GCC Code Coverage Report
Directory: . Exec Total Coverage
File: src/theory/quantifiers/sygus/cegis_unif.h Lines: 5 5 100.0 %
Date: 2021-09-17 Branches: 13 26 50.0 %

Line Exec Source
1
/******************************************************************************
2
 * Top contributors (to current version):
3
 *   Andrew Reynolds, Haniel Barbosa, Andres Noetzli
4
 *
5
 * This file is part of the cvc5 project.
6
 *
7
 * Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
8
 * in the top-level source directory and their institutional affiliations.
9
 * All rights reserved.  See the file COPYING in the top-level source
10
 * directory for licensing information.
11
 * ****************************************************************************
12
 *
13
 * cegis with unification techinques.
14
 */
15
#include "cvc5_private.h"
16
17
#ifndef CVC5__THEORY__QUANTIFIERS__SYGUS__CEGIS_UNIF_H
18
#define CVC5__THEORY__QUANTIFIERS__SYGUS__CEGIS_UNIF_H
19
20
#include <map>
21
#include <vector>
22
23
#include "smt/env_obj.h"
24
#include "theory/decision_strategy.h"
25
#include "theory/quantifiers/sygus/cegis.h"
26
#include "theory/quantifiers/sygus/sygus_unif_rl.h"
27
28
namespace cvc5 {
29
namespace theory {
30
namespace quantifiers {
31
32
/** Cegis Unif Enumerators Decision Strategy
33
 *
34
 * This class enforces a decision strategy that limits the number of
35
 * unique values given to the set of heads of evaluation points and conditions
36
 * enumerators for these points, which are variables of sygus datatype type that
37
 * are introduced by CegisUnif.
38
 *
39
 * It maintains a set of guards, call them G_uq_1 ... G_uq_n, where the
40
 * semantics of G_uq_i is "for each type, the heads of evaluation points of that
41
 * type are interpreted as a value in a set whose cardinality is at most i".
42
 * We also enforce that the number of condition enumerators for evaluation
43
 * points is equal to (n-1).
44
 *
45
 * To enforce this, we introduce sygus enumerator(s) of the same type as the
46
 * heads of evaluation points and condition enumerators registered to this class
47
 * and add lemmas that enforce that these terms are equal to at least one
48
 * enumerator (see registerEvalPtAtSize).
49
 */
50
1231
class CegisUnifEnumDecisionStrategy : public DecisionStrategyFmf
51
{
52
 public:
53
  CegisUnifEnumDecisionStrategy(Env& env,
54
                                QuantifiersState& qs,
55
                                QuantifiersInferenceManager& qim,
56
                                TermDbSygus* tds,
57
                                SynthConjecture* parent);
58
  /** Make the n^th literal of this strategy (G_uq_n).
59
   *
60
   * This call may add new lemmas of the form described above
61
   * registerEvalPtAtValue on the output channel of d_qe.
62
   */
63
  Node mkLiteral(unsigned n) override;
64
  /** identify */
65
84647
  std::string identify() const override
66
  {
67
84647
    return std::string("cegis_unif_num_enums");
68
  }
69
70
  /** initialize candidates
71
   *
72
   * Notify this class that it will be managing enumerators for the vector
73
   * of strategy points es. This function should only be called once.
74
   *
75
   * Each strategy point in es should be such that we are using a
76
   * synthesis-by-unification approach for its candidate.
77
   */
78
  void initialize(const std::vector<Node>& es,
79
                  const std::map<Node, Node>& e_to_cond,
80
                  const std::map<Node, std::vector<Node>>& strategy_lemmas);
81
82
  /*
83
   * Do not hide the zero-argument version of initialize() inherited from the
84
   * base class
85
   */
86
  using DecisionStrategy::initialize;
87
88
  /** get the current set of enumerators for strategy point e
89
   *
90
   * Index 0 adds the set of return value enumerators to es, index 1 adds the
91
   * set of condition enumerators to es.
