
808
5256175
            next = order_heap.removeMin();
809
        }
810
811
5256175
        if(!decision[next]) continue;
812
        // Check with decision engine about relevancy
813
10487046
        if (d_proxy->isDecisionRelevant(MinisatSatSolver::toSatVariable(next))
814
5243523
            == false)
815
        {
816
          next = var_Undef;
817
        }
818
    }
819
820
1643613
    if(next == var_Undef) {
821
19961
      return lit_Undef;
822
    } else {
823
1623652
      decisions++;
824
      // Check with decision engine if it can tell polarity
825
      lbool dec_pol = MinisatSatSolver::toMinisatlbool(
826
1623652
          d_proxy->getDecisionPolarity(MinisatSatSolver::toSatVariable(next)));
827
      Lit decisionLit;
828
1623652
      if(dec_pol != l_Undef) {
829
        Assert(dec_pol == l_True || dec_pol == l_False);
830
        decisionLit = mkLit(next, (dec_pol == l_True));
831
      }
832
      else
833
      {
834
        // If it can't use internal heuristic to do that
835
1623652
        decisionLit = mkLit(
836
1623652
            next, rnd_pol ? drand(random_seed) < 0.5 : (polarity[next] & 0x1));
837
      }
838
839
      // org-mode tracing -- decision engine decision
840
1623652
      if (Trace.isOn("dtview"))
841
      {
842
        dtviewDecisionHelper(
843
            d_context->getLevel(),
844
            d_proxy->getNode(MinisatSatSolver::toSatLiteral(decisionLit)),
845
            "DE");
846
      }
847
848
1623652
      if (Trace.isOn("dtview::prop"))
849
      {
850
        dtviewPropagationHeaderHelper(d_context->getLevel());
851
      }
852
853
1623652
      return decisionLit;
854
    }
855
}
856
857
858
/*_________________________________________________________________________________________________
859
|
860
|  analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&)  ->  [void]
861
|
862
|  Description:
863
|    Analyze conflict and produce a reason clause.
864
|
865
|    Pre-conditions:
866
|      * 'out_learnt' is assumed to be cleared.
867
|      * Current decision level must be greater than root level.
868
|
869
|    Post-conditions:
870
|      * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
871
|      * If out_learnt.size() > 1 then 'out_learnt[1]' has the greatest decision level of the
872
|        rest of literals. There may be others from the same level though.
873
|      * returns the maximal level of the resolved clauses
874
|
875
|________________________________________________________________________________________________@*/
876
302419
int Solver::analyze(CRef confl, vec<Lit>& out_learnt, int& out_btlevel)
877
{
878
604838
  Trace("pf::sat") << "Solver::analyze: starting with " << confl
879
302419
                   << " with decision level " << decisionLevel() << "\n";
880
881
302419
  int pathC = 0;
882
302419
  Lit p = lit_Undef;
883
884
  // Generate conflict clause:
885
  //
886
302419
  out_learnt.push();  // (leave room for the asserting literal)
887
302419
  int index = trail.size() - 1;
888
889
302419
  int max_resolution_level = 0;  // Maximal level of the resolved clauses
890
891
302419
    if (needProof())
892
    {
893
22234
      d_pfManager->startResChain(ca[confl]);
894
    }
895
33336864
    do{
896
33639283
      Assert(confl != CRef_Undef);  // (otherwise should be UIP)
897
898
      {
899
        // ! IMPORTANT !
900
        // It is not safe to use c after this block of code because
901
        // resolveOutUnit() below may lead to clauses being allocated, which
902
        // in turn may lead to reallocations that invalidate c.
903
33639283
        Clause& c = ca[confl];
904
33639283
        max_resolution_level = std::max(max_resolution_level, c.level());
905
906
33639283
        if (c.removable()) claBumpActivity(c);
907
      }
908
909
33639283
        if (Trace.isOn("pf::sat"))
910
        {
911
          Trace("pf::sat") << "Solver::analyze: conflict clause ";
912
          for (unsigned i = 0, size = ca[confl].size(); i < size; ++i)
913
          {
914
            Trace("pf::sat") << ca[confl][i] << " ";
915
          }
916
          Trace("pf::sat") << "\n";
917
        }
918
919
33639283
        Trace("pf::sat") << cvc5::push;
920
230092907
        for (int j = (p == lit_Undef) ? 0 : 1, size = ca[confl].size();
921
230092907
             j < size;
922
             j++)
923
        {
924
196453624
          Lit q = ca[confl][j];
925
926
392907248
          Trace("pf::sat") << "Lit " << q
927
392907248
                           << " seen/level: " << (seen[var(q)] ? 1 : 0) << " / "
928
196453624
                           << level(var(q)) << "\n";
929
196453624
          if (!seen[var(q)] && level(var(q)) > 0)
930
          {
931
60329582
            varBumpActivity(var(q));
932
60329582
            seen[var(q)] = 1;
933
60329582
            if (level(var(q)) >= decisionLevel())
934
33639283
              pathC++;
935
            else
936
26690299
              out_learnt.push(q);
937
          }
938
          else
939
          {
940
            // We could be resolving a literal propagated by a clause/theory
941
            // using information from a higher level
942
136124042
            if (!seen[var(q)] && level(var(q)) == 0)
943
            {
944
396306
              max_resolution_level =
945
792612
                  std::max(max_resolution_level, user_level(var(q)));
946
            }
947
948
            // FIXME: can we do it lazily if we actually need the proof?
