GCC Code Coverage Report
Directory: . Exec Total Coverage
File: src/prop/minisat/core/Solver.cc Lines: 856 1027 83.3 %
Date: 2021-09-18 Branches: 1178 2784 42.3 %

Line Exec Source
1
/***************************************************************************************[Solver.cc]
2
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
3
Copyright (c) 2007-2010, Niklas Sorensson
4
5
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
6
associated documentation files (the "Software"), to deal in the Software without restriction,
7
including without limitation the rights to use, copy, modify, merge, publish, distribute,
8
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
9
furnished to do so, subject to the following conditions:
10
11
The above copyright notice and this permission notice shall be included in all copies or
12
substantial portions of the Software.
13
14
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
15
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
16
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
17
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
18
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
**************************************************************************************************/
20
21
#include "prop/minisat/core/Solver.h"
22
23
#include <math.h>
24
25
#include <iostream>
26
#include <unordered_set>
27
28
#include "base/check.h"
29
#include "base/output.h"
30
#include "options/base_options.h"
31
#include "options/main_options.h"
32
#include "options/prop_options.h"
33
#include "options/smt_options.h"
34
#include "proof/clause_id.h"
35
#include "prop/minisat/minisat.h"
36
#include "prop/minisat/mtl/Sort.h"
37
#include "prop/theory_proxy.h"
38
39
using namespace cvc5::prop;
40
41
namespace cvc5 {
42
namespace Minisat {
43
44
namespace {
45
/*
46
 * Returns true if the solver should add all clauses at the current assertion
47
 * level.
48
 *
49
 * FIXME: This is a workaround. Currently, our resolution proofs do not
50
 * handle clauses with a lower-than-assertion-level correctly because the
51
 * resolution proofs get removed when popping the context but the SAT solver
52
 * keeps using them.
53
 */
54
12387965
bool assertionLevelOnly()
55
{
56
17465019
  return (options::produceProofs() || options::unsatCores())
57
19698886
         && options::incrementalSolving();
58
}
59
60
//=================================================================================================
61
// Helper functions for decision tree tracing
62
63
// Writes to Trace macro for decision tree tracing
64
static inline void dtviewDecisionHelper(size_t level,
65
                                        const Node& node,
66
                                        const char* decisiontype)
67
{
68
  Trace("dtview") << std::string(level - (options::incrementalSolving() ? 1 : 0), '*')
69
                  << " " << node << " :" << decisiontype << "-DECISION:" << std::endl;
70
}
71
72
// Writes to Trace macro for propagation tracing
73
static inline void dtviewPropagationHeaderHelper(size_t level)
74
{
75
  Trace("dtview::prop") << std::string(level + 1 - (options::incrementalSolving() ? 1 : 0),
76
                                       '*')
77
                        << " /Propagations/" << std::endl;
78
}
79
80
// Writes to Trace macro for propagation tracing
81
static inline void dtviewBoolPropagationHelper(size_t level,
82
                                               Lit& l,
83
                                               cvc5::prop::TheoryProxy* proxy)
84
{
85
  Trace("dtview::prop") << std::string(
86
      level + 1 - (options::incrementalSolving() ? 1 : 0), ' ')
87
                        << ":BOOL-PROP: "
88
                        << proxy->getNode(MinisatSatSolver::toSatLiteral(l))
89
                        << std::endl;
90
}
91
92
// Writes to Trace macro for conflict tracing
93
static inline void dtviewPropConflictHelper(size_t level,
94
                                            Clause& confl,
95
                                            cvc5::prop::TheoryProxy* proxy)
96
{
97
  Trace("dtview::conflict")
98
      << std::string(level + 1 - (options::incrementalSolving() ? 1 : 0), ' ')
99
      << ":PROP-CONFLICT: (or";
100
  for (int i = 0; i < confl.size(); i++)
101
  {
102
    Trace("dtview::conflict")
103
        << " " << proxy->getNode(MinisatSatSolver::toSatLiteral(confl[i]));
104
  }
105
  Trace("dtview::conflict") << ")" << std::endl;
106
}
107
108
}  // namespace
109
110
//=================================================================================================
111
// Options:
112
113
static const char* _cat = "CORE";
114
115
9858
static DoubleOption  opt_var_decay         (_cat, "var-decay",   "The variable activity decay factor",            0.95,     DoubleRange(0, false, 1, false));
116
9858
static DoubleOption  opt_clause_decay      (_cat, "cla-decay",   "The clause activity decay factor",              0.999,    DoubleRange(0, false, 1, false));
117
9858
static DoubleOption  opt_random_var_freq   (_cat, "rnd-freq",    "The frequency with which the decision heuristic tries to choose a random variable", 0, DoubleRange(0, true, 1, true));
118
9858
static DoubleOption  opt_random_seed       (_cat, "rnd-seed",    "Used by the random variable selection",         91648253, DoubleRange(0, false, HUGE_VAL, false));
119
9858
static IntOption     opt_ccmin_mode        (_cat, "ccmin-mode",  "Controls conflict clause minimization (0=none, 1=basic, 2=deep)", 2, IntRange(0, 2));
120
9858
static IntOption     opt_phase_saving      (_cat, "phase-saving", "Controls the level of phase saving (0=none, 1=limited, 2=full)", 2, IntRange(0, 2));
121
9858
static BoolOption    opt_rnd_init_act      (_cat, "rnd-init",    "Randomize the initial activity", false);
122
9858
static BoolOption    opt_luby_restart      (_cat, "luby",        "Use the Luby restart sequence", true);
123
9858
static IntOption     opt_restart_first     (_cat, "rfirst",      "The base restart interval", 25, IntRange(1, INT32_MAX));
124
9858
static DoubleOption  opt_restart_inc       (_cat, "rinc",        "Restart interval increase factor", 3, DoubleRange(1, false, HUGE_VAL, false));
125
9858
static DoubleOption  opt_garbage_frac      (_cat, "gc-frac",     "The fraction of wasted memory allowed before a garbage collection is triggered",  0.20, DoubleRange(0, false, HUGE_VAL, false));
126
127
//=================================================================================================
128
// Proof declarations
129
CRef Solver::TCRef_Undef = CRef_Undef;
130
CRef Solver::TCRef_Lazy = CRef_Lazy;
131
132
class ScopedBool
133
{
134
  bool& d_watch;
135
  bool d_oldValue;
136
137
 public:
138
3632199
  ScopedBool(bool& watch, bool newValue) : d_watch(watch), d_oldValue(watch)
139
  {
140
3632199
    watch = newValue;
141
3632199
  }
142
3632199
  ~ScopedBool() { d_watch = d_oldValue; }
143
};
144
145
//=================================================================================================
146
// Constructor/Destructor:
147
148
10007
Solver::Solver(cvc5::prop::TheoryProxy* proxy,
149
               cvc5::context::Context* context,
150
               cvc5::context::UserContext* userContext,
151
               ProofNodeManager* pnm,
152
10007
               bool enableIncremental)
153
    : d_proxy(proxy),
154
      d_context(context),
155
      assertionLevel(0),
156
      d_pfManager(nullptr),
157
      d_enable_incremental(enableIncremental),
158
      minisat_busy(false)
159
      // Parameters (user settable):
160
      //
161
      ,
162
      verbosity(0),
163
      var_decay(opt_var_decay),
164
      clause_decay(opt_clause_decay),
165
      random_var_freq(opt_random_var_freq),
166
      random_seed(opt_random_seed),
167
      luby_restart(opt_luby_restart),
168
      ccmin_mode(opt_ccmin_mode),
169
      phase_saving(opt_phase_saving),
170
      rnd_pol(false),
171
      rnd_init_act(opt_rnd_init_act),
172
      garbage_frac(opt_garbage_frac),
173
      restart_first(opt_restart_first),
174
      restart_inc(opt_restart_inc)
175
176
      // Parameters (the rest):
177
      //
178
      ,
179
      learntsize_factor(1),
180
      learntsize_inc(1.5)
181
182
      // Parameters (experimental):
183
      //
184
      ,
185
      learntsize_adjust_start_confl(100),
186
      learntsize_adjust_inc(1.5)
187
188
      // Statistics: (formerly in 'SolverStats')
189
      //
190
      ,
191
      solves(0),
192
      starts(0),
193
      decisions(0),
194
      rnd_decisions(0),
195
      propagations(0),
196
      conflicts(0),
197
      resources_consumed(0),
198
      dec_vars(0),
199
      clauses_literals(0),
200
      learnts_literals(0),
201
      max_literals(0),
202
      tot_literals(0)
203
204
      ,
205
      ok(true),
206
      cla_inc(1),
207
      var_inc(1),
208
20014
      watches(WatcherDeleted(ca)),
209
      qhead(0),
210
      simpDB_assigns(-1),
211
      simpDB_props(0),
212
20014
      order_heap(VarOrderLt(activity)),
213
      progress_estimate(0),
214
10007
      remove_satisfied(!enableIncremental)
215
216
      // Resource constraints:
217
      //
218
      ,
219
      conflict_budget(-1),
220
      propagation_budget(-1),
221
60042
      asynch_interrupt(false)
222
{
223
10007
  if (pnm)
224
  {
225
2504
    d_pfManager.reset(
226
1252
        new SatProofManager(this, proxy->getCnfStream(), userContext, pnm));
227
  }
228
229
  // Create the constant variables
230
10007
  varTrue = newVar(true, false, false);
231
10007
  varFalse = newVar(false, false, false);