92
   */
93
  void getEnumeratorsForStrategyPt(Node e,
94
                                   std::vector<Node>& es,
95
                                   unsigned index) const;
96
  /** register evaluation point for candidate
97
   *
98
   * This notifies this class that eis is a set of heads of evaluation points
99
   * for strategy point e, where e was passed to initialize in the vector es.
100
   *
101
   * This may add new lemmas of the form described above
102
   * registerEvalPtAtSize on the output channel of d_qe.
103
   */
104
  void registerEvalPts(const std::vector<Node>& eis, Node e);
105
106
 private:
107
  /** Reference to the quantifiers inference manager */
108
  QuantifiersInferenceManager& d_qim;
109
  /** sygus term database of d_qe */
110
  TermDbSygus* d_tds;
111
  /** reference to the parent conjecture */
112
  SynthConjecture* d_parent;
113
  /**
114
   * Whether we are using condition pool enumeration (Section 4 of Barbosa et al
115
   * FMCAD 2019). This is determined by option::sygusUnifPi().
116
   */
117
  bool d_useCondPool;
118
  /** whether this module has been initialized */
119
  bool d_initialized;
120
  /** null node */
121
  Node d_null;
122
  /** information per initialized type */
123
11
  class StrategyPtInfo
124
  {
125
   public:
126
11
    StrategyPtInfo() {}
127
    /** strategy point for this type */
128
    Node d_pt;
129
    /** the set of enumerators we have allocated for this strategy point
130
     *
131
     * Index 0 stores the return value enumerators, and index 1 stores the
132
     * conditional enumerators. We have that
133
     *   d_enums[0].size()==d_enums[1].size()+1.
134
     */
135
    std::vector<Node> d_enums[2];
136
    /** the type of conditional enumerators for this strategy point  */
137
    TypeNode d_ce_type;
138
    /**
139
     * The set of evaluation points of this type. In models, we ensure that
140
     * each of these are equal to one of d_enums[0].
141
     */
142
    std::vector<Node> d_eval_points;
143
    /** symmetry breaking lemma template for this strategy point
144
     *
145
     * Each pair stores (the symmetry breaking lemma template, argument (to be
146
     * instantiated) of symmetry breaking lemma template).
147
     *
148
     * Index 0 stores the symmetry breaking lemma template for return values,
149
     * index 1 stores the template for conditions.
150
     */
151
    std::pair<Node, Node> d_sbt_lemma_tmpl[2];
152
  };
153
  /** map strategy points to the above info */
154
  std::map<Node, StrategyPtInfo> d_ce_info;
155
  /** the "virtual" enumerator
156
   *
157
   * This enumerator is used for enforcing fairness. In particular, we relate
158
   * its size to the number of conditions allocated by this class such that:
159
   *    ~G_uq_i => size(d_virtual_enum) >= floor( log2( i-1 ) )
160
   * In other words, if we are using (i-1) conditions in our solution,
161
   * the size of the virtual enumerator is at least the floor of the log (base
162
   * two) of (i-1). Due to the default fairness scheme in the quantifier-free
163
   * datatypes solver (if --sygus-fair-max is enabled), this ensures that other
164
   * enumerators are allowed to have at least this size. This affect other
165
   * fairness schemes in an analogous fashion. In particular, we enumerate
166
   * based on the tuples for (term size, #conditions):
167
   *   (0,0), (0,1)                                             [size 0]
168
   *   (0,2), (0,3), (1,1), (1,2), (1,3)                        [size 1]
169
   *   (0,4), ..., (0,7), (1,4), ..., (1,7), (2,0), ..., (2,7)  [size 2]
170
   *   (0,8), ..., (0,15), (1,8), ..., (1,15), ...              [size 3]
171
   */
172
  Node d_virtual_enum;
173
  /** Registers an enumerator and adds symmetry breaking lemmas
174
   *
175
   * The symmetry breaking lemmas are generated according to the stored
176
   * information from the enumerator's respective strategy point and whether it
177
   * is a condition or return value enumerator. For the latter we add symmetry
178
   * breaking lemmas that force enumerators to consider values in an increasing
179
   * order of size.