949
136124042
            if (level(var(q)) == 0 && needProof())
950
            {
951
136939
              d_pfManager->addResolutionStep(q);
952
            }
953
          }
954
        }
955
33639283
        Trace("pf::sat") << cvc5::pop;
956
957
        // Select next clause to look at:
958
94295299
        while (!seen[var(trail[index--])]);
959
33639283
        p     = trail[index+1];
960
33639283
        confl = reason(var(p));
961
33639283
        seen[var(p)] = 0;
962
33639283
        pathC--;
963
964
33639283
        if (pathC > 0 && confl != CRef_Undef && needProof())
965
        {
966
283809
          d_pfManager->addResolutionStep(ca[confl], p);
967
        }
968
969
33639283
    } while (pathC > 0);
970
302419
    out_learnt[0] = ~p;
971
302419
    if (Debug.isOn("newproof::sat"))
972
    {
973
      Debug("newproof::sat") << "finished with learnt clause ";
974
      for (unsigned i = 0, size = out_learnt.size(); i < size; ++i)
975
      {
976
        prop::SatLiteral satLit = toSatLiteral<Minisat::Solver>(out_learnt[i]);
977
        Debug("newproof::sat") << satLit << " ";
978
      }
979
      Debug("newproof::sat") << "\n";
980
    }
981
982
    // Simplify conflict clause:
983
    int i, j;
984
302419
    out_learnt.copyTo(analyze_toclear);
985
302419
    if (ccmin_mode == 2){
986
302419
        uint32_t abstract_level = 0;
987
26992718
        for (i = 1; i < out_learnt.size(); i++)
988
26690299
            abstract_level |= abstractLevel(var(out_learnt[i])); // (maintain an abstraction of levels involved in conflict)
989
990
26992718
        for (i = j = 1; i < out_learnt.size(); i++) {
991
26690299
            if (reason(var(out_learnt[i])) == CRef_Undef) {
992
4547305
                out_learnt[j++] = out_learnt[i];
993
            } else {
994
              // Check if the literal is redundant
995
22142994
              if (!litRedundant(out_learnt[i], abstract_level)) {
996
                // Literal is not redundant
997
19841450
                out_learnt[j++] = out_learnt[i];
998
              } else {
999
2301544
                if (needProof())
1000
                {
1001
66642
                  Debug("newproof::sat")
1002
33321
                      << "Solver::analyze: redundant lit "
1003
33321
                      << toSatLiteral<Minisat::Solver>(out_learnt[i]) << "\n";
1004
33321
                  d_pfManager->addResolutionStep(out_learnt[i], true);
1005
                }
1006
                // Literal is redundant, to be safe, mark the level as current assertion level
1007
                // TODO: maybe optimize
1008
2301544
                max_resolution_level = std::max(max_resolution_level, user_level(var(out_learnt[i])));
1009
              }
1010
            }
1011
        }
1012
1013
    }else if (ccmin_mode == 1){
1014
        Unreachable();
1015
        for (i = j = 1; i < out_learnt.size(); i++){
1016
            Var x = var(out_learnt[i]);
1017
1018
            if (reason(x) == CRef_Undef)
1019
                out_learnt[j++] = out_learnt[i];
1020
            else{
1021
                Clause& c = ca[reason(var(out_learnt[i]))];
1022
                for (int k = 1; k < c.size(); k++)
1023
                    if (!seen[var(c[k])] && level(var(c[k])) > 0){
1024
                        out_learnt[j++] = out_learnt[i];
1025
                        break; }
1026
            }
1027
        }
1028
    }else
1029
        i = j = out_learnt.size();
1030
1031
302419
    max_literals += out_learnt.size();
1032
302419
    out_learnt.shrink(i - j);
1033
302419
    tot_literals += out_learnt.size();
1034
1035
    // Find correct backtrack level:
1036
    //
1037
302419
    if (out_learnt.size() == 1)
1038
5941
        out_btlevel = 0;
1039
    else{
1040
296478
        int max_i = 1;
1041
        // Find the first literal assigned at the next-highest level:
1042
24388755
        for (int k = 2; k < out_learnt.size(); k++)
1043
24092277
          if (level(var(out_learnt[k])) > level(var(out_learnt[max_i])))
1044
664317
            max_i = k;
1045
        // Swap-in this literal at index 1:
1046
296478
        Lit p2 = out_learnt[max_i];
1047
296478
        out_learnt[max_i] = out_learnt[1];
1048
296478
        out_learnt[1] = p2;
1049
296478
        out_btlevel = level(var(p2));
1050
    }
1051
1052
29579010
    for (int k = 0; k < analyze_toclear.size(); k++)
1053
29276591
      seen[var(analyze_toclear[k])] = 0;  // ('seen[]' is now cleared)
1054
1055
    // Return the maximal resolution level
1056
302419
    return max_resolution_level;
1057
}
1058
1059
1060
// Check if 'p' can be removed. 'abstract_levels' is used to abort early if the algorithm is
1061
// visiting literals at levels that cannot be removed later.
1062
22142994
bool Solver::litRedundant(Lit p, uint32_t abstract_levels)
1063
{
1064
22142994
    analyze_stack.clear(); analyze_stack.push(p);
1065
22142994
    int top = analyze_toclear.size();
1066
59620524
    while (analyze_stack.size() > 0){
1067
38580215
        CRef c_reason = reason(var(analyze_stack.last()));
1068
38580215
        Assert(c_reason != CRef_Undef);
1069
38580215
        Clause& c = ca[c_reason];
1070
38580215
        int c_size = c.size();
1071
38580215
        analyze_stack.pop();
1072
1073
        // Since calling reason might relocate to resize, c is not necesserily the right reference, we must
1074
        // use the allocator each time
1075
149017432
        for (int i = 1; i < c_size; i++){
1076
130278667
          Lit p2 = ca[c_reason][i];
1077
130278667
          if (!seen[var(p2)] && level(var(p2)) > 0)
1078
          {
1079
141795778
            if (reason(var(p2)) != CRef_Undef
1080
70897889
                && (abstractLevel(var(p2)) & abstract_levels) != 0)
1081
            {
1082
51056439
              seen[var(p2)] = 1;
1083
51056439
              analyze_stack.push(p2);
1084
51056439
              analyze_toclear.push(p2);
1085
            }
1086
            else
1087
            {
1088
68614016
              for (int j = top; j < analyze_toclear.size(); j++)
1089
48772566
                seen[var(analyze_toclear[j])] = 0;
1090
19841450
              analyze_toclear.shrink(analyze_toclear.size() - top);
1091
19841450
              return false;
1092
            }
1093
          }
1094
        }
1095
    }
1096
1097
2301544
    return true;
1098
}
1099
1100
1101
/*_________________________________________________________________________________________________
1102
|
1103
|  analyzeFinal : (p : Lit)  ->  [void]
1104
|
1105
|  Description:
1106
|    Specialized analysis procedure to express the final conflict in terms of assumptions.
1107
|    Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
1108
|    stores the result in 'out_conflict'.