232
233
  // Assert the constants
234
10007
  uncheckedEnqueue(mkLit(varTrue, false));
235
10007
  uncheckedEnqueue(mkLit(varFalse, true));
236
10007
}
237
238
239
10004
Solver::~Solver()
240
{
241
10004
}
242
243
244
//=================================================================================================
245
// Minor methods:
246
247
248
// Creates a new SAT variable in the solver. If 'decision_var' is cleared, variable will not be
249
// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
250
//
251
1293478
Var Solver::newVar(bool sign, bool dvar, bool isTheoryAtom, bool preRegister, bool canErase)
252
{
253
1293478
    int v = nVars();
254
255
1293478
    watches  .init(mkLit(v, false));
256
1293478
    watches  .init(mkLit(v, true ));
257
1293478
    assigns  .push(l_Undef);
258
1293478
    vardata  .push(VarData(CRef_Undef, -1, -1, assertionLevel, -1));
259
1293478
    activity .push(rnd_init_act ? drand(random_seed) * 0.00001 : 0);
260
1293478
    seen     .push(0);
261
1293478
    polarity .push(sign);
262
1293478
    decision .push();
263
1293478
    trail    .capacity(v+1);
264
    // push whether it corresponds to a theory atom
265
1293478
    theory.push(isTheoryAtom);
266
267
1293478
    setDecisionVar(v, dvar);
268
269
1293478
    Debug("minisat") << "new var " << v << std::endl;
270
271
    // If the variable is introduced at non-zero level, we need to reintroduce it on backtracks
272
1293478
    if (preRegister)
273
    {
274
1204422
      Debug("minisat") << "  To register at level " << decisionLevel()
275
602211
                       << std::endl;
276
602211
      variables_to_register.push(VarIntroInfo(v, decisionLevel()));
277
    }
278
279
1293478
    return v;
280
}
281
282
4869
void Solver::resizeVars(int newSize) {
283
4869
  Assert(d_enable_incremental);
284
4869
  Assert(decisionLevel() == 0);
285
4869
  Assert(newSize >= 2) << "always keep true/false";
286
4869
  if (newSize < nVars()) {
287
3067
    int shrinkSize = nVars() - newSize;
288
289
    // Resize watches up to the negated last literal
290
3067
    watches.resizeTo(mkLit(newSize-1, true));
291
292
    // Resize all info arrays
293
3067
    assigns.shrink(shrinkSize);
294
3067
    vardata.shrink(shrinkSize);
295
3067
    activity.shrink(shrinkSize);
296
3067
    seen.shrink(shrinkSize);
297
3067
    polarity.shrink(shrinkSize);
298
3067
    decision.shrink(shrinkSize);
299
3067
    theory.shrink(shrinkSize);
300
  }
301
302
4869
  if (Debug.isOn("minisat::pop")) {
303
    for (int i = 0; i < trail.size(); ++ i) {
304
      Assert(var(trail[i]) < nVars());
305
    }
306
  }
307
4869
}
308
309
169830882
CRef Solver::reason(Var x) {
310
169830882
  Trace("pf::sat") << "Solver::reason(" << x << ")" << std::endl;
311
312
  // If we already have a reason, just return it
313
169830882
  if (vardata[x].d_reason != CRef_Lazy)
314
  {
315
169785084
    if (Trace.isOn("pf::sat"))
316
    {
317
      Trace("pf::sat") << "  Solver::reason: " << vardata[x].d_reason << ", ";
318
      if (vardata[x].d_reason == CRef_Undef)
319
      {
320
        Trace("pf::sat") << "CRef_Undef";
321
      }
322
      else
323
      {
324
        for (unsigned i = 0, size = ca[vardata[x].d_reason].size(); i < size;
325
             ++i)
326
        {
327
          Trace("pf::sat") << ca[vardata[x].d_reason][i] << " ";
328
        }
329
      }
330
      Trace("pf::sat") << "\n";
331
    }
332
169785084
    return vardata[x].d_reason;
333
  }
334
  // What's the literal we are trying to explain
335
45798
  Lit l = mkLit(x, value(x) != l_True);
336
337
  // Get the explanation from the theory
338
91596
  SatClause explanation_cl;
339
  // FIXME: at some point return a tag with the theory that spawned you
340
45798
  d_proxy->explainPropagation(MinisatSatSolver::toSatLiteral(l),
341
                              explanation_cl);
342
91596
  vec<Lit> explanation;
343
45798
  MinisatSatSolver::toMinisatClause(explanation_cl, explanation);
344
345
91596
  Trace("pf::sat") << "Solver::reason: explanation_cl = " << explanation_cl
346
45798
                   << std::endl;
347
348
  // Sort the literals by trail index level
349
45798
  lemma_lt lt(*this);
350
45798
  sort(explanation, lt);
351
45798
  Assert(explanation[0] == l);
352
353
  // Compute the assertion level for this clause
354
45798
  int explLevel = 0;
355
45798
  if (assertionLevelOnly())
356
  {
357
1603
    explLevel = assertionLevel;
358
    }
359
    else
360
    {
361
      int i, j;
362
44195
      Lit prev = lit_Undef;
363
320296
      for (i = 0, j = 0; i < explanation.size(); ++i)
364
      {
365
        // This clause is valid theory propagation, so its level is the level of
366
        // the top literal
367
276101
        explLevel = std::max(explLevel, intro_level(var(explanation[i])));
368
369
276101
        Assert(value(explanation[i]) != l_Undef);
370
276101
        Assert(i == 0
371
               || trail_index(var(explanation[0]))
372
                      > trail_index(var(explanation[i])));
373
374
        // Always keep the first literal
375
320296
        if (i == 0)
376
        {
377
44195
          prev = explanation[j++] = explanation[i];
378
44195
          continue;
379
        }
380
        // Ignore duplicate literals
381
231906
        if (explanation[i] == prev)
382
        {
383
          continue;
384
        }
385
        // Ignore zero level literals
386
463812
        if (level(var(explanation[i])) == 0
387
231906
            && user_level(var(explanation[i]) == 0))
388
        {
389
          continue;
390
        }
391
        // Keep this literal
392
231906
        prev = explanation[j++] = explanation[i];
393
      }
394
44195
      explanation.shrink(i - j);
395
396
44195
      Trace("pf::sat") << "Solver::reason: explanation = ";
397
320296
      for (int k = 0; k < explanation.size(); ++k)
398
      {
399
276101
        Trace("pf::sat") << explanation[k] << " ";
400
      }
401
44195
      Trace("pf::sat") << std::endl;
402
403
      // We need an explanation clause so we add a fake literal
404
44195
      if (j == 1)
405
      {
406
        // Add not TRUE to the clause
407
        explanation.push(mkLit(varTrue, true));
408
      }
409
    }
410
411
    // Construct the reason
412
45798
    CRef real_reason = ca.alloc(explLevel, explanation, true);
413
45798
    vardata[x] = VarData(real_reason, level(x), user_level(x), intro_level(x), trail_index(x));
414
45798
    clauses_removable.push(real_reason);
415
45798
    attachClause(real_reason);
416
417
45798
    return real_reason;
418
}
419
420
3837316
bool Solver::addClause_(vec<Lit>& ps, bool removable, ClauseId& id)
421
{
422
3837316
    if (!ok) return false;
423
424
    // Check if clause is satisfied and remove false/duplicate literals:
425
3837316
    sort(ps);
426
    Lit p; int i, j;
427
428
    // Which user-level to assert this clause at
429
3837316
    int clauseLevel = (removable && !assertionLevelOnly()) ? 0 : assertionLevel;
430
431
    // Check the clause for tautologies and similar
432
3837316
    int falseLiteralsCount = 0;
433
15295971
    for (i = j = 0, p = lit_Undef; i < ps.size(); i++) {
434
      // Update the level
435
23293774
      clauseLevel = assertionLevelOnly()
436
22671550
                        ? assertionLevel
437
22671550
                        : std::max(clauseLevel, intro_level(var(ps[i])));
438
      // Tautologies are ignored
439
11646887
      if (ps[i] == ~p) {
440
17602
        id = ClauseIdUndef;
441
        // Clause can be ignored
442
17602
        return true;
443
      }
444
      // Clauses with 0-level true literals are also ignored
445
11629285
      if (value(ps[i]) == l_True && level(var(ps[i])) == 0 && user_level(var(ps[i])) == 0) {
446
170630
        id = ClauseIdUndef;
447
170630
        return true;
448
      }
449
      // Ignore repeated literals
450
11458655
      if (ps[i] == p) {
451
19933
        continue;
452
      }
453
      // If a literal is false at 0 level (both sat and user level) we also
454
      // ignore it, unless we are tracking the SAT solver's reasoning
455
11438722
      if (value(ps[i]) == l_False) {
456
7480494
        if (!options::unsatCores() && !needProof() && level(var(ps[i])) == 0
457
3685121
            && user_level(var(ps[i])) == 0)
458
        {
459
785643
          continue;
460
        }
461
        else
462
        {
463
          // If we decide to keep it, we count it into the false literals
464
2093340
          falseLiteralsCount++;
465
        }
466
      }
467
      // This literal is a keeper
468
10653079
      ps[j++] = p = ps[i];
469
    }
470
471
    // Fit to size
472
3649084
    ps.shrink(i - j);
473
474
    // If we are in solve_ or propagate
475
3649084
    if (minisat_busy)
476
    {
477
2171434
      Trace("pf::sat") << "Add clause adding a new lemma: ";
478
8907098
      for (int k = 0; k < ps.size(); ++k) {
479
6735664
        Trace("pf::sat") << ps[k] << " ";
480
      }
481
2171434
      Trace("pf::sat") << std::endl;
482
483
2171434
      lemmas.push();
484
2171434
      ps.copyTo(lemmas.last());
485
2171434
      lemmas_removable.push(removable);
486
    } else {
487
1477650
      Assert(decisionLevel() == 0);
488
489
      // If all false, we're in conflict
490
1477650
      if (ps.size() == falseLiteralsCount) {
491
1343
        if (options::unsatCores() || needProof())
492
        {
493
          // Take care of false units here; otherwise, we need to
494
          // construct the clause below to give to the proof manager
495
          // as the final conflict.