180
   */
181
  void setUpEnumerator(Node e, StrategyPtInfo& si, unsigned index);
182
  /** register evaluation point at size
183
   *
184
   * This sends a lemma of the form:
185
   *   G_uq_n => ei = d1 V ... V ei = dn
186
   * on the output channel of d_qe, where d1...dn are sygus enumerators of the
187
   * same type as e and ei, and ei is an evaluation point of strategy point e.
188
   */
189
  void registerEvalPtAtSize(Node e, Node ei, Node guq_lit, unsigned n);
190
};
191
192
/** Synthesizes functions in a data-driven SyGuS approach
193
 *
194
 * Data is derived from refinement lemmas generated through the regular CEGIS
195
 * approach. SyGuS is used to generate terms for classifying the data
196
 * (e.g. using decision tree learning) and thus generate a candidates for
197
 * functions-to-synthesize.
198
 *
199
 * This approach is inspired by the divide and conquer synthesis through
200
 * unification approach by Alur et al. TACAS 2017, by ICE-based invariant
201
 * synthesis from Garg et al. CAV 2014 and POPL 2016, and Padhi et al. PLDI 2016
202
 *
203
 * This module mantains a set of functions-to-synthesize and a set of term
204
 * enumerators. When new terms are enumerated it tries to learn new candidate
205
 * solutions, which are verified outside this module. If verification fails a
206
 * refinement lemma is generated, which this module sends to the utility that
207
 * learns candidates.
208
 */
209
class CegisUnif : public Cegis
210
{
211
 public:
212
  CegisUnif(Env& env,
213
            QuantifiersState& qs,
214
            QuantifiersInferenceManager& qim,
215
            TermDbSygus* tds,
216
            SynthConjecture* p);
217
  ~CegisUnif() override;
218
  /** Retrieves enumerators for constructing solutions
219
   *
220
   * Non-unification candidates have themselves as enumerators, while for
221
   * unification candidates we add their conditonal enumerators to enums if
222
   * their respective guards are set in the current model
223
   */
224
  void getTermList(const std::vector<Node>& candidates,
225
                   std::vector<Node>& enums) override;
226
227
  /** Communicates refinement lemma to unification utility and external modules
228
   *
229
   * For the lemma to be sent to the external modules it adds a guard from the
230
   * parent conjecture which establishes that if the conjecture has a solution
231
   * then it must satisfy this refinement lemma
232
   *
233
   * For the lemma to be sent to the unification utility it purifies the
234
   * arguments of the function-to-synthensize such that all of its applications
235
   * are over concrete values. E.g.:
236
   *   f(f(f(0))) > 1
237
   * becomes
238
   *   f(0) != c1 v f(c1) != c2 v f(c2) > 1
239
   * in which c1 and c2 are concrete integer values
240
   *
241
   * Note that the lemma is in the deep embedding, which means that the above
242
   * example would actually correspond to
243
   *   eval(d, 0) != c1 v eval(d, c1) != c2 v eval(d, c2) > 1
244
   * in which d is the deep embedding of the function-to-synthesize f
245
   */
246
  void registerRefinementLemma(const std::vector<Node>& vars,
247
                               Node lem) override;
248
249
 private:
250
  /** do cegis-implementation-specific initialization for this class */
251
  bool processInitialize(Node conj,
252
                         Node n,
253
                         const std::vector<Node>& candidates) override;
254
  /** Tries to build new candidate solutions with new enumerated expressions
255
   *
256
   * This function relies on a data-driven unification-based approach for
257
   * constructing solutions for the functions-to-synthesize. See SygusUnifRl for
258
   * more details.