1109
|________________________________________________________________________________________________@*/
1110
2744
void Solver::analyzeFinal(Lit p, vec<Lit>& out_conflict)
1111
{
1112
2744
    out_conflict.clear();
1113
2744
    out_conflict.push(p);
1114
1115
2744
    if (decisionLevel() == 0)
1116
926
        return;
1117
1118
1818
    seen[var(p)] = 1;
1119
1120
133995
    for (int i = trail.size()-1; i >= trail_lim[0]; i--){
1121
132177
        Var x = var(trail[i]);
1122
132177
        if (seen[x]){
1123
28682
            if (reason(x) == CRef_Undef){
1124
10592
              Assert(level(x) > 0);
1125
10592
              out_conflict.push(~trail[i]);
1126
            }else{
1127
18090
                Clause& c = ca[reason(x)];
1128
57635
                for (int j = 1; j < c.size(); j++)
1129
39545
                    if (level(var(c[j])) > 0)
1130
38499
                        seen[var(c[j])] = 1;
1131
            }
1132
28682
            seen[x] = 0;
1133
        }
1134
    }
1135
1136
1818
    seen[var(p)] = 0;
1137
}
1138
1139
117992404
void Solver::uncheckedEnqueue(Lit p, CRef from)
1140
{
1141
117992404
  if (Debug.isOn("minisat"))
1142
  {
1143
    Debug("minisat") << "unchecked enqueue of " << p << " ("
1144
                     << trail_index(var(p)) << ") trail size is "
1145
                     << trail.size() << " cap is " << trail.capacity()
1146
                     << ", reason is " << from << ", ";
1147
    if (from == CRef_Lazy)
1148
    {
1149
      Debug("minisat") << "CRef_Lazy";
1150
    }
1151
    else if (from == CRef_Undef)
1152
    {
1153
      Debug("minisat") << "CRef_Undef";
1154
    }
1155
    else
1156
    {
1157
      for (unsigned i = 0, size = ca[from].size(); i < size; ++i)
1158
      {
1159
        Debug("minisat") << ca[from][i] << " ";
1160
      }
1161
    }
1162
    Debug("minisat") << "\n";
1163
  }
1164
117992404
  Assert(value(p) == l_Undef);
1165
117992404
  Assert(var(p) < nVars());
1166
117992404
  assigns[var(p)] = lbool(!sign(p));
1167
117992404
  vardata[var(p)] = VarData(
1168
      from, decisionLevel(), assertionLevel, intro_level(var(p)), trail.size());
1169
117992404
  trail.push_(p);
1170
117992404
  if (theory[var(p)])
1171
  {
1172
    // Enqueue to the theory
1173
17941277
    d_proxy->enqueueTheoryLiteral(MinisatSatSolver::toSatLiteral(p));
1174
  }
1175
117992404
}
1176
1177
3759488
CRef Solver::propagate(TheoryCheckType type)
1178
{
1179
3759488
    CRef confl = CRef_Undef;
1180
3759488
    recheck = false;
1181
3759488
    theoryConflict = false;
1182
1183
7518976
    ScopedBool scoped_bool(minisat_busy, true);
1184
1185
    // Add lemmas that we're left behind
1186
3759488
    if (lemmas.size() > 0) {
1187
145
      confl = updateLemmas();
1188
145
      if (confl != CRef_Undef) {
1189
        return confl;
1190
      }
1191
    }
1192
1193
    // If this is the final check, no need for Boolean propagation and
1194
    // theory propagation
1195
3759488
    if (type == CHECK_FINAL) {
1196
      // Do the theory check
1197
79417
      theoryCheck(cvc5::theory::Theory::EFFORT_FULL);
1198
      // Pick up the theory propagated literals (there could be some,
1199
      // if new lemmas are added)
1200
79406
      propagateTheory();
1201
      // If there are lemmas (or conflicts) update them
1202
79406
      if (lemmas.size() > 0) {
1203
62792
        recheck = true;
1204
62792
        confl = updateLemmas();
1205
62792
        return confl;
1206
      } else {
1207
16614
        recheck = d_proxy->theoryNeedCheck();
1208
16614
        return confl;
1209
      }
1210
    }
1211
1212
    // Keep running until we have checked everything, we
1213
    // have no conflict and no new literals have been asserted
1214
999926
    do {
1215
        // Propagate on the clauses
1216
4679997
        confl = propagateBool();
1217
        // If no conflict, do the theory check
1218
4679997
        if (confl == CRef_Undef && type != CHECK_WITHOUT_THEORY) {
1219
            // Do the theory check
1220
4298460
            if (type == CHECK_FINAL_FAKE) {
1221
              theoryCheck(cvc5::theory::Theory::EFFORT_FULL);
1222
            } else {
1223
4298460
              theoryCheck(cvc5::theory::Theory::EFFORT_STANDARD);
1224
            }
1225
            // Pick up the theory propagated literals
1226
4298457
            propagateTheory();
1227
            // If there are lemmas (or conflicts) update them
1228
8596914
            if (lemmas.size() > 0) {
1229
206274
              confl = updateLemmas();
1230
            }
1231
        } else {
1232
          // if dumping decision tree, print the conflict
1233
381537
          if (Trace.isOn("dtview::conflict"))
1234
          {
1235
            if (confl != CRef_Undef)
1236
            {
1237
              dtviewPropConflictHelper(decisionLevel(), ca[confl], d_proxy);
1238
            }
1239
          }
1240
          // Even though in conflict, we still need to discharge the lemmas
1241
381537
          if (lemmas.size() > 0) {
1242
            // Remember the trail size
1243
            int oldLevel = decisionLevel();
1244
            // Update the lemmas
1245
            CRef lemmaConflict = updateLemmas();
1246
            // If we get a conflict, we prefer it since it's earlier in the trail
1247
            if (lemmaConflict != CRef_Undef) {
1248
              // Lemma conflict takes precedence, since it's earlier in the trail
1249
              confl = lemmaConflict;
1250
            } else {
1251
              // Otherwise, the Boolean conflict is canceled in the case we popped the trail
1252
              if (oldLevel > decisionLevel()) {
1253
                confl = CRef_Undef;
1254
              }
1255
            }
1256
          }
1257
        }
1258
4679994
    } while (confl == CRef_Undef && qhead < trail.size());
1259
3680068
    return confl;
1260
}
1261
1262
4377863
void Solver::propagateTheory() {
1263
8755726
  SatClause propagatedLiteralsClause;
1264
  // Doesn't actually call propagate(); that's done in theoryCheck() now that combination
1265
  // is online.  This just incorporates those propagations previously discovered.
1266
4377863
  d_proxy->theoryPropagate(propagatedLiteralsClause);
1267
1268
8755726
  vec<Lit> propagatedLiterals;
1269
4377863
  MinisatSatSolver::toMinisatClause(propagatedLiteralsClause, propagatedLiterals);
1270
1271
4377863
  int oldTrailSize = trail.size();
1272
4377863
  Debug("minisat") << "old trail size is " << oldTrailSize << ", propagating " << propagatedLiterals.size() << " lits..." << std::endl;
1273
12021306
  for (unsigned i = 0, i_end = propagatedLiterals.size(); i < i_end; ++ i) {
1274
7643443
    Debug("minisat") << "Theory propagated: " << propagatedLiterals[i] << std::endl;
1275
    // multiple theories can propagate the same literal
1276
7643443
    Lit p = propagatedLiterals[i];
1277
7643443
    if (value(p) == l_Undef) {
1278
3896987
      uncheckedEnqueue(p, CRef_Lazy);
1279
    } else {
1280
3746456
      if (value(p) == l_False) {
1281
74903
        Debug("minisat") << "Conflict in theory propagation" << std::endl;
1282
149806
        SatClause explanation_cl;
1283
74903
        d_proxy->explainPropagation(MinisatSatSolver::toSatLiteral(p),
1284
                                    explanation_cl);
1285
149806
        vec<Lit> explanation;
1286
74903
        MinisatSatSolver::toMinisatClause(explanation_cl, explanation);
1287
        ClauseId id; // FIXME: mark it as explanation here somehow?
1288
74903
        addClause(explanation, true, id);
1289
      }
1290
    }
1291
  }
1292
4377863
}
1293
1294
/*_________________________________________________________________________________________________
1295
|
1296
|  theoryCheck: [void]  ->  [Clause*]
1297
|
1298
|  Description:
1299
|    Checks all enqueued theory facts for satisfiability. If a conflict arises, the conflicting
1300
|    clause is returned, otherwise NULL.
1301
|
1302
|    Note: the propagation queue might be NOT empty
1303
|________________________________________________________________________________________________@*/
1304
4377877
void Solver::theoryCheck(cvc5::theory::Theory::Effort effort)
1305
{
1306
4377877
  d_proxy->theoryCheck(effort);
1307
4377863
}
1308
1309
/*_________________________________________________________________________________________________
1310
|
1311
|  propagateBool : [void]  ->  [Clause*]
1312
|
1313
|  Description:
1314
|    Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
1315
|    otherwise CRef_Undef.
1316
|
1317
|    Post-conditions:
1318
|      * the propagation queue is empty, even if there was a conflict.