496
489
          if(falseLiteralsCount == 1) {
497
470
            if (needProof())
498
            {
499
470
              d_pfManager->finalizeProof(ps[0], true);
500
            }
501
83975
            return ok = false;
502
          }
503
        }
504
        else
505
        {
506
854
          return ok = false;
507
        }
508
      }
509
510
1476326
      CRef cr = CRef_Undef;
511
512
      // If not unit, add the clause
513
1476326
      if (ps.size() > 1) {
514
515
1397491
        lemma_lt lt(*this);
516
1397491
        sort(ps, lt);
517
518
1397491
        cr = ca.alloc(clauseLevel, ps, false);
519
1397491
        clauses_persistent.push(cr);
520
1397491
        attachClause(cr);
521
522
1397491
        if (options::unsatCores() || needProof())
523
        {
524
660949
          if (ps.size() == falseLiteralsCount)
525
          {
526
19
            if (needProof())
527
            {
528
19
              d_pfManager->finalizeProof(ca[cr], true);
529
            }
530
19
            return ok = false;
531
          }
532
        }
533
      }
534
535
      // Check if it propagates
536
1476307
      if (ps.size() == falseLiteralsCount + 1) {
537
82162
        if(assigns[var(ps[0])] == l_Undef) {
538
79820
          Assert(assigns[var(ps[0])] != l_False);
539
79820
          uncheckedEnqueue(ps[0], cr);
540
159640
          Debug("cores") << "i'm registering a unit clause, maybe input"
541
79820
                         << std::endl;
542
79820
          if (ps.size() == 1)
543
          {
544
            // We need to do this so that the closedness check, if being done,
545
            // goes through when we have unit assumptions whose literal has
546
            // already been registered, as the ProofCnfStream will not register
547
            // them and as they are not the result of propagation will be left
548
            // hanging in assumptions accumulator
549
77319
            if (needProof())
550
            {
551
23606
              d_pfManager->registerSatLitAssumption(ps[0]);
552
            }
553
          }
554
79820
          CRef confl = propagate(CHECK_WITHOUT_THEORY);
555
79820
          if(! (ok = (confl == CRef_Undef)) ) {
556
38
            if (needProof())
557
            {
558
13
              if (ca[confl].size() == 1)
559
              {
560
                d_pfManager->finalizeProof(ca[confl][0]);
561
              }
562
              else
563
              {
564
13
                d_pfManager->finalizeProof(ca[confl]);
565
              }
566
            }
567
          }
568
79820
          return ok;
569
        } else {
570
2342
          return ok;
571
        }
572
      }
573
    }
574
575
3565579
    return true;
576
}
577
578
579
3932552
void Solver::attachClause(CRef cr) {
580
3932552
    const Clause& c = ca[cr];
581
3932552
    if (Debug.isOn("minisat"))
582
    {
583
      Debug("minisat") << "Solver::attachClause(" << c << "): ";
584
      for (unsigned i = 0, size = c.size(); i < size; ++i)
585
      {
586
        Debug("minisat") << c[i] << " ";
587
      }
588
      Debug("minisat") << ", level " << c.level() << "\n";
589
    }
590
3932552
    Assert(c.size() > 1);
591
3932552
    watches[~c[0]].push(Watcher(cr, c[1]));
592
3932552
    watches[~c[1]].push(Watcher(cr, c[0]));
593
3932552
    if (c.removable()) learnts_literals += c.size();
594
3394591
    else            clauses_literals += c.size();
595
3932552
}
596
597
598
850958
void Solver::detachClause(CRef cr, bool strict) {
599
850958
    const Clause& c = ca[cr];
600
850958
    Debug("minisat") << "Solver::detachClause(" << c << ")" << std::endl;
601
850958
    if (Debug.isOn("minisat"))
602
    {
603
      Debug("minisat") << "Solver::detachClause(" << c << "), CRef " << cr
604
                       << ", clause ";
605
      for (unsigned i = 0, size = c.size(); i < size; ++i)
606
      {
607
        Debug("minisat") << c[i] << " ";
608
      }
609
610
      Debug("minisat") << "\n";
611
    }
612
850958
    Assert(c.size() > 1);
613
614
850958
    if (strict){
615
89050
        remove(watches[~c[0]], Watcher(cr, c[1]));
616
89050
        remove(watches[~c[1]], Watcher(cr, c[0]));
617
    }else{
618
        // Lazy detaching: (NOTE! Must clean all watcher lists before garbage collecting this clause)
619
761908
        watches.smudge(~c[0]);
620
761908
        watches.smudge(~c[1]);
621
    }
622
623
850958
    if (c.removable()) learnts_literals -= c.size();
624
583886
    else            clauses_literals -= c.size(); }
625
626
627
761908
void Solver::removeClause(CRef cr) {
628
761908
    Clause& c = ca[cr];
629
761908
    if (Debug.isOn("minisat"))
630
    {
631
      Debug("minisat") << "Solver::removeClause(" << c << "), CRef " << cr
632
                       << ", clause ";
633
      for (unsigned i = 0, size = c.size(); i < size; ++i)
634
      {
635
        Debug("minisat") << c[i] << " ";
636
      }
637
      Debug("minisat") << "\n";
638
    }
639
761908
    detachClause(cr);
640
    // Don't leave pointers to free'd memory!
641
761908
    if (locked(c))
642
    {
643
      // a locked clause c is one whose first literal c[0] is true and is
644
      // propagated by c itself, i.e. vardata[var(c[0])].d_reason == c. Because
645
      // of this if we need to justify the propagation of c[0], via
646
      // Solver::reason, if it appears in a resolution chain built lazily we
647
      // will be unable to do so after the step below. Thus we eagerly justify
648
      // this propagation here.
649
11060
      if (needProof())
650
      {
651
2556
        Trace("pf::sat")
652
1278
            << "Solver::removeClause: eagerly compute propagation of " << c[0]
653
1278
            << "\n";
654
1278
        d_pfManager->startResChain(c);
655
5851
        for (unsigned i = 1, size = c.size(); i < size; ++i)
656
        {
657
4573
          d_pfManager->addResolutionStep(c[i]);
658
        }
659
1278
        d_pfManager->endResChain(c[0]);
660
      }
661
11060
      vardata[var(c[0])].d_reason = CRef_Undef;
662
    }
663
761908
    c.mark(1);
664
761908
    ca.free(cr);
665
761908
}
666
667
668
468824
bool Solver::satisfied(const Clause& c) const {
669
21565875
    for (int i = 0; i < c.size(); i++)
670
21142305
        if (value(c[i]) == l_True)
671
45254
            return true;
672
423570
    return false; }
673
674
675
// Revert to the state at given level (keeping all assignment at 'level' but not beyond).
676
//
677
582736
void Solver::cancelUntil(int level) {
678
582736
    Debug("minisat") << "minisat::cancelUntil(" << level << ")" << std::endl;
679
680
582736
    if (decisionLevel() > level){
681
        // Pop the SMT context
682
3520501
        for (int l = trail_lim.size() - level; l > 0; --l) {
683
3063683
          d_context->pop();
684
        }
685
117510035
        for (int c = trail.size()-1; c >= trail_lim[level]; c--){
686
117053217
            Var      x  = var(trail[c]);
687
117053217
            assigns [x] = l_Undef;
688
117053217
            vardata[x].d_trail_index = -1;
689
234106434
            if ((phase_saving > 1 ||
690
                 ((phase_saving == 1) && c > trail_lim.last())
691
234106434
                 ) && ((polarity[x] & 0x2) == 0)) {
692
116109850
              polarity[x] = sign(trail[c]);
693
            }
694
117053217
            insertVarOrder(x);
695
        }
696
456818
        qhead = trail_lim[level];
697
456818
        trail.shrink(trail.size() - trail_lim[level]);
698
456818
        trail_lim.shrink(trail_lim.size() - level);
699
456818
        flipped.shrink(flipped.size() - level);
700
701
        // Register variables that have not been registered yet
702
456818
        int currentLevel = decisionLevel();
703
915189
        for (int i = variables_to_register.size() - 1;
704
915189
             i >= 0 && variables_to_register[i].d_level > currentLevel;
705
             --i)
706
        {
707
458371
          variables_to_register[i].d_level = currentLevel;
708
916742
          d_proxy->variableNotify(
709
458371
              MinisatSatSolver::toSatVariable(variables_to_register[i].d_var));
710
        }
711
    }
712
582736
}
713
714
15246
void Solver::resetTrail() { cancelUntil(0); }
715
716
//=================================================================================================
717
// Major methods:
718
719
720
2785860
Lit Solver::pickBranchLit()
721
{
722
    Lit nextLit;
723
724
    // Theory requests
725
2785858
    nextLit =
726
2785860
        MinisatSatSolver::toMinisatLit(d_proxy->getNextTheoryDecisionRequest());
727
2806602
    while (nextLit != lit_Undef) {
728
62364
      if(value(var(nextLit)) == l_Undef) {
729
103984
        Debug("theoryDecision")
730
51992
            << "getNextTheoryDecisionRequest(): now deciding on " << nextLit
731
51992
            << std::endl;
732
51992
        decisions++;
733
734
        // org-mode tracing -- theory decision
735
51992
        if (Trace.isOn("dtview"))
736
        {
737
          dtviewDecisionHelper(
738
              d_context->getLevel(),
739
              d_proxy->getNode(MinisatSatSolver::toSatLiteral(nextLit)),
740
              "THEORY");
741
        }
742
743
51992
        if (Trace.isOn("dtview::prop"))
744
        {
745
          dtviewPropagationHeaderHelper(d_context->getLevel());
746
        }
747
748
51992
        return nextLit;
749
      } else {
750
20744
        Debug("theoryDecision")
751
10372
            << "getNextTheoryDecisionRequest(): would decide on " << nextLit
752
10372
            << " but it already has an assignment" << std::endl;
753
      }
754
10372
      nextLit = MinisatSatSolver::toMinisatLit(
755
10372
          d_proxy->getNextTheoryDecisionRequest());
756
    }
757
5467732
    Debug("theoryDecision")
758
2733866
        << "getNextTheoryDecisionRequest(): decide on another literal"
759
2733866
        << std::endl;
760
761
    // DE requests
762
2733866
    bool stopSearch = false;
763
2733866
    nextLit = MinisatSatSolver::toMinisatLit(
764
2733866
        d_proxy->getNextDecisionEngineRequest(stopSearch));
765
2733866
    if(stopSearch) {
766
53268
      return lit_Undef;
767
    }
768
2680598
    if(nextLit != lit_Undef) {
769
1176477
      Assert(value(var(nextLit)) == l_Undef)
770
          << "literal to decide already has value";
771
1176477
      decisions++;
772
1176477
      Var next = var(nextLit);
773
1176477
      if(polarity[next] & 0x2) {
774
226145
        nextLit = mkLit(next, polarity[next] & 0x1);
775
      }
776
777
      // org-mode tracing -- decision engine decision
778
1176477
      if (Trace.isOn("dtview"))
779
      {
780
        dtviewDecisionHelper(
781
            d_context->getLevel(),
782
            d_proxy->getNode(MinisatSatSolver::toSatLiteral(nextLit)),
783
            "DE");
784
      }
785
786
1176477
      if (Trace.isOn("dtview::prop"))
787
      {
788
        dtviewPropagationHeaderHelper(d_context->getLevel());
789
      }
790
791
1176477
      return nextLit;
792
    }
793
794
1504121
    Var next = var_Undef;
795
796
    // Random decision:
797
1504121
    if (drand(random_seed) < random_var_freq && !order_heap.empty()){
798
        next = order_heap[irand(random_seed,order_heap.size())];
799
        if (value(next) == l_Undef && decision[next])
800
            rnd_decisions++; }
801
802
    // Activity based decision:
803
10974269
    while (next >= nVars() || next == var_Undef || value(next) != l_Undef || !decision[next]) {
804
4752931
        if (order_heap.empty()){
805
17857
            next = var_Undef;
806
17857
            break;
807
        }else {
808
4735074
            next = order_heap.removeMin();
809
        }
810
811
4735074
        if(!decision[next]) continue;
812
        // Check with decision engine about relevancy
813
9444844
        if (d_proxy->isDecisionRelevant(MinisatSatSolver::toSatVariable(next))
814
4722422
            == false)
815
        {
816
          next = var_Undef;
817
        }
818
    }
819
820
1504121
    if(next == var_Undef) {
821
17857
      return lit_Undef;
822
    } else {
823
1486264
      decisions++;
824
      // Check with decision engine if it can tell polarity
825
      lbool dec_pol = MinisatSatSolver::toMinisatlbool(
826
1486264
          d_proxy->getDecisionPolarity(MinisatSatSolver::toSatVariable(next)));
827
      Lit decisionLit;
828
1486264
      if(dec_pol != l_Undef) {
829
        Assert(dec_pol == l_True || dec_pol == l_False);
830
        decisionLit = mkLit(next, (dec_pol == l_True));
831
      }
832
      else
833
      {
834
        // If it can't use internal heuristic to do that
835
1486264
        decisionLit = mkLit(
836
1486264
            next, rnd_pol ? drand(random_seed) < 0.5 : (polarity[next] & 0x1));
837
      }
838
839
      // org-mode tracing -- decision engine decision
840
1486264
      if (Trace.isOn("dtview"))
841
      {
842
        dtviewDecisionHelper(
843
            d_context->getLevel(),
844
            d_proxy->getNode(MinisatSatSolver::toSatLiteral(decisionLit)),
845
            "DE");
846
      }
847
848
1486264
      if (Trace.isOn("dtview::prop"))
849
      {
850
        dtviewPropagationHeaderHelper(d_context->getLevel());
851
      }
852
853
1486264
      return decisionLit;
854
    }
855
}
856
857
858
/*_________________________________________________________________________________________________
859
|
860
|  analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&)  ->  [void]
861
|
862
|  Description:
863
|    Analyze conflict and produce a reason clause.