259
   *
260
   * Calls to this function are such that terms is the list of active
261
   * enumerators (returned by getTermList), and term_values are their current
262
   * model values. This function registers { terms -> terms_values } in
263
   * the database of values that have been enumerated, which are in turn used
264
   * for constructing candidate solutions when possible.
265
   *
266
   * This function also excludes models where (terms = terms_values) by adding
267
   * blocking clauses to d_qim pending lemmas. For example, for grammar:
268
   *   A -> A+A | x | 1 | 0
269
   * and a call where terms = { d } and term_values = { +( x, 1 ) }, it adds:
270
   *   ~G V ~is_+( d ) V ~is_x( d.1 ) V ~is_1( d.2 )
271
   * to d_qim pending lemmas, where G is active guard of the enumerator d (see
272
   * TermDatabaseSygus::getActiveGuardForEnumerator). This blocking clause
273
   * indicates that d should not be given the model value +( x, 1 ) anymore,
274
   * since { d -> +( x, 1 ) } has now been added to the database of this class.
275
   */
276
  bool processConstructCandidates(const std::vector<Node>& enums,
277
                                  const std::vector<Node>& enum_values,
278
                                  const std::vector<Node>& candidates,
279
                                  std::vector<Node>& candidate_values,
280
                                  bool satisfiedRl) override;
281
  /** communicate condition values to solution building utility
282
   *
283
   * for each unification candidate and for each strategy point associated with
284
   * it, set in d_sygus_unif the condition values (unif_cvalues) for respective
285
   * condition enumerators (unif_cenums)
286
   */
287
  void setConditions(const std::map<Node, std::vector<Node>>& unif_cenums,
288
                     const std::map<Node, std::vector<Node>>& unif_cvalues);
289
  /** set values of condition enumerators based on current enumerator assignment
290
   *
291
   * enums and enum_values are the enumerators registered in getTermList and
292
   * their values retrieved by the parent SynthConjecture module, respectively.
293
   *
294
   * unif_cenums and unif_cvalues associate the conditional enumerators of each
295
   * strategy point of each unification candidate with their respective model
296
   * values
297
   *
298
   * This function also generates inter-enumerator symmetry breaking for return
299
   * values, such that their model values are ordered by size
300
   *
301
   * returns true if no symmetry breaking lemmas were generated for the return
302
   * value enumerators, false otherwise
303
   */
304
  bool getEnumValues(const std::vector<Node>& enums,
305
                     const std::vector<Node>& enum_values,
306
                     std::map<Node, std::vector<Node>>& unif_cenums,
307
                     std::map<Node, std::vector<Node>>& unif_cvalues);
308
309
  /**
310
   * Whether we are using condition pool enumeration (Section 4 of Barbosa et al
311
   * FMCAD 2019). This is determined by option::sygusUnifPi().
312
   */
313
  bool usingConditionPool() const;
314
  /**
315
   * Sygus unif utility. This class implements the core algorithm (e.g. decision
316
   * tree learning) that this module relies upon.
317
   */
318
  SygusUnifRl d_sygus_unif;
319
  /** enumerator manager utility */
320
  CegisUnifEnumDecisionStrategy d_u_enum_manager;
321
  /* The null node */
322
  Node d_null;
323
  /** the unification candidates */
324
  std::vector<Node> d_unif_candidates;
325
  /** the non-unification candidates */
326
  std::vector<Node> d_non_unif_candidates;
327
  /** list of strategy points per candidate */
328
  std::map<Node, std::vector<Node>> d_cand_to_strat_pt;
329
  /** map from conditional enumerators to their strategy point */
330
  std::map<Node, Node> d_cenum_to_strat_pt;
331
}; /* class CegisUnif */
332
333
}  // namespace quantifiers
334
}  // namespace theory
335
}  // namespace cvc5
336
337
#endif