1319
|________________________________________________________________________________________________@*/
1320
4679997
CRef Solver::propagateBool()
1321
{
1322
4679997
    CRef    confl     = CRef_Undef;
1323
4679997
    int     num_props = 0;
1324
4679997
    watches.cleanAll();
1325
1326
229188469
    while (qhead < trail.size()){
1327
112254236
        Lit            p   = trail[qhead++];     // 'p' is enqueued fact to propagate.
1328
112254236
        vec<Watcher>&  ws  = watches[p];
1329
        Watcher        *i, *j, *end;
1330
112254236
        num_props++;
1331
1332
        // if propagation tracing enabled, print boolean propagation
1333
112254236
        if (Trace.isOn("dtview::prop"))
1334
        {
1335
          dtviewBoolPropagationHelper(decisionLevel(), p, d_proxy);
1336
        }
1337
1338
913561217
        for (i = j = (Watcher*)ws, end = i + ws.size();  i != end;){
1339
            // Try to avoid inspecting the clause:
1340
801306981
            Lit blocker = i->blocker;
1341
1304268683
            if (value(blocker) == l_True){
1342
1534847717
                *j++ = *i++; continue; }
1343
1344
            // Make sure the false literal is data[1]:
1345
298345279
            CRef     cr        = i->cref;
1346
298345279
            Clause&  c         = ca[cr];
1347
298345279
            Lit      false_lit = ~p;
1348
298345279
            if (c[0] == false_lit)
1349
85707560
                c[0] = c[1], c[1] = false_lit;
1350
298345279
            Assert(c[1] == false_lit);
1351
298345279
            i++;
1352
1353
            // If 0th watch is true, then clause is already satisfied.
1354
298345279
            Lit     first = c[0];
1355
298345279
            Watcher w     = Watcher(cr, first);
1356
324307890
            if (first != blocker && value(first) == l_True){
1357
51925222
                *j++ = w; continue; }
1358
1359
            // Look for new watch:
1360
272382668
            Assert(c.size() >= 2);
1361
1258645036
            for (int k = 2; k < c.size(); k++)
1362
1148173025
                if (value(c[k]) != l_False){
1363
161910657
                    c[1] = c[k]; c[k] = false_lit;
1364
161910657
                    watches[~c[1]].push(w);
1365
161910657
                    goto NextClause; }
1366
1367
            // Did not find watch -- clause is unit under assignment:
1368
110472011
            *j++ = w;
1369
110472011
            if (value(first) == l_False){
1370
247036
                confl = cr;
1371
247036
                qhead = trail.size();
1372
                // Copy the remaining watches:
1373
6036158
                while (i < end)
1374
2894561
                    *j++ = *i++;
1375
            }else
1376
110224975
                uncheckedEnqueue(first, cr);
1377
1378
272382668
        NextClause:;
1379
        }
1380
112254236
        ws.shrink(i - j);
1381
    }
1382
4679997
    propagations += num_props;
1383
4679997
    simpDB_props -= num_props;
1384
1385
4679997
    return confl;
1386
}
1387
1388
1389
/*_________________________________________________________________________________________________
1390
|
1391
|  reduceDB : ()  ->  [void]
1392
|
1393
|  Description:
1394
|    Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
1395
|    clauses are clauses that are reason to some assignment. Binary clauses are never removed.
1396
|________________________________________________________________________________________________@*/
1397
struct reduceDB_lt {
1398
    ClauseAllocator& ca;
1399
4068
    reduceDB_lt(ClauseAllocator& ca_) : ca(ca_) {}
1400
5620089
    bool operator () (CRef x, CRef y) {
1401
5620089
        return ca[x].size() > 2 && (ca[y].size() == 2 || ca[x].activity() < ca[y].activity()); }
1402
};
1403
4068
void Solver::reduceDB()
1404
{
1405
    int     i, j;
1406
4068
    double  extra_lim = cla_inc / clauses_removable.size();    // Remove any clause below this activity
1407
1408
4068
    sort(clauses_removable, reduceDB_lt(ca));
1409
    // Don't delete binary or locked clauses. From the rest, delete clauses from the first half
1410
    // and clauses with activity smaller than 'extra_lim':
1411
530069
    for (i = j = 0; i < clauses_removable.size(); i++){
1412
526001
        Clause& c = ca[clauses_removable[i]];
1413
526001
        if (c.size() > 2 && !locked(c) && (i < clauses_removable.size() / 2 || c.activity() < extra_lim))
1414
217093
            removeClause(clauses_removable[i]);
1415
        else
1416
308908
            clauses_removable[j++] = clauses_removable[i];
1417
    }
1418
4068
    clauses_removable.shrink(i - j);
1419
4068
    checkGarbage();
1420
4068
}
1421
1422
1423
18297
void Solver::removeSatisfied(vec<CRef>& cs)
1424
{
1425
    int i, j;
1426
489241
    for (i = j = 0; i < cs.size(); i++){
1427
470944
        Clause& c = ca[cs[i]];
1428
470944
        if (satisfied(c)) {
1429
45254
          removeClause(cs[i]);
1430
        }
1431
        else
1432
        {
1433
425690
          cs[j++] = cs[i];
1434
        }
1435
    }
1436
18297
    cs.shrink(i - j);
1437
18297
}
1438
1439
9738
void Solver::removeClausesAboveLevel(vec<CRef>& cs, int level)
1440
{
1441
    int i, j;
1442
836961
    for (i = j = 0; i < cs.size(); i++){
1443
827223
        Clause& c = ca[cs[i]];
1444
827223
        if (c.level() > level) {
1445
250291
          Assert(!locked(c));
1446
250291
          removeClause(cs[i]);
1447
        } else {
1448
576932
            cs[j++] = cs[i];
1449
        }
1450
    }
1451
9738
    cs.shrink(i - j);
1452
9738
}
1453
1454
18297
void Solver::rebuildOrderHeap()
1455
{
1456
36594
    vec<Var> vs;
1457
2935970
    for (Var v = 0; v < nVars(); v++)
1458
2917673
        if (decision[v] && value(v) == l_Undef)
1459
2227934
            vs.push(v);
1460
18297
    order_heap.build(vs);
1461
18297
}
1462
1463
1464
/*_________________________________________________________________________________________________
1465
|
1466
|  simplify : [void]  ->  [bool]
1467
|
1468
|  Description:
1469
|    Simplify the clause database according to the current top-level assigment. Currently, the only
1470
|    thing done here is the removal of satisfied clauses, but more things can be put here.
1471
|________________________________________________________________________________________________@*/
1472
45908
bool Solver::simplify()
1473
{
1474
45908
  Assert(decisionLevel() == 0);
1475
1476
45908
  if (!ok || propagate(CHECK_WITHOUT_THEORY) != CRef_Undef) return ok = false;
1477
1478
45669
  if (nAssigns() == simpDB_assigns || (simpDB_props > 0)) return true;
1479
1480
  // Remove satisfied clauses:
1481
18297
  removeSatisfied(clauses_removable);
1482
18297
  if (remove_satisfied)  // Can be turned off.