864
|
865
|    Pre-conditions:
866
|      * 'out_learnt' is assumed to be cleared.
867
|      * Current decision level must be greater than root level.
868
|
869
|    Post-conditions:
870
|      * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
871
|      * If out_learnt.size() > 1 then 'out_learnt[1]' has the greatest decision level of the
872
|        rest of literals. There may be others from the same level though.
873
|      * returns the maximal level of the resolved clauses
874
|
875
|________________________________________________________________________________________________@*/
876
300740
int Solver::analyze(CRef confl, vec<Lit>& out_learnt, int& out_btlevel)
877
{
878
601480
  Trace("pf::sat") << "Solver::analyze: starting with " << confl
879
300740
                   << " with decision level " << decisionLevel() << "\n";
880
881
300740
  int pathC = 0;
882
300740
  Lit p = lit_Undef;
883
884
  // Generate conflict clause:
885
  //
886
300740
  out_learnt.push();  // (leave room for the asserting literal)
887
300740
  int index = trail.size() - 1;
888
889
300740
  int max_resolution_level = 0;  // Maximal level of the resolved clauses
890
891
300740
    if (needProof())
892
    {
893
22234
      d_pfManager->startResChain(ca[confl]);
894
    }
895
33320625
    do{
896
33621365
      Assert(confl != CRef_Undef);  // (otherwise should be UIP)
897
898
      {
899
        // ! IMPORTANT !
900
        // It is not safe to use c after this block of code because
901
        // resolveOutUnit() below may lead to clauses being allocated, which
902
        // in turn may lead to reallocations that invalidate c.
903
33621365
        Clause& c = ca[confl];
904
33621365
        max_resolution_level = std::max(max_resolution_level, c.level());
905
906
33621365
        if (c.removable()) claBumpActivity(c);
907
      }
908
909
33621365
        if (Trace.isOn("pf::sat"))
910
        {
911
          Trace("pf::sat") << "Solver::analyze: conflict clause ";
912
          for (unsigned i = 0, size = ca[confl].size(); i < size; ++i)
913
          {
914
            Trace("pf::sat") << ca[confl][i] << " ";
915
          }
916
          Trace("pf::sat") << "\n";
917
        }
918
919
33621365
        Trace("pf::sat") << cvc5::push;
920
229927359
        for (int j = (p == lit_Undef) ? 0 : 1, size = ca[confl].size();
921
229927359
             j < size;
922
             j++)
923
        {
924
196305994
          Lit q = ca[confl][j];
925
926
392611988
          Trace("pf::sat") << "Lit " << q
927
392611988
                           << " seen/level: " << (seen[var(q)] ? 1 : 0) << " / "
928
196305994
                           << level(var(q)) << "\n";
929
196305994
          if (!seen[var(q)] && level(var(q)) > 0)
930
          {
931
60271650
            varBumpActivity(var(q));
932
60271650
            seen[var(q)] = 1;
933
60271650
            if (level(var(q)) >= decisionLevel())
934
33621365
              pathC++;
935
            else
936
26650285
              out_learnt.push(q);
937
          }
938
          else
939
          {
940
            // We could be resolving a literal propagated by a clause/theory
941
            // using information from a higher level
942
136034344
            if (!seen[var(q)] && level(var(q)) == 0)
943
            {
944
396306
              max_resolution_level =
945
792612
                  std::max(max_resolution_level, user_level(var(q)));
946
            }
947
948
            // FIXME: can we do it lazily if we actually need the proof?
949
136034344
            if (level(var(q)) == 0 && needProof())
950
            {
951
136939
              d_pfManager->addResolutionStep(q);
952
            }
953
          }
954
        }
955
33621365
        Trace("pf::sat") << cvc5::pop;
956
957
        // Select next clause to look at:
958
94142612
        while (!seen[var(trail[index--])]);
959
33621365
        p     = trail[index+1];
960
33621365
        confl = reason(var(p));
961
33621365
        seen[var(p)] = 0;
962
33621365
        pathC--;
963
964
33621365
        if (pathC > 0 && confl != CRef_Undef && needProof())
965
        {
966
283809
          d_pfManager->addResolutionStep(ca[confl], p);
967
        }
968
969
33621365
    } while (pathC > 0);
970
300740
    out_learnt[0] = ~p;
971
300740
    if (Debug.isOn("newproof::sat"))
972
    {
973
      Debug("newproof::sat") << "finished with learnt clause ";
974
      for (unsigned i = 0, size = out_learnt.size(); i < size; ++i)
975
      {
976
        prop::SatLiteral satLit = toSatLiteral<Minisat::Solver>(out_learnt[i]);
977
        Debug("newproof::sat") << satLit << " ";
978
      }
979
      Debug("newproof::sat") << "\n";
980
    }
981
982
    // Simplify conflict clause:
983
    int i, j;
984
300740
    out_learnt.copyTo(analyze_toclear);
985
300740
    if (ccmin_mode == 2){
986
300740
        uint32_t abstract_level = 0;
987
26951025
        for (i = 1; i < out_learnt.size(); i++)
988
26650285
            abstract_level |= abstractLevel(var(out_learnt[i])); // (maintain an abstraction of levels involved in conflict)
989
990
26951025
        for (i = j = 1; i < out_learnt.size(); i++) {
991
26650285
            if (reason(var(out_learnt[i])) == CRef_Undef) {
992
4537589
                out_learnt[j++] = out_learnt[i];
993
            } else {
994
              // Check if the literal is redundant
995
22112696
              if (!litRedundant(out_learnt[i], abstract_level)) {
996
                // Literal is not redundant
997
19812246
                out_learnt[j++] = out_learnt[i];
998
              } else {
999
2300450
                if (needProof())
1000
                {
1001
66642
                  Debug("newproof::sat")
1002
33321
                      << "Solver::analyze: redundant lit "
1003
33321
                      << toSatLiteral<Minisat::Solver>(out_learnt[i]) << "\n";
1004
33321
                  d_pfManager->addResolutionStep(out_learnt[i], true);
1005
                }
1006
                // Literal is redundant, to be safe, mark the level as current assertion level
1007
                // TODO: maybe optimize
1008
2300450
                max_resolution_level = std::max(max_resolution_level, user_level(var(out_learnt[i])));
1009
              }
1010
            }
1011
        }
1012
1013
    }else if (ccmin_mode == 1){
1014
        Unreachable();
1015
        for (i = j = 1; i < out_learnt.size(); i++){
1016
            Var x = var(out_learnt[i]);
1017
1018
            if (reason(x) == CRef_Undef)
1019
                out_learnt[j++] = out_learnt[i];
1020
            else{
1021
                Clause& c = ca[reason(var(out_learnt[i]))];
1022
                for (int k = 1; k < c.size(); k++)
1023
                    if (!seen[var(c[k])] && level(var(c[k])) > 0){
1024
                        out_learnt[j++] = out_learnt[i];
1025
                        break; }
1026
            }
1027
        }
1028
    }else
1029
        i = j = out_learnt.size();
1030
1031
300740
    max_literals += out_learnt.size();
1032
300740
    out_learnt.shrink(i - j);
1033
300740
    tot_literals += out_learnt.size();
1034
1035
    // Find correct backtrack level:
1036
    //
1037
300740
    if (out_learnt.size() == 1)
1038
5939
        out_btlevel = 0;
1039
    else{
1040
294801
        int max_i = 1;
1041
        // Find the first literal assigned at the next-highest level:
1042
24349835
        for (int k = 2; k < out_learnt.size(); k++)
1043
24055034
          if (level(var(out_learnt[k])) > level(var(out_learnt[max_i])))
1044
663350
            max_i = k;
1045
        // Swap-in this literal at index 1:
1046
294801
        Lit p2 = out_learnt[max_i];
1047
294801
        out_learnt[max_i] = out_learnt[1];
1048
294801
        out_learnt[1] = p2;
1049
294801
        out_btlevel = level(var(p2));
1050
    }
1051
1052
29535391
    for (int k = 0; k < analyze_toclear.size(); k++)
1053
29234651
      seen[var(analyze_toclear[k])] = 0;  // ('seen[]' is now cleared)
1054
1055
    // Return the maximal resolution level
1056
300740
    return max_resolution_level;
1057
}
1058
1059
1060
// Check if 'p' can be removed. 'abstract_levels' is used to abort early if the algorithm is
1061
// visiting literals at levels that cannot be removed later.
1062
22112696
bool Solver::litRedundant(Lit p, uint32_t abstract_levels)
1063
{
1064
22112696
    analyze_stack.clear(); analyze_stack.push(p);
1065
22112696
    int top = analyze_toclear.size();
1066
59555564
    while (analyze_stack.size() > 0){
1067
38533680
        CRef c_reason = reason(var(analyze_stack.last()));
1068
38533680
        Assert(c_reason != CRef_Undef);
1069
38533680
        Clause& c = ca[c_reason];
1070
38533680
        int c_size = c.size();
1071
38533680
        analyze_stack.pop();
1072
1073
        // Since calling reason might relocate to resize, c is not necesserily the right reference, we must
1074
        // use the allocator each time
1075
148858973
        for (int i = 1; i < c_size; i++){
1076
130137539
          Lit p2 = ca[c_reason][i];
1077
130137539
          if (!seen[var(p2)] && level(var(p2)) > 0)
1078
          {
1079
141613388
            if (reason(var(p2)) != CRef_Undef
1080
70806694
                && (abstractLevel(var(p2)) & abstract_levels) != 0)
1081
            {
1082
50994448
              seen[var(p2)] = 1;
1083
50994448
              analyze_stack.push(p2);
1084
50994448
              analyze_toclear.push(p2);
1085
            }
1086
            else
1087
            {
1088
68523068
              for (int j = top; j < analyze_toclear.size(); j++)
1089
48710822
                seen[var(analyze_toclear[j])] = 0;
1090
19812246
              analyze_toclear.shrink(analyze_toclear.size() - top);
1091
19812246
              return false;
1092
            }
1093
          }
1094
        }
1095
    }
1096
1097
2300450
    return true;
1098
}
1099
1100
1101
/*_________________________________________________________________________________________________
1102
|
1103
|  analyzeFinal : (p : Lit)  ->  [void]
1104
|
1105
|  Description:
1106
|    Specialized analysis procedure to express the final conflict in terms of assumptions.
1107
|    Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
1108
|    stores the result in 'out_conflict'.
1109
|________________________________________________________________________________________________@*/
1110
2742
void Solver::analyzeFinal(Lit p, vec<Lit>& out_conflict)
1111
{
1112
2742
    out_conflict.clear();
1113
2742
    out_conflict.push(p);
1114
1115
2742
    if (decisionLevel() == 0)
1116
924
        return;
1117
1118
1818
    seen[var(p)] = 1;
1119
1120
133995
    for (int i = trail.size()-1; i >= trail_lim[0]; i--){
1121
132177
        Var x = var(trail[i]);
1122
132177
        if (seen[x]){
1123
28682
            if (reason(x) == CRef_Undef){
1124
10592
              Assert(level(x) > 0);
1125
10592
              out_conflict.push(~trail[i]);
1126
            }else{
1127
18090
                Clause& c = ca[reason(x)];
1128
57635
                for (int j = 1; j < c.size(); j++)
1129
39545
                    if (level(var(c[j])) > 0)
1130
38499
                        seen[var(c[j])] = 1;
1131
            }
1132
28682
            seen[x] = 0;
1133
        }
1134
    }
1135
1136
1818
    seen[var(p)] = 0;
1137
}
1138
1139
117388387
void Solver::uncheckedEnqueue(Lit p, CRef from)
1140
{
1141
117388387
  if (Debug.isOn("minisat"))
1142
  {
1143
    Debug("minisat") << "unchecked enqueue of " << p << " ("
1144
                     << trail_index(var(p)) << ") trail size is "
1145
                     << trail.size() << " cap is " << trail.capacity()
1146
                     << ", reason is " << from << ", ";
1147
    if (from == CRef_Lazy)
1148
    {
1149
      Debug("minisat") << "CRef_Lazy";
1150
    }
1151
    else if (from == CRef_Undef)
1152
    {
1153
      Debug("minisat") << "CRef_Undef";
1154
    }
1155
    else
1156
    {
1157
      for (unsigned i = 0, size = ca[from].size(); i < size; ++i)
1158
      {
1159
        Debug("minisat") << ca[from][i] << " ";
1160
      }
1161
    }
1162
    Debug("minisat") << "\n";
1163
  }
1164
117388387
  Assert(value(p) == l_Undef);
1165
117388387
  Assert(var(p) < nVars());
1166
117388387
  assigns[var(p)] = lbool(!sign(p));
1167
117388387
  vardata[var(p)] = VarData(
1168
      from, decisionLevel(), assertionLevel, intro_level(var(p)), trail.size());
1169
117388387
  trail.push_(p);
1170
117388387
  if (theory[var(p)])
1171
  {
1172
    // Enqueue to the theory
1173
17368048
    d_proxy->enqueueTheoryLiteral(MinisatSatSolver::toSatLiteral(p));
1174
  }
1175
117388387
}
1176
1177
3617182
CRef Solver::propagate(TheoryCheckType type)
1178
{
1179
3617182
    CRef confl = CRef_Undef;
1180
3617182
    recheck = false;
1181
3617182
    theoryConflict = false;
1182
1183
7234364
    ScopedBool scoped_bool(minisat_busy, true);
1184
1185
    // Add lemmas that we're left behind
1186
3617182
    if (lemmas.size() > 0) {
1187
145
      confl = updateLemmas();
1188
145
      if (confl != CRef_Undef) {
1189
        return confl;
1190
      }
1191
    }
1192
1193
    // If this is the final check, no need for Boolean propagation and
1194
    // theory propagation
1195
3617182
    if (type == CHECK_FINAL) {
1196
      // Do the theory check
1197
77313
      theoryCheck(cvc5::theory::Theory::EFFORT_FULL);
1198
      // Pick up the theory propagated literals (there could be some,
1199
      // if new lemmas are added)
1200
77302
      propagateTheory();
1201
      // If there are lemmas (or conflicts) update them
1202
77302
      if (lemmas.size() > 0) {
1203
60704
        recheck = true;
1204
60704
        confl = updateLemmas();
1205
60704
        return confl;
1206
      } else {
1207
16598
        recheck = d_proxy->theoryNeedCheck();
1208
16598
        return confl;
1209
      }
1210
    }
1211
1212
    // Keep running until we have checked everything, we
1213
    // have no conflict and no new literals have been asserted
1214
954007
    do {
1215
        // Propagate on the clauses
1216
4493876
        confl = propagateBool();
1217
        // If no conflict, do the theory check
1218
4493876
        if (confl == CRef_Undef && type != CHECK_WITHOUT_THEORY) {
1219
            // Do the theory check
1220
4112886
            if (type == CHECK_FINAL_FAKE) {
1221
              theoryCheck(cvc5::theory::Theory::EFFORT_FULL);
1222
            } else {
1223
4112886
              theoryCheck(cvc5::theory::Theory::EFFORT_STANDARD);
1224
            }
1225
            // Pick up the theory propagated literals
1226
4112883
            propagateTheory();
1227
            // If there are lemmas (or conflicts) update them
1228
8225766
            if (lemmas.size() > 0) {
1229
203177
              confl = updateLemmas();
1230
            }
1231
        } else {
1232
          // if dumping decision tree, print the conflict
1233
380990
          if (Trace.isOn("dtview::conflict"))
1234
          {
1235
            if (confl != CRef_Undef)
1236
            {
1237
              dtviewPropConflictHelper(decisionLevel(), ca[confl], d_proxy);
1238
            }
1239
          }
1240
          // Even though in conflict, we still need to discharge the lemmas
1241
380990
          if (lemmas.size() > 0) {
1242
            // Remember the trail size
1243
            int oldLevel = decisionLevel();
1244
            // Update the lemmas
1245
            CRef lemmaConflict = updateLemmas();
1246
            // If we get a conflict, we prefer it since it's earlier in the trail
1247
            if (lemmaConflict != CRef_Undef) {
1248
              // Lemma conflict takes precedence, since it's earlier in the trail
1249
              confl = lemmaConflict;
1250
            } else {
1251
              // Otherwise, the Boolean conflict is canceled in the case we popped the trail
1252
              if (oldLevel > decisionLevel()) {
1253
                confl = CRef_Undef;
1254
              }
1255
            }
1256
          }
1257
        }
1258
4493873
    } while (confl == CRef_Undef && qhead < trail.size());
1259
3539866
    return confl;
1260
}
1261
1262
4190185
void Solver::propagateTheory() {
1263
8380370
  SatClause propagatedLiteralsClause;
1264
  // Doesn't actually call propagate(); that's done in theoryCheck() now that combination
1265
  // is online.  This just incorporates those propagations previously discovered.
1266
4190185
  d_proxy->theoryPropagate(propagatedLiteralsClause);
1267
1268
8380370
  vec<Lit> propagatedLiterals;
1269
4190185
  MinisatSatSolver::toMinisatClause(propagatedLiteralsClause, propagatedLiterals);
1270
1271
4190185
  int oldTrailSize = trail.size();
1272
4190185
  Debug("minisat") << "old trail size is " << oldTrailSize << ", propagating " << propagatedLiterals.size() << " lits..." << std::endl;
1273
11400530
  for (unsigned i = 0, i_end = propagatedLiterals.size(); i < i_end; ++ i) {
1274
7210345
    Debug("minisat") << "Theory propagated: " << propagatedLiterals[i] << std::endl;
1275
    // multiple theories can propagate the same literal
1276
7210345
    Lit p = propagatedLiterals[i];
1277
7210345
    if (value(p) == l_Undef) {
1278
3656126
      uncheckedEnqueue(p, CRef_Lazy);
1279
    } else {
1280
3554219
      if (value(p) == l_False) {
1281
74780
        Debug("minisat") << "Conflict in theory propagation" << std::endl;
1282
149560
        SatClause explanation_cl;
1283
74780
        d_proxy->explainPropagation(MinisatSatSolver::toSatLiteral(p),
1284
                                    explanation_cl);
1285
149560
        vec<Lit> explanation;
1286
74780
        MinisatSatSolver::toMinisatClause(explanation_cl, explanation);
1287
        ClauseId id; // FIXME: mark it as explanation here somehow?
1288
74780
        addClause(explanation, true, id);
1289
      }
1290
    }
1291
  }
1292
4190185
}
1293
1294
/*_________________________________________________________________________________________________
1295
|
1296
|  theoryCheck: [void]  ->  [Clause*]
1297
|
1298
|  Description:
1299
|    Checks all enqueued theory facts for satisfiability. If a conflict arises, the conflicting
1300
|    clause is returned, otherwise NULL.
1301
|
1302
|    Note: the propagation queue might be NOT empty
1303
|________________________________________________________________________________________________@*/
1304
4190199
void Solver::theoryCheck(cvc5::theory::Theory::Effort effort)
1305
{
1306
4190199
  d_proxy->theoryCheck(effort);
1307
4190185
}
1308
1309
/*_________________________________________________________________________________________________
1310
|
1311
|  propagateBool : [void]  ->  [Clause*]
1312
|
1313
|  Description:
1314
|    Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
1315
|    otherwise CRef_Undef.
1316
|
1317
|    Post-conditions:
1318
|      * the propagation queue is empty, even if there was a conflict.
1319
|________________________________________________________________________________________________@*/
1320
4493876
CRef Solver::propagateBool()
1321
{
1322
4493876
    CRef    confl     = CRef_Undef;
1323
4493876
    int     num_props = 0;
1324
4493876
    watches.cleanAll();
1325
1326
227807106
    while (qhead < trail.size()){
1327
111656615
        Lit            p   = trail[qhead++];     // 'p' is enqueued fact to propagate.
1328
111656615
        vec<Watcher>&  ws  = watches[p];
1329
        Watcher        *i, *j, *end;
1330
111656615
        num_props++;
1331
1332
        // if propagation tracing enabled, print boolean propagation
1333
111656615
        if (Trace.isOn("dtview::prop"))
1334
        {
1335
          dtviewBoolPropagationHelper(decisionLevel(), p, d_proxy);
1336
        }
1337
1338
911682589
        for (i = j = (Watcher*)ws, end = i + ws.size();  i != end;){
1339
            // Try to avoid inspecting the clause:
1340
800025974
            Lit blocker = i->blocker;
1341
1302109614
            if (value(blocker) == l_True){
1342
1532169895
                *j++ = *i++; continue; }
1343
1344
            // Make sure the false literal is data[1]:
1345
297942334
            CRef     cr        = i->cref;
1346
297942334
            Clause&  c         = ca[cr];
1347
297942334
            Lit      false_lit = ~p;
1348
297942334
            if (c[0] == false_lit)
1349
85595713
                c[0] = c[1], c[1] = false_lit;
1350
297942334
            Assert(c[1] == false_lit);
1351
297942334
            i++;
1352
1353
            // If 0th watch is true, then clause is already satisfied.
1354
297942334
            Lit     first = c[0];
1355
297942334
            Watcher w     = Watcher(cr, first);
1356
323861309
            if (first != blocker && value(first) == l_True){
1357
51837950
                *j++ = w; continue; }
1358
1359
            // Look for new watch:
1360
272023359
            Assert(c.size() >= 2);
1361
1257694382
            for (int k = 2; k < c.size(); k++)
1362
1147442732
                if (value(c[k]) != l_False){
1363
161771709
                    c[1] = c[k]; c[k] = false_lit;
1364
161771709
                    watches[~c[1]].push(w);
1365
161771709
                    goto NextClause; }
1366
1367
            // Did not find watch -- clause is unit under assignment:
1368
110251650
            *j++ = w;
1369
110251650
            if (value(first) == l_False){
1370
246516
                confl = cr;
1371
246516
                qhead = trail.size();
1372
                // Copy the remaining watches:
1373
6031854
                while (i < end)
1374
2892669
                    *j++ = *i++;
1375
            }else
1376
110005134
                uncheckedEnqueue(first, cr);
1377
1378
272023359
        NextClause:;
1379
        }
1380
111656615
        ws.shrink(i - j);
1381
    }
1382
4493876
    propagations += num_props;
1383
4493876
    simpDB_props -= num_props;
1384
1385
4493876
    return confl;
1386
}
1387
1388
1389
/*_________________________________________________________________________________________________
1390
|
1391
|  reduceDB : ()  ->  [void]
1392
|
1393
|  Description:
1394
|    Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
1395
|    clauses are clauses that are reason to some assignment. Binary clauses are never removed.