1483
    removeSatisfied(clauses_persistent);
1484
18297
  checkGarbage();
1485
18297
  rebuildOrderHeap();
1486
1487
18297
  simpDB_assigns = nAssigns();
1488
18297
  simpDB_props =
1489
18297
      clauses_literals + learnts_literals;  // (shouldn't depend on stats
1490
                                            // really, but it will do for now)
1491
1492
18297
  return true;
1493
}
1494
1495
1496
/*_________________________________________________________________________________________________
1497
|
1498
|  search : (nof_conflicts : int) (params : const SearchParams&)  ->  [lbool]
1499
|
1500
|  Description:
1501
|    Search for a model the specified number of conflicts.
1502
|    NOTE! Use negative value for 'nof_conflicts' indicate infinity.
1503
|
1504
|  Output:
1505
|    'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If
1506
|    all variables are decision variables, this means that the clause set is satisfiable. 'l_False'
1507
|    if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached.
1508
|________________________________________________________________________________________________@*/
1509
16330
lbool Solver::search(int nof_conflicts)
1510
{
1511
16330
  Assert(ok);
1512
  int backtrack_level;
1513
16330
  int conflictC = 0;
1514
32660
  vec<Lit> learnt_clause;
1515
16330
  starts++;
1516
1517
16330
  TheoryCheckType check_type = CHECK_WITH_THEORY;
1518
  for (;;)
1519
  {
1520
    // Propagate and call the theory solvers
1521
3624946
    CRef confl = propagate(check_type);
1522
3624932
    Assert(lemmas.size() == 0);
1523
1524
3624932
    if (confl != CRef_Undef)
1525
    {
1526
305822
      conflicts++;
1527
305822
      conflictC++;
1528
1529
305822
      if (decisionLevel() == 0)
1530
      {
1531
3403
        if (needProof())
1532
        {
1533
861
          if (confl == CRef_Lazy)
1534
          {
1535
51
            d_pfManager->finalizeProof();
1536
          }
1537
          else
1538
          {
1539
810
            d_pfManager->finalizeProof(ca[confl]);
1540
          }
1541
        }
1542
3403
        return l_False;
1543
      }
1544
1545
      // Analyze the conflict
1546
302419
      learnt_clause.clear();
1547
302419
      int max_level = analyze(confl, learnt_clause, backtrack_level);
1548
302419
      cancelUntil(backtrack_level);
1549
1550
      // Assert the conflict clause and the asserting literal
1551
302419
      if (learnt_clause.size() == 1)
1552
      {
1553
5941
        uncheckedEnqueue(learnt_clause[0]);
1554
5941
        if (needProof())
1555
        {
1556
1470
          d_pfManager->endResChain(learnt_clause[0]);
1557
        }
1558
      }
1559
      else
1560
      {
1561
296478
        CRef cr = ca.alloc(assertionLevelOnly() ? assertionLevel : max_level,
1562
                           learnt_clause,
1563
296478
                           true);
1564
296478
        clauses_removable.push(cr);
1565
296478
        attachClause(cr);
1566
296478
        claBumpActivity(ca[cr]);
1567
296478
        uncheckedEnqueue(learnt_clause[0], cr);
1568
296478
        if (needProof())
1569
        {
1570
20764
          d_pfManager->endResChain(ca[cr]);
1571
        }
1572
      }
1573
1574
302419
      varDecayActivity();
1575
302419
      claDecayActivity();
1576
1577
302419
      if (--learntsize_adjust_cnt == 0)
1578
      {
1579
575
        learntsize_adjust_confl *= learntsize_adjust_inc;
1580
575
        learntsize_adjust_cnt = (int)learntsize_adjust_confl;
1581
575
        max_learnts *= learntsize_inc;
1582
1583
575
        if (verbosity >= 1)
1584
          printf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |\n",
1585
                 (int)conflicts,
1586
                 (int)dec_vars
1587
                     - (trail_lim.size() == 0 ? trail.size() : trail_lim[0]),
1588
                 nClauses(),
1589
                 (int)clauses_literals,
1590
                 (int)max_learnts,
1591
                 nLearnts(),
1592
                 (double)learnts_literals / nLearnts(),
1593
                 progressEstimate() * 100);
1594
      }
1595
1596
302419
      if (theoryConflict && options::sat_refine_conflicts())
1597
      {
1598
        check_type = CHECK_FINAL_FAKE;
1599
      }
1600
      else
1601
      {
1602
302419
        check_type = CHECK_WITH_THEORY;
1603
      }
1604
    }
1605
    else
1606
    {
1607
      // If this was a final check, we are satisfiable
1608
3319110
      if (check_type == CHECK_FINAL)
1609
      {
1610
        // Note that we are done making decisions when there are no pending decisions
1611
        // on assumptions, and the decision engine indicates it is done.
1612
68864
        bool decisionEngineDone = (decisionLevel() >= assumptions.size())
1613
68864
                                  && d_proxy->isDecisionEngineDone();
1614
        // Unless a lemma has added more stuff to the queues
1615
192918
        if (!decisionEngineDone
1616
68864
            && (!order_heap.empty() || qhead < trail.size()))
1617
        {
1618
55190
          check_type = CHECK_WITH_THEORY;
1619
189797
          continue;
1620
        }
1621
13674
        else if (recheck)
1622
        {
1623
          // There some additional stuff added, so we go for another
1624
          // full-check
1625
6188
          continue;
1626
        }
1627
        else
1628
        {
1629
          // Yes, we're truly satisfiable
1630
7486
          return l_True;
1631
        }
1632
      }
1633
3250246
      else if (check_type == CHECK_FINAL_FAKE)
1634
      {
1635
        check_type = CHECK_WITH_THEORY;
1636
      }
1637
1638
6500492
      if ((nof_conflicts >= 0 && conflictC >= nof_conflicts)
1639
6497811
          || !withinBudget(Resource::SatConflictStep))
1640
      {
1641
        // Reached bound on number of conflicts:
1642
2681
        progress_estimate = progressEstimate();
1643
2681
        cancelUntil(0);
1644
        // [mdeters] notify theory engine of restarts for deferred
1645
        // theory processing
1646
2681
        d_proxy->notifyRestart();
1647
2681
        return l_Undef;
1648
      }
1649
1650
      // Simplify the set of problem clauses:
1651
3247565
      if (decisionLevel() == 0 && !simplify())
1652
      {
1653
        return l_False;
1654
      }
1655
1656
3247565
      if (clauses_removable.size() - nAssigns() >= max_learnts)
1657
      {
1658
        // Reduce the set of learnt clauses:
1659
4068
        reduceDB();
1660
      }
1661
1662
3247565
      Lit next = lit_Undef;
1663
3306895
      while (decisionLevel() < assumptions.size())
1664
      {
1665
        // Perform user provided assumption:
1666
351884
        Lit p = assumptions[decisionLevel()];
1667
351884
        if (value(p) == l_True)
1668
        {
1669
          // Dummy decision level:
1670
29665
          newDecisionLevel();
1671
        }
1672
322219
        else if (value(p) == l_False)
1673
        {
1674
2744
          analyzeFinal(~p, d_conflict);
1675
2744
          return l_False;
1676
        }
1677
        else
1678
        {
1679
319475
          next = p;
1680
319475
          break;
1681
        }
1682
      }
1683
1684
3244821
      if (next == lit_Undef)
1685
      {
1686
        // New variable decision:
1687
2925346
        next = pickBranchLit();
1688
1689
2998573
        if (next == lit_Undef)
1690
        {
1691
          // We need to do a full theory check to confirm
1692
146458
          Debug("minisat::search")
1693
73229
              << "Doing a full theory check..." << std::endl;
1694
73229
          check_type = CHECK_FINAL;
1695
73229
          continue;
1696
        }
1697
      }
1698
1699
      // Increase decision level and enqueue 'next'
1700
3171590
      newDecisionLevel();
1701
3171590
      uncheckedEnqueue(next);
1702
    }
1703
3608616
  }
1704
}
1705
1706
1707
2681
double Solver::progressEstimate() const
1708
{
1709
2681
    double  progress = 0;
1710
2681
    double  F = 1.0 / nVars();
1711
1712
192106
    for (int i = 0; i <= decisionLevel(); i++){
1713
189425
        int beg = i == 0 ? 0 : trail_lim[i - 1];
1714
189425
        int end = i == decisionLevel() ? trail.size() : trail_lim[i];
1715
189425
        progress += pow(F, i) * (end - beg);
1716
    }
1717
1718
2681
    return progress / nVars();
1719
}
1720
1721
/*
1722
  Finite subsequences of the Luby-sequence:
1723
1724
  0: 1
1725
  1: 1 1 2
1726
  2: 1 1 2 1 1 2 4
1727
  3: 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8
1728
  ...