1396
|________________________________________________________________________________________________@*/
1397
struct reduceDB_lt {
1398
    ClauseAllocator& ca;
1399
4058
    reduceDB_lt(ClauseAllocator& ca_) : ca(ca_) {}
1400
5504303
    bool operator () (CRef x, CRef y) {
1401
5504303
        return ca[x].size() > 2 && (ca[y].size() == 2 || ca[x].activity() < ca[y].activity()); }
1402
};
1403
4058
void Solver::reduceDB()
1404
{
1405
    int     i, j;
1406
4058
    double  extra_lim = cla_inc / clauses_removable.size();    // Remove any clause below this activity
1407
1408
4058
    sort(clauses_removable, reduceDB_lt(ca));
1409
    // Don't delete binary or locked clauses. From the rest, delete clauses from the first half
1410
    // and clauses with activity smaller than 'extra_lim':
1411
521457
    for (i = j = 0; i < clauses_removable.size(); i++){
1412
517399
        Clause& c = ca[clauses_removable[i]];
1413
517399
        if (c.size() > 2 && !locked(c) && (i < clauses_removable.size() / 2 || c.activity() < extra_lim))
1414
212871
            removeClause(clauses_removable[i]);
1415
        else
1416
304528
            clauses_removable[j++] = clauses_removable[i];
1417
    }
1418
4058
    clauses_removable.shrink(i - j);
1419
4058
    checkGarbage();
1420
4058
}
1421
1422
1423
18293
void Solver::removeSatisfied(vec<CRef>& cs)
1424
{
1425
    int i, j;
1426
487117
    for (i = j = 0; i < cs.size(); i++){
1427
468824
        Clause& c = ca[cs[i]];
1428
468824
        if (satisfied(c)) {
1429
45254
          removeClause(cs[i]);
1430
        }
1431
        else
1432
        {
1433
423570
          cs[j++] = cs[i];
1434
        }
1435
    }
1436
18293
    cs.shrink(i - j);
1437
18293
}
1438
1439
9738
void Solver::removeClausesAboveLevel(vec<CRef>& cs, int level)
1440
{
1441
    int i, j;
1442
836963
    for (i = j = 0; i < cs.size(); i++){
1443
827225
        Clause& c = ca[cs[i]];
1444
827225
        if (c.level() > level) {
1445
250293
          Assert(!locked(c));
1446
250293
          removeClause(cs[i]);
1447
        } else {
1448
576932
            cs[j++] = cs[i];
1449
        }
1450
    }
1451
9738
    cs.shrink(i - j);
1452
9738
}
1453
1454
18293
void Solver::rebuildOrderHeap()
1455
{
1456
36586
    vec<Var> vs;
1457
2934509
    for (Var v = 0; v < nVars(); v++)
1458
2916216
        if (decision[v] && value(v) == l_Undef)
1459
2226487
            vs.push(v);
1460
18293
    order_heap.build(vs);
1461
18293
}
1462
1463
1464
/*_________________________________________________________________________________________________
1465
|
1466
|  simplify : [void]  ->  [bool]
1467
|
1468
|  Description:
1469
|    Simplify the clause database according to the current top-level assigment. Currently, the only
1470
|    thing done here is the removal of satisfied clauses, but more things can be put here.
1471
|________________________________________________________________________________________________@*/
1472
45881
bool Solver::simplify()
1473
{
1474
45881
  Assert(decisionLevel() == 0);
1475
1476
45881
  if (!ok || propagate(CHECK_WITHOUT_THEORY) != CRef_Undef) return ok = false;
1477
1478
45642
  if (nAssigns() == simpDB_assigns || (simpDB_props > 0)) return true;
1479
1480
  // Remove satisfied clauses:
1481
18293
  removeSatisfied(clauses_removable);
1482
18293
  if (remove_satisfied)  // Can be turned off.
1483
    removeSatisfied(clauses_persistent);
1484
18293
  checkGarbage();
1485
18293
  rebuildOrderHeap();
1486
1487
18293
  simpDB_assigns = nAssigns();
1488
18293
  simpDB_props =
1489
18293
      clauses_literals + learnts_literals;  // (shouldn't depend on stats
1490
                                            // really, but it will do for now)
1491
1492
18293
  return true;
1493
}
1494
1495
1496
/*_________________________________________________________________________________________________
1497
|
1498
|  search : (nof_conflicts : int) (params : const SearchParams&)  ->  [lbool]
1499
|
1500
|  Description:
1501
|    Search for a model the specified number of conflicts.
1502
|    NOTE! Use negative value for 'nof_conflicts' indicate infinity.
1503
|
1504
|  Output:
1505
|    'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If
1506
|    all variables are decision variables, this means that the clause set is satisfiable. 'l_False'
1507
|    if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached.
1508
|________________________________________________________________________________________________@*/
1509
16302
lbool Solver::search(int nof_conflicts)
1510
{
1511
16302
  Assert(ok);
1512
  int backtrack_level;
1513
16302
  int conflictC = 0;
1514
32604
  vec<Lit> learnt_clause;
1515
16302
  starts++;
1516
1517
16302
  TheoryCheckType check_type = CHECK_WITH_THEORY;
1518
  for (;;)
1519
  {
1520
    // Propagate and call the theory solvers
1521
3482667
    CRef confl = propagate(check_type);
1522
3482653
    Assert(lemmas.size() == 0);
1523
1524
3482653
    if (confl != CRef_Undef)
1525
    {
1526
304143
      conflicts++;
1527
304143
      conflictC++;
1528
1529
304143
      if (decisionLevel() == 0)
1530
      {
1531
3403
        if (needProof())
1532
        {
1533
861
          if (confl == CRef_Lazy)
1534
          {
1535
51
            d_pfManager->finalizeProof();
1536
          }
1537
          else
1538
          {
1539
810
            d_pfManager->finalizeProof(ca[confl]);
1540
          }
1541
        }
1542
3403
        return l_False;
1543
      }
1544
1545
      // Analyze the conflict
1546
300740
      learnt_clause.clear();
1547
300740
      int max_level = analyze(confl, learnt_clause, backtrack_level);
1548
300740
      cancelUntil(backtrack_level);
1549
1550
      // Assert the conflict clause and the asserting literal
1551
300740
      if (learnt_clause.size() == 1)
1552
      {
1553
5939
        uncheckedEnqueue(learnt_clause[0]);
1554
5939
        if (needProof())
1555
        {
1556
1470
          d_pfManager->endResChain(learnt_clause[0]);
1557
        }
1558
      }
1559
      else
1560
      {
1561
294801
        CRef cr = ca.alloc(assertionLevelOnly() ? assertionLevel : max_level,
1562
                           learnt_clause,
1563
294801
                           true);
1564
294801
        clauses_removable.push(cr);
1565
294801
        attachClause(cr);
1566
294801
        claBumpActivity(ca[cr]);
1567
294801
        uncheckedEnqueue(learnt_clause[0], cr);
1568
294801
        if (needProof())
1569
        {
1570
20764
          d_pfManager->endResChain(ca[cr]);
1571
        }
1572
      }
1573
1574
300740
      varDecayActivity();
1575
300740
      claDecayActivity();
1576
1577
300740
      if (--learntsize_adjust_cnt == 0)
1578
      {
1579
567
        learntsize_adjust_confl *= learntsize_adjust_inc;
1580
567
        learntsize_adjust_cnt = (int)learntsize_adjust_confl;
1581
567
        max_learnts *= learntsize_inc;
1582
1583
567
        if (verbosity >= 1)
1584
          printf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |\n",
1585
                 (int)conflicts,
1586
                 (int)dec_vars
1587
                     - (trail_lim.size() == 0 ? trail.size() : trail_lim[0]),
1588
                 nClauses(),
1589
                 (int)clauses_literals,
1590
                 (int)max_learnts,
1591
                 nLearnts(),
1592
                 (double)learnts_literals / nLearnts(),
1593
                 progressEstimate() * 100);
1594
      }
1595
1596
300740
      if (theoryConflict && options::sat_refine_conflicts())
1597
      {
1598
        check_type = CHECK_FINAL_FAKE;
1599
      }
1600
      else
1601
      {
1602
300740
        check_type = CHECK_WITH_THEORY;
1603
      }
1604
    }
1605
    else
1606
    {
1607
      // If this was a final check, we are satisfiable
1608
3178510
      if (check_type == CHECK_FINAL)
1609
      {
1610
        // Note that we are done making decisions when there are no pending decisions
1611
        // on assumptions, and the decision engine indicates it is done.