1729
1730
1731
 */
1732
1733
16330
static double luby(double y, int x){
1734
1735
    // Find the finite subsequence that contains index 'x', and the
1736
    // size of that subsequence:
1737
    int size, seq;
1738
16330
    for (size = 1, seq = 0; size < x+1; seq++, size = 2*size+1);
1739
1740
27950
    while (size-1 != x){
1741
5810
        size = (size-1)>>1;
1742
5810
        seq--;
1743
5810
        x = x % size;
1744
    }
1745
1746
16330
    return pow(y, seq);
1747
}
1748
1749
// NOTE: assumptions passed in member-variable 'assumptions'.
1750
15019
lbool Solver::solve_()
1751
{
1752
15019
    Debug("minisat") << "nvars = " << nVars() << std::endl;
1753
1754
30038
    ScopedBool scoped_bool(minisat_busy, true);
1755
1756
15019
    Assert(decisionLevel() == 0);
1757
1758
15019
    model.clear();
1759
15019
    d_conflict.clear();
1760
15019
    if (!ok){
1761
1370
      minisat_busy = false;
1762
1370
      return l_False;
1763
    }
1764
1765
13649
    solves++;
1766
1767
13649
    max_learnts               = nClauses() * learntsize_factor;
1768
13649
    learntsize_adjust_confl   = learntsize_adjust_start_confl;
1769
13649
    learntsize_adjust_cnt     = (int)learntsize_adjust_confl;
1770
13649
    lbool   status            = l_Undef;
1771
1772
13649
    if (verbosity >= 1){
1773
1
        printf("============================[ Search Statistics ]==============================\n");
1774
1
        printf("| Conflicts |          ORIGINAL         |          LEARNT          | Progress |\n");
1775
1
        printf("|           |    Vars  Clauses Literals |    Limit  Clauses Lit/Cl |          |\n");
1776
1
        printf("===============================================================================\n");
1777
    }
1778
1779
    // Search:
1780
13649
    int curr_restarts = 0;
1781
46277
    while (status == l_Undef){
1782
16330
        double rest_base = luby_restart ? luby(restart_inc, curr_restarts) : pow(restart_inc, curr_restarts);
1783
16330
        status = search(rest_base * restart_first);
1784
16314
        if (!withinBudget(Resource::SatConflictStep))
1785
          break;  // FIXME add restart option?
1786
16314
        curr_restarts++;
1787
    }
1788
1789
13633
    if (!withinBudget(Resource::SatConflictStep))
1790
      status = l_Undef;
1791
1792
13633
    if (verbosity >= 1)
1793
1
        printf("===============================================================================\n");
1794
1795
1796
13633
    if (status == l_True){
1797
        // Extend & copy model:
1798
7486
        model.growTo(nVars());
1799
624396
        for (int i = 0; i < nVars(); i++) {
1800
616910
          model[i] = value(i);
1801
616910
          Debug("minisat") << i << " = " << model[i] << std::endl;
1802
        }
1803
    }
1804
6147
    else if (status == l_False && d_conflict.size() == 0)
1805
3403
      ok = false;
1806
1807
13633
    return status;
1808
}
1809
1810
//=================================================================================================
1811
// Writing CNF to DIMACS:
1812
//
1813
// FIXME: this needs to be rewritten completely.
1814
1815
static Var mapVar(Var x, vec<Var>& map, Var& max)
1816
{
1817
    if (map.size() <= x || map[x] == -1){
1818
        map.growTo(x+1, -1);
1819
        map[x] = max++;
1820
    }
1821
    return map[x];
1822
}
1823
1824
1825
void Solver::toDimacs(FILE* f, Clause& c, vec<Var>& map, Var& max)
1826
{
1827
    if (satisfied(c)) return;
1828
1829
    for (int i = 0; i < c.size(); i++)
1830
        if (value(c[i]) != l_False)
1831
            fprintf(f, "%s%d ", sign(c[i]) ? "-" : "", mapVar(var(c[i]), map, max)+1);
1832
    fprintf(f, "0\n");
1833
}
1834
1835
1836
void Solver::toDimacs(const char *file, const vec<Lit>& assumps)
1837
{
1838
    FILE* f = fopen(file, "wr");
1839
    if (f == NULL)
1840
        fprintf(stderr, "could not open file %s\n", file), exit(1);
1841
    toDimacs(f, assumps);
1842
    fclose(f);
1843
}
1844
1845
1846
void Solver::toDimacs(FILE* f, const vec<Lit>& assumps)
1847
{
1848
    // Handle case when solver is in contradictory state:
1849
    if (!ok){
1850
        fprintf(f, "p cnf 1 2\n1 0\n-1 0\n");
1851
        return; }
1852
1853
    vec<Var> map; Var max = 0;
1854
1855
    // Cannot use removeClauses here because it is not safe
1856
    // to deallocate them at this point. Could be improved.
1857
    int cnt = 0;
1858
    for (int i = 0; i < clauses_persistent.size(); i++)
1859
        if (!satisfied(ca[clauses_persistent[i]]))
1860
            cnt++;
1861
1862
    for (int i = 0; i < clauses_persistent.size(); i++)
1863
        if (!satisfied(ca[clauses_persistent[i]])){
1864
            Clause& c = ca[clauses_persistent[i]];
1865
            for (int j = 0; j < c.size(); j++)
1866
                if (value(c[j]) != l_False)
1867
                    mapVar(var(c[j]), map, max);
1868
        }
1869
1870
    // Assumptions are added as unit clauses:
1871
    cnt += assumptions.size();
1872
1873
    fprintf(f, "p cnf %d %d\n", max, cnt);
1874
1875
    for (int i = 0; i < assumptions.size(); i++){
1876
      Assert(value(assumptions[i]) != l_False);
1877
      fprintf(f,
1878
              "%s%d 0\n",
1879
              sign(assumptions[i]) ? "-" : "",
1880
              mapVar(var(assumptions[i]), map, max) + 1);
1881
    }
1882
1883
    for (int i = 0; i < clauses_persistent.size(); i++)
1884
        toDimacs(f, ca[clauses_persistent[i]], map, max);
1885
1886
    if (verbosity > 0)
1887
        printf("Wrote %d clauses with %d variables.\n", cnt, max);
1888
}
1889
1890
1891
//=================================================================================================
1892
// Garbage Collection methods:
1893
1894
2915
void Solver::relocAll(ClauseAllocator& to)
1895
{
1896
    // All watchers:
1897
    //
1898
    // for (int i = 0; i < watches.size(); i++)
1899
2915
    watches.cleanAll();
1900
932499
    for (int v = 0; v < nVars(); v++)
1901
2788752
        for (int s = 0; s < 2; s++){
1902
1859168
            Lit p = mkLit(v, s);
1903
            // printf(" >>> RELOCING: %s%d\n", sign(p)?"-":"", var(p)+1);
1904
1859168
            vec<Watcher>& ws = watches[p];
1905
5764656
            for (int j = 0; j < ws.size(); j++)
1906
            {
1907
3905488
              ca.reloc(ws[j].cref, to);
1908
            }
1909
        }
1910
1911
    // All reasons:
1912
    //
1913
202077
    for (int i = 0; i < trail.size(); i++){
1914
199162
        Var v = var(trail[i]);
1915
1916
398324
        if (hasReasonClause(v)
1917
199162
            && (ca[reason(v)].reloced() || locked(ca[reason(v)])))
1918
        {
1919
47779
          ca.reloc(vardata[v].d_reason, to);
1920
        }
1921
    }
1922
    // All learnt:
1923
    //
1924
205607
    for (int i = 0; i < clauses_removable.size(); i++)
1925
    {
1926
202692
      ca.reloc(clauses_removable[i], to);
1927
    }
1928
    // All original:
1929
    //
1930
1752967
    for (int i = 0; i < clauses_persistent.size(); i++)
1931
    {
1932
1750052
      ca.reloc(clauses_persistent[i], to);
1933
    }
1934
2915
}
1935
1936
1937
void Solver::garbageCollect()
1938
{
1939
    // Initialize the next region to a size corresponding to the estimated utilization degree. This
1940
    // is not precise but should avoid some unnecessary reallocations for the new region:
1941
    ClauseAllocator to(ca.size() - ca.wasted());
1942
1943
    relocAll(to);
1944
    if (verbosity >= 2)
1945
        printf("|  Garbage collection:   %12d bytes => %12d bytes             |\n",
1946
               ca.size()*ClauseAllocator::Unit_Size, to.size()*ClauseAllocator::Unit_Size);
1947
    to.moveTo(ca);
1948
}
1949
1950
4869
void Solver::push()
1951
{
1952
4869
  Assert(d_enable_incremental);
1953
4869
  Assert(decisionLevel() == 0);
1954
1955
4869
  ++assertionLevel;
1956
4869
  Debug("minisat") << "in user push, increasing assertion level to " << assertionLevel << std::endl;
1957
4869
  trail_ok.push(ok);
1958
4869
  assigns_lim.push(assigns.size());
1959
1960
4869
  d_context->push();  // SAT context for cvc5
1961
1962
4869
  Debug("minisat") << "MINISAT PUSH assertionLevel is " << assertionLevel << ", trail.size is " << trail.size() << std::endl;
1963
4869
}
1964
1965
4869
void Solver::pop()
1966
{
1967
4869
  Assert(d_enable_incremental);
1968
1969
4869
  Assert(decisionLevel() == 0);
1970
1971
  // Pop the trail below the user level
1972
4869
  --assertionLevel;
1973
9738
  Debug("minisat") << "in user pop, decreasing assertion level to "
1974
4869
                   << assertionLevel << "\n"
1975
4869
                   << cvc5::push;
1976
  while (true) {
1977
57159
    Debug("minisat") << "== unassigning " << trail.last() << std::endl;
1978
57159
    Var      x  = var(trail.last());
1979
57159
    if (user_level(x) > assertionLevel) {
1980
52290
      assigns[x] = l_Undef;
1981
52290
      vardata[x] = VarData(CRef_Undef, -1, -1, intro_level(x), -1);
1982
52290
      if(phase_saving >= 1 && (polarity[x] & 0x2) == 0)
1983
51164
        polarity[x] = sign(trail.last());
1984
52290
      insertVarOrder(x);
1985
52290
      trail.pop();
1986
    } else {
1987
4869
      break;
1988
    }
1989
52290
  }
1990
1991
  // The head should be at the trail top
1992
4869
  qhead = trail.size();
1993
1994
  // Remove the clauses
1995
4869
  removeClausesAboveLevel(clauses_persistent, assertionLevel);
1996
4869
  removeClausesAboveLevel(clauses_removable, assertionLevel);
1997
4869
  Debug("minisat") << cvc5::pop;
1998
  // Pop the SAT context to notify everyone
1999
4869
  d_context->pop();  // SAT context for cvc5
2000
2001
9738
  Debug("minisat") << "MINISAT POP assertionLevel is " << assertionLevel
2002
4869
                   << ", trail.size is " << trail.size() << "\n";
2003
  // Pop the created variables
2004
4869
  resizeVars(assigns_lim.last());
2005
4869
  assigns_lim.pop();
2006
4869
  variables_to_register.clear();
2007
2008
  // Pop the OK
2009
4869
  ok = trail_ok.last();
2010
4869
  trail_ok.pop();
2011
4869
}
2012
2013
269211
CRef Solver::updateLemmas() {
2014
2015
269211
  Debug("minisat::lemmas") << "Solver::updateLemmas() begin" << std::endl;
2016
2017
  // Avoid adding lemmas indefinitely without resource-out
2018
269211
  d_proxy->spendResource(Resource::LemmaStep);
2019
2020
269211
  CRef conflict = CRef_Undef;
2021
2022
  // Decision level to backtrack to
2023
269211
  int backtrackLevel = decisionLevel();
2024
2025
  // We use this comparison operator
2026
269211
  lemma_lt lt(*this);
2027
2028
  // Check for propagation and level to backtrack to
2029
269211
  int i = 0;
2030
807771
  while (i < lemmas.size()) {
2031
    // We need this loop as when we backtrack, due to registration more lemmas could be added
2032
4623696
    for (; i < lemmas.size(); ++ i)
2033
    {
2034
      // The current lemma
2035
2177208
      vec<Lit>& lemma = lemmas[i];
2036
2037
2177208
      Trace("pf::sat") << "Solver::updateLemmas: working on lemma: ";
2038
8968842
      for (int k = 0; k < lemma.size(); ++k) {
2039