1612
67806
        bool decisionEngineDone = (decisionLevel() >= assumptions.size())
1613
67806
                                  && d_proxy->isDecisionEngineDone();
1614
        // Unless a lemma has added more stuff to the queues
1615
189744
        if (!decisionEngineDone
1616
67806
            && (!order_heap.empty() || qhead < trail.size()))
1617
        {
1618
54132
          check_type = CHECK_WITH_THEORY;
1619
185577
          continue;
1620
        }
1621
13674
        else if (recheck)
1622
        {
1623
          // There some additional stuff added, so we go for another
1624
          // full-check
1625
6188
          continue;
1626
        }
1627
        else
1628
        {
1629
          // Yes, we're truly satisfiable
1630
7486
          return l_True;
1631
        }
1632
      }
1633
3110704
      else if (check_type == CHECK_FINAL_FAKE)
1634
      {
1635
        check_type = CHECK_WITH_THEORY;
1636
      }
1637
1638
6221408
      if ((nof_conflicts >= 0 && conflictC >= nof_conflicts)
1639
6218753
          || !withinBudget(Resource::SatConflictStep))
1640
      {
1641
        // Reached bound on number of conflicts:
1642
2655
        progress_estimate = progressEstimate();
1643
2655
        cancelUntil(0);
1644
        // [mdeters] notify theory engine of restarts for deferred
1645
        // theory processing
1646
2655
        d_proxy->notifyRestart();
1647
2655
        return l_Undef;
1648
      }
1649
1650
      // Simplify the set of problem clauses:
1651
3108049
      if (decisionLevel() == 0 && !simplify())
1652
      {
1653
        return l_False;
1654
      }
1655
1656
3108049
      if (clauses_removable.size() - nAssigns() >= max_learnts)
1657
      {
1658
        // Reduce the set of learnt clauses:
1659
4058
        reduceDB();
1660
      }
1661
1662
3108049
      Lit next = lit_Undef;
1663
3167235
      while (decisionLevel() < assumptions.size())
1664
      {
1665
        // Perform user provided assumption:
1666
351782
        Lit p = assumptions[decisionLevel()];
1667
351782
        if (value(p) == l_True)
1668
        {
1669
          // Dummy decision level:
1670
29593
          newDecisionLevel();
1671
        }
1672
322189
        else if (value(p) == l_False)
1673
        {
1674
2742
          analyzeFinal(~p, d_conflict);
1675
2742
          return l_False;
1676
        }
1677
        else
1678
        {
1679
319447
          next = p;
1680
319447
          break;
1681
        }
1682
      }
1683
1684
3105307
      if (next == lit_Undef)
1685
      {
1686
        // New variable decision:
1687
2785860
        next = pickBranchLit();
1688
1689
2856983
        if (next == lit_Undef)
1690
        {
1691
          // We need to do a full theory check to confirm
1692
142250
          Debug("minisat::search")
1693
71125
              << "Doing a full theory check..." << std::endl;
1694
71125
          check_type = CHECK_FINAL;
1695
71125
          continue;
1696
        }
1697
      }
1698
1699
      // Increase decision level and enqueue 'next'
1700
3034180
      newDecisionLevel();
1701
3034180
      uncheckedEnqueue(next);
1702
    }
1703
3466365
  }
1704
}
1705
1706
1707
2655
double Solver::progressEstimate() const
1708
{
1709
2655
    double  progress = 0;
1710
2655
    double  F = 1.0 / nVars();
1711
1712
191822
    for (int i = 0; i <= decisionLevel(); i++){
1713
189167
        int beg = i == 0 ? 0 : trail_lim[i - 1];
1714
189167
        int end = i == decisionLevel() ? trail.size() : trail_lim[i];
1715
189167
        progress += pow(F, i) * (end - beg);
1716
    }
1717
1718
2655
    return progress / nVars();
1719
}
1720
1721
/*
1722
  Finite subsequences of the Luby-sequence:
1723
1724
  0: 1
1725
  1: 1 1 2
1726
  2: 1 1 2 1 1 2 4
1727
  3: 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8
1728
  ...
1729
1730
1731
 */
1732
1733
16302
static double luby(double y, int x){
1734
1735
    // Find the finite subsequence that contains index 'x', and the
1736
    // size of that subsequence:
1737
    int size, seq;
1738
16302
    for (size = 1, seq = 0; size < x+1; seq++, size = 2*size+1);
1739
1740
27830
    while (size-1 != x){
1741
5764
        size = (size-1)>>1;
1742
5764
        seq--;
1743
5764
        x = x % size;
1744
    }
1745
1746
16302
    return pow(y, seq);
1747
}
1748
1749
// NOTE: assumptions passed in member-variable 'assumptions'.
1750
15017
lbool Solver::solve_()
1751
{
1752
15017
    Debug("minisat") << "nvars = " << nVars() << std::endl;
1753
1754
30034
    ScopedBool scoped_bool(minisat_busy, true);
1755
1756
15017
    Assert(decisionLevel() == 0);
1757
1758
15017
    model.clear();
1759
15017
    d_conflict.clear();
1760
15017
    if (!ok){
1761
1370
      minisat_busy = false;
1762
1370
      return l_False;
1763
    }
1764
1765
13647
    solves++;
1766
1767
13647
    max_learnts               = nClauses() * learntsize_factor;
1768
13647
    learntsize_adjust_confl   = learntsize_adjust_start_confl;
1769
13647
    learntsize_adjust_cnt     = (int)learntsize_adjust_confl;
1770
13647
    lbool   status            = l_Undef;
1771
1772
13647
    if (verbosity >= 1){
1773
1
        printf("============================[ Search Statistics ]==============================\n");
1774
1
        printf("| Conflicts |          ORIGINAL         |          LEARNT          | Progress |\n");
1775
1
        printf("|           |    Vars  Clauses Literals |    Limit  Clauses Lit/Cl |          |\n");
1776
1
        printf("===============================================================================\n");
1777
    }
1778
1779
    // Search:
1780
13647
    int curr_restarts = 0;
1781
46219
    while (status == l_Undef){
1782
16302
        double rest_base = luby_restart ? luby(restart_inc, curr_restarts) : pow(restart_inc, curr_restarts);
1783
16302
        status = search(rest_base * restart_first);
1784
16286
        if (!withinBudget(Resource::SatConflictStep))
1785
          break;  // FIXME add restart option?
1786
16286
        curr_restarts++;
1787
    }
1788
1789
13631
    if (!withinBudget(Resource::SatConflictStep))
1790
      status = l_Undef;
1791
1792
13631
    if (verbosity >= 1)
1793
1
        printf("===============================================================================\n");
1794
1795
1796
13631
    if (status == l_True){
1797
        // Extend & copy model:
1798
7486
        model.growTo(nVars());
1799
624399
        for (int i = 0; i < nVars(); i++) {
1800
616913
          model[i] = value(i);
1801
616913
          Debug("minisat") << i << " = " << model[i] << std::endl;
1802
        }
1803
    }
1804
6145
    else if (status == l_False && d_conflict.size() == 0)
1805
3403
      ok = false;
1806
1807
13631
    return status;
1808
}
1809
1810
//=================================================================================================
1811
// Writing CNF to DIMACS:
1812
//
1813
// FIXME: this needs to be rewritten completely.
1814
1815
static Var mapVar(Var x, vec<Var>& map, Var& max)
1816
{
1817
    if (map.size() <= x || map[x] == -1){
1818
        map.growTo(x+1, -1);
1819
        map[x] = max++;
1820
    }
1821
    return map[x];
1822
}
1823
1824
1825
void Solver::toDimacs(FILE* f, Clause& c, vec<Var>& map, Var& max)
1826
{
1827
    if (satisfied(c)) return;
1828
1829
    for (int i = 0; i < c.size(); i++)
1830
        if (value(c[i]) != l_False)
1831
            fprintf(f, "%s%d ", sign(c[i]) ? "-" : "", mapVar(var(c[i]), map, max)+1);
1832
    fprintf(f, "0\n");
1833
}
1834
1835
1836
void Solver::toDimacs(const char *file, const vec<Lit>& assumps)
1837
{
1838
    FILE* f = fopen(file, "wr");
1839
    if (f == NULL)
1840
        fprintf(stderr, "could not open file %s\n", file), exit(1);
1841
    toDimacs(f, assumps);
1842
    fclose(f);
1843
}
1844
1845
1846
void Solver::toDimacs(FILE* f, const vec<Lit>& assumps)
1847
{
1848
    // Handle case when solver is in contradictory state:
1849
    if (!ok){
1850
        fprintf(f, "p cnf 1 2\n1 0\n-1 0\n");
1851
        return; }
1852
1853
    vec<Var> map; Var max = 0;
1854
1855
    // Cannot use removeClauses here because it is not safe
1856
    // to deallocate them at this point. Could be improved.
1857
    int cnt = 0;
1858
    for (int i = 0; i < clauses_persistent.size(); i++)
1859
        if (!satisfied(ca[clauses_persistent[i]]))
1860
            cnt++;
1861
1862
    for (int i = 0; i < clauses_persistent.size(); i++)
1863
        if (!satisfied(ca[clauses_persistent[i]])){
1864
            Clause& c = ca[clauses_persistent[i]];
1865
            for (int j = 0; j < c.size(); j++)
1866
                if (value(c[j]) != l_False)
1867
                    mapVar(var(c[j]), map, max);
1868
        }
1869
1870
    // Assumptions are added as unit clauses:
1871
    cnt += assumptions.size();
1872
1873
    fprintf(f, "p cnf %d %d\n", max, cnt);
1874
1875
    for (int i = 0; i < assumptions.size(); i++){
1876
      Assert(value(assumptions[i]) != l_False);
1877
      fprintf(f,
1878
              "%s%d 0\n",
1879
              sign(assumptions[i]) ? "-" : "",
1880
              mapVar(var(assumptions[i]), map, max) + 1);
1881
    }
1882
1883
    for (int i = 0; i < clauses_persistent.size(); i++)
1884
        toDimacs(f, ca[clauses_persistent[i]], map, max);
1885
1886
    if (verbosity > 0)
1887
        printf("Wrote %d clauses with %d variables.\n", cnt, max);
1888
}
1889
1890
1891
//=================================================================================================
1892
// Garbage Collection methods:
1893
1894
2905
void Solver::relocAll(ClauseAllocator& to)
1895
{
1896
    // All watchers:
1897
    //
1898
    // for (int i = 0; i < watches.size(); i++)
1899
2905
    watches.cleanAll();
1900
928267
    for (int v = 0; v < nVars(); v++)
1901
2776086
        for (int s = 0; s < 2; s++){
1902
1850724
            Lit p = mkLit(v, s);
1903
            // printf(" >>> RELOCING: %s%d\n", sign(p)?"-":"", var(p)+1);
1904
1850724
            vec<Watcher>& ws = watches[p];
1905
5732616
            for (int j = 0; j < ws.size(); j++)
1906
            {
1907
3881892
              ca.reloc(ws[j].cref, to);
1908
            }
1909
        }
1910
1911
    // All reasons:
1912
    //
1913
201199
    for (int i = 0; i < trail.size(); i++){
1914
198294
        Var v = var(trail[i]);
1915
1916
396588
        if (hasReasonClause(v)
1917
198294
            && (ca[reason(v)].reloced() || locked(ca[reason(v)])))
1918
        {
1919
47113
          ca.reloc(vardata[v].d_reason, to);
1920
        }
1921
    }
1922
    // All learnt:
1923
    //
1924
201217
    for (int i = 0; i < clauses_removable.size(); i++)
1925
    {
1926
198312
      ca.reloc(clauses_removable[i], to);
1927
    }
1928
    // All original:
1929
    //
1930
1745539