6791634
        Trace("pf::sat") << lemma[k] << " ";
2040
      }
2041
2177208
      Trace("pf::sat") << std::endl;
2042
2043
      // If it's an empty lemma, we have a conflict at zero level
2044
2178456
      if (lemma.size() == 0) {
2045
1248
        Assert(!options::unsatCores() && !needProof());
2046
1248
        conflict = CRef_Lazy;
2047
1248
        backtrackLevel = 0;
2048
1248
        Debug("minisat::lemmas") << "Solver::updateLemmas(): found empty clause" << std::endl;
2049
1248
        continue;
2050
      }
2051
      // Sort the lemma to be able to attach
2052
2175960
      sort(lemma, lt);
2053
      // See if the lemma propagates something
2054
2175960
      if (lemma.size() == 1 || value(lemma[1]) == l_False) {
2055
479894
        Debug("minisat::lemmas") << "found unit " << lemma.size() << std::endl;
2056
        // This lemma propagates, see which level we need to backtrack to
2057
479894
        int currentBacktrackLevel = lemma.size() == 1 ? 0 : level(var(lemma[1]));
2058
        // Even if the first literal is true, we should propagate it at this level (unless it's set at a lower level)
2059
479894
        if (value(lemma[0]) != l_True || level(var(lemma[0])) > currentBacktrackLevel) {
2060
462745
          if (currentBacktrackLevel < backtrackLevel) {
2061
157964
            backtrackLevel = currentBacktrackLevel;
2062
          }
2063
        }
2064
      }
2065
    }
2066
2067
    // Pop so that propagation would be current
2068
269280
    Debug("minisat::lemmas") << "Solver::updateLemmas(): backtracking to " << backtrackLevel << " from " << decisionLevel() << std::endl;
2069
269280
    cancelUntil(backtrackLevel);
2070
  }
2071
2072
  // Last index in the trail
2073
269211
  int backtrack_index = trail.size();
2074
2075
  // Attach all the clauses and enqueue all the propagations
2076
2446419
  for (int j = 0; j < lemmas.size(); ++j)
2077
  {
2078
    // The current lemma
2079
2177208
    vec<Lit>& lemma = lemmas[j];
2080
2177208
    bool removable = lemmas_removable[j];
2081
2082
    // Attach it if non-unit
2083
2177208
    CRef lemma_ref = CRef_Undef;
2084
2177208
    if (lemma.size() > 1) {
2085
      // If the lemmas is removable, we can compute its level by the level
2086
2111216
      int clauseLevel = assertionLevel;
2087
2111216
      if (removable && !assertionLevelOnly())
2088
      {
2089
193129
        clauseLevel = 0;
2090
1655608
        for (int k = 0; k < lemma.size(); ++k)
2091
        {
2092
1462479
          clauseLevel = std::max(clauseLevel, intro_level(var(lemma[k])));
2093
        }
2094
      }
2095
2096
2111216
      lemma_ref = ca.alloc(clauseLevel, lemma, removable);
2097
2111216
      if (removable) {
2098
201684
        clauses_removable.push(lemma_ref);
2099
      } else {
2100
1909532
        clauses_persistent.push(lemma_ref);
2101
      }
2102
2111216
      attachClause(lemma_ref);
2103
    }
2104
2105
    // If the lemma is propagating enqueue its literal (or set the conflict)
2106
2177208
    if (conflict == CRef_Undef && value(lemma[0]) != l_True) {
2107
2078814
      if (lemma.size() == 1 || (value(lemma[1]) == l_False && trail_index(var(lemma[1])) < backtrack_index)) {
2108
707492
        Trace("pf::sat") << "Solver::updateLemmas: unit theory lemma: "
2109
353746
                         << lemma[0] << std::endl;
2110
353746
        if (value(lemma[0]) == l_False) {
2111
          // We have a conflict
2112
57667
          if (lemma.size() > 1) {
2113
57096
            Debug("minisat::lemmas") << "Solver::updateLemmas(): conflict" << std::endl;
2114
57096
            conflict = lemma_ref;
2115
          } else {
2116
571
            Debug("minisat::lemmas") << "Solver::updateLemmas(): unit conflict or empty clause" << std::endl;
2117
571
            conflict = CRef_Lazy;
2118
571
            if (needProof())
2119
            {
2120
51
              d_pfManager->storeUnitConflict(lemma[0]);
2121
            }
2122
          }
2123
        } else {
2124
296079
          Debug("minisat::lemmas") << "lemma size is " << lemma.size() << std::endl;
2125
296079
          Debug("minisat::lemmas") << "lemma ref is " << lemma_ref << std::endl;
2126
296079
          uncheckedEnqueue(lemma[0], lemma_ref);
2127
        }
2128
      }
2129
    }
2130
  }
2131
2132
  // Clear the lemmas
2133
269211
  lemmas.clear();
2134
269211
  lemmas_removable.clear();
2135
2136
269211
  if (conflict != CRef_Undef) {
2137
58827
    theoryConflict = true;
2138
  }
2139
2140
269211
  Debug("minisat::lemmas") << "Solver::updateLemmas() end" << std::endl;
2141
2142
269211
  return conflict;
2143
}
2144
2145
6546151
void ClauseAllocator::reloc(CRef& cr, ClauseAllocator& to)
2146
{
2147
6546151
  Debug("minisat") << "ClauseAllocator::reloc: cr " << cr << std::endl;
2148
  // FIXME what is this CRef_lazy
2149
6546151
  if (cr == CRef_Lazy) return;
2150
2151
6546151
  Clause& c = operator[](cr);
2152
6546151
  if (c.reloced()) { cr = c.relocation(); return; }
2153
2154
1953505
  cr = to.alloc(c.level(), c, c.removable());
2155
1953505
  c.relocate(cr);
2156
  // Copy extra data-fields:
2157
  // (This could be cleaned-up. Generalize Clause-constructor to be applicable here instead?)
2158
1953505
  to[cr].mark(c.mark());
2159
1953505
  if (to[cr].removable())         to[cr].activity() = c.activity();
2160
1750813
  else if (to[cr].has_extra()) to[cr].calcAbstraction();
2161
}
2162
2163
3277512
inline bool Solver::withinBudget(Resource r) const
2164
{
2165
3277512
  Assert(d_proxy);
2166
  // spendResource sets async_interrupt or throws UnsafeInterruptException
2167
  // depending on whether hard-limit is enabled
2168
3277512
  d_proxy->spendResource(r);
2169
2170
3277512
  bool within_budget =
2171
6555024
      !asynch_interrupt && (conflict_budget < 0 || conflicts < conflict_budget)
2172
6555024
      && (propagation_budget < 0 || propagations < propagation_budget);
2173
3277512
  return within_budget;
2174
}
2175
2176
2504
SatProofManager* Solver::getProofManager()
2177
{
2178
2504
  return isProofEnabled() ? d_pfManager.get() : nullptr;
2179
}
2180
2181
2829
std::shared_ptr<ProofNode> Solver::getProof()
2182
{
2183
2829
  return isProofEnabled() ? d_pfManager->getProof() : nullptr;
2184
}
2185
2186
39198913
bool Solver::isProofEnabled() const { return d_pfManager != nullptr; }
2187
2188
39193580
bool Solver::needProof() const
2189
{
2190
39193580
  return isProofEnabled()
2191
524835
         && options::unsatCoresMode() != options::UnsatCoresMode::ASSUMPTIONS
2192
39718415
         && options::unsatCoresMode() != options::UnsatCoresMode::PP_ONLY;
2193
}
2194
2195
}  // namespace Minisat
2196
29577
}  // namespace cvc5