    for (int i = 0; i < clauses_persistent.size(); i++)
1931
    {
1932
1742634
      ca.reloc(clauses_persistent[i], to);
1933
    }
1934
2905
}
1935
1936
1937
void Solver::garbageCollect()
1938
{
1939
    // Initialize the next region to a size corresponding to the estimated utilization degree. This
1940
    // is not precise but should avoid some unnecessary reallocations for the new region:
1941
    ClauseAllocator to(ca.size() - ca.wasted());
1942
1943
    relocAll(to);
1944
    if (verbosity >= 2)
1945
        printf("|  Garbage collection:   %12d bytes => %12d bytes             |\n",
1946
               ca.size()*ClauseAllocator::Unit_Size, to.size()*ClauseAllocator::Unit_Size);
1947
    to.moveTo(ca);
1948
}
1949
1950
4869
void Solver::push()
1951
{
1952
4869
  Assert(d_enable_incremental);
1953
4869
  Assert(decisionLevel() == 0);
1954
1955
4869
  ++assertionLevel;
1956
4869
  Debug("minisat") << "in user push, increasing assertion level to " << assertionLevel << std::endl;
1957
4869
  trail_ok.push(ok);
1958
4869
  assigns_lim.push(assigns.size());
1959
1960
4869
  d_context->push();  // SAT context for cvc5
1961
1962
4869
  Debug("minisat") << "MINISAT PUSH assertionLevel is " << assertionLevel << ", trail.size is " << trail.size() << std::endl;
1963
4869
}
1964
1965
4869
void Solver::pop()
1966
{
1967
4869
  Assert(d_enable_incremental);
1968
1969
4869
  Assert(decisionLevel() == 0);
1970
1971
  // Pop the trail below the user level
1972
4869
  --assertionLevel;
1973
9738
  Debug("minisat") << "in user pop, decreasing assertion level to "
1974
4869
                   << assertionLevel << "\n"
1975
4869
                   << cvc5::push;
1976
  while (true) {
1977
57159
    Debug("minisat") << "== unassigning " << trail.last() << std::endl;
1978
57159
    Var      x  = var(trail.last());
1979
57159
    if (user_level(x) > assertionLevel) {
1980
52290
      assigns[x] = l_Undef;
1981
52290
      vardata[x] = VarData(CRef_Undef, -1, -1, intro_level(x), -1);
1982
52290
      if(phase_saving >= 1 && (polarity[x] & 0x2) == 0)
1983
51164
        polarity[x] = sign(trail.last());
1984
52290
      insertVarOrder(x);
1985
52290
      trail.pop();
1986
    } else {
1987
4869
      break;
1988
    }
1989
52290
  }
1990
1991
  // The head should be at the trail top
1992
4869
  qhead = trail.size();
1993
1994
  // Remove the clauses
1995
4869
  removeClausesAboveLevel(clauses_persistent, assertionLevel);
1996
4869
  removeClausesAboveLevel(clauses_removable, assertionLevel);
1997
4869
  Debug("minisat") << cvc5::pop;
1998
  // Pop the SAT context to notify everyone
1999
4869
  d_context->pop();  // SAT context for cvc5
2000
2001
9738
  Debug("minisat") << "MINISAT POP assertionLevel is " << assertionLevel
2002
4869
                   << ", trail.size is " << trail.size() << "\n";
2003
  // Pop the created variables
2004
4869
  resizeVars(assigns_lim.last());
2005
4869
  assigns_lim.pop();
2006
4869
  variables_to_register.clear();
2007
2008
  // Pop the OK
2009
4869
  ok = trail_ok.last();
2010
4869
  trail_ok.pop();
2011
4869
}
2012
2013
264026
CRef Solver::updateLemmas() {
2014
2015
264026
  Debug("minisat::lemmas") << "Solver::updateLemmas() begin" << std::endl;
2016
2017
  // Avoid adding lemmas indefinitely without resource-out
2018
264026
  d_proxy->spendResource(Resource::LemmaStep);
2019
2020
264026
  CRef conflict = CRef_Undef;
2021
2022
  // Decision level to backtrack to
2023
264026
  int backtrackLevel = decisionLevel();
2024
2025
  // We use this comparison operator
2026
264026
  lemma_lt lt(*this);
2027
2028
  // Check for propagation and level to backtrack to
2029
264026
  int i = 0;
2030
792216
  while (i < lemmas.size()) {
2031
    // We need this loop as when we backtrack, due to registration more lemmas could be added
2032
4606909
    for (; i < lemmas.size(); ++ i)
2033
    {
2034
      // The current lemma
2035
2171407
      vec<Lit>& lemma = lemmas[i];
2036
2037
2171407
      Trace("pf::sat") << "Solver::updateLemmas: working on lemma: ";
2038
8907032
      for (int k = 0; k < lemma.size(); ++k) {
2039
6735625
        Trace("pf::sat") << lemma[k] << " ";
2040
      }
2041
2171407
      Trace("pf::sat") << std::endl;
2042
2043
      // If it's an empty lemma, we have a conflict at zero level
2044
2172655
      if (lemma.size() == 0) {
2045
1248
        Assert(!options::unsatCores() && !needProof());
2046
1248
        conflict = CRef_Lazy;
2047
1248
        backtrackLevel = 0;
2048
1248
        Debug("minisat::lemmas") << "Solver::updateLemmas(): found empty clause" << std::endl;
2049
1248
        continue;
2050
      }
2051
      // Sort the lemma to be able to attach
2052
2170159
      sort(lemma, lt);
2053
      // See if the lemma propagates something
2054
2170159
      if (lemma.size() == 1 || value(lemma[1]) == l_False) {
2055
474259
        Debug("minisat::lemmas") << "found unit " << lemma.size() << std::endl;
2056
        // This lemma propagates, see which level we need to backtrack to
2057
474259
        int currentBacktrackLevel = lemma.size() == 1 ? 0 : level(var(lemma[1]));
2058
        // Even if the first literal is true, we should propagate it at this level (unless it's set at a lower level)
2059
474259
        if (value(lemma[0]) != l_True || level(var(lemma[0])) > currentBacktrackLevel) {
2060
457206
          if (currentBacktrackLevel < backtrackLevel) {
2061
153861
            backtrackLevel = currentBacktrackLevel;
2062
          }
2063
        }
2064
      }
2065
    }
2066
2067
    // Pop so that propagation would be current
2068
264095
    Debug("minisat::lemmas") << "Solver::updateLemmas(): backtracking to " << backtrackLevel << " from " << decisionLevel() << std::endl;
2069
264095
    cancelUntil(backtrackLevel);
2070
  }
2071
2072
  // Last index in the trail
2073
264026
  int backtrack_index = trail.size();
2074
2075
  // Attach all the clauses and enqueue all the propagations
2076
2435433
  for (int j = 0; j < lemmas.size(); ++j)
2077
  {
2078
    // The current lemma
2079
2171407
    vec<Lit>& lemma = lemmas[j];
2080
2171407
    bool removable = lemmas_removable[j];
2081
2082
    // Attach it if non-unit
2083
2171407
    CRef lemma_ref = CRef_Undef;
2084
2171407
    if (lemma.size() > 1) {
2085
      // If the lemmas is removable, we can compute its level by the level
2086
2105412
      int clauseLevel = assertionLevel;
2087
2105412
      if (removable && !assertionLevelOnly())
2088
      {
2089
188807
        clauseLevel = 0;
2090
1600423
        for (int k = 0; k < lemma.size(); ++k)
2091
        {
2092
1411616
          clauseLevel = std::max(clauseLevel, intro_level(var(lemma[k])));
2093
        }
2094
      }
2095
2096
2105412
      lemma_ref = ca.alloc(clauseLevel, lemma, removable);
2097
2105412
      if (removable) {
2098
197362
        clauses_removable.push(lemma_ref);
2099
      } else {
2100
1908050
        clauses_persistent.push(lemma_ref);
2101
      }
2102
2105412
      attachClause(lemma_ref);
2103
    }
2104
2105
    // If the lemma is propagating enqueue its literal (or set the conflict)
2106
2171407
    if (conflict == CRef_Undef && value(lemma[0]) != l_True) {
2107
2073240
      if (lemma.size() == 1 || (value(lemma[1]) == l_False && trail_index(var(lemma[1])) < backtrack_index)) {
2108
696730
        Trace("pf::sat") << "Solver::updateLemmas: unit theory lemma: "
2109
348365
                         << lemma[0] << std::endl;
2110
348365
        if (value(lemma[0]) == l_False) {
2111
          // We have a conflict
2112
56508
          if (lemma.size() > 1) {
2113
55937
            Debug("minisat::lemmas") << "Solver::updateLemmas(): conflict" << std::endl;
2114
55937
            conflict = lemma_ref;
2115
          } else {
2116
571
            Debug("minisat::lemmas") << "Solver::updateLemmas(): unit conflict or empty clause" << std::endl;
2117
571
            conflict = CRef_Lazy;
2118
571
            if (needProof())
2119
            {
2120
51
              d_pfManager->storeUnitConflict(lemma[0]);
2121
            }
2122
          }
2123
        } else {
2124
291857
          Debug("minisat::lemmas") << "lemma size is " << lemma.size() << std::endl;
2125
291857
          Debug("minisat::lemmas") << "lemma ref is " << lemma_ref << std::endl;
2126
291857
          uncheckedEnqueue(lemma[0], lemma_ref);
2127
        }
2128
      }
2129
    }
2130
  }
2131
2132
  // Clear the lemmas
2133
264026
  lemmas.clear();
2134
264026
  lemmas_removable.clear();
2135
2136
264026
  if (conflict != CRef_Undef) {
2137
57668
    theoryConflict = true;
2138
  }
2139
2140
264026
  Debug("minisat::lemmas") << "Solver::updateLemmas() end" << std::endl;
2141
2142
264026
  return conflict;
2143
}
2144
2145
6510091
void ClauseAllocator::reloc(CRef& cr, ClauseAllocator& to)
2146
{
2147
6510091
  Debug("minisat") << "ClauseAllocator::reloc: cr " << cr << std::endl;
2148
  // FIXME what is this CRef_lazy
2149
6510091
  if (cr == CRef_Lazy) return;
2150
2151
6510091
  Clause& c = operator[](cr);
2152
6510091
  if (c.reloced()) { cr = c.relocation(); return; }
2153
2154
1941707
  cr = to.alloc(c.level(), c, c.removable());
2155
1941707
  c.relocate(cr);
2156
  // Copy extra data-fields:
2157
  // (This could be cleaned-up. Generalize Clause-constructor to be applicable here instead?)
2158
1941707
  to[cr].mark(c.mark());
2159
1941707
  if (to[cr].removable())         to[cr].activity() = c.activity();
2160
1743395
  else if (to[cr].has_extra()) to[cr].calcAbstraction();
2161
}
2162
2163
3137966
inline bool Solver::withinBudget(Resource r) const
2164
{
2165
3137966
  Assert(d_proxy);
2166
  // spendResource sets async_interrupt or throws UnsafeInterruptException
2167
  // depending on whether hard-limit is enabled
2168
3137966
  d_proxy->spendResource(r);
2169
2170
3137966
  bool within_budget =
2171
6275932
      !asynch_interrupt && (conflict_budget < 0 || conflicts < conflict_budget)
2172
6275932
      && (propagation_budget < 0 || propagations < propagation_budget);
2173
3137966
  return within_budget;
2174
}
2175
2176
2504
SatProofManager* Solver::getProofManager()
2177
{
2178
2504
  return isProofEnabled() ? d_pfManager.get() : nullptr;
2179
}
2180
2181
2829
std::shared_ptr<ProofNode> Solver::getProof()
2182
{
2183
2829
  return isProofEnabled() ? d_pfManager->getProof() : nullptr;
2184
}
2185
2186
39178246
bool Solver::isProofEnabled() const { return d_pfManager != nullptr; }
2187
2188
39172913
bool Solver::needProof() const
2189
{
2190
39172913
  return isProofEnabled()
2191
524835
         && options::unsatCoresMode() != options::UnsatCoresMode::ASSUMPTIONS
2192
39697748
         && options::unsatCoresMode() != options::UnsatCoresMode::PP_ONLY;
2193
}
2194
2195
}  // namespace Minisat
2196
29574
}  // namespace cvc5