GCC Code Coverage Report
Directory: . Exec Total Coverage
File: src/prop/minisat/core/Solver.cc Lines: 852 1027 83.0 %
Date: 2021-09-29 Branches: 1168 2784 42.0 %

Line Exec Source
1
/***************************************************************************************[Solver.cc]
2
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
3
Copyright (c) 2007-2010, Niklas Sorensson
4
5
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
6
associated documentation files (the "Software"), to deal in the Software without restriction,
7
including without limitation the rights to use, copy, modify, merge, publish, distribute,
8
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
9
furnished to do so, subject to the following conditions:
10
11
The above copyright notice and this permission notice shall be included in all copies or
12
substantial portions of the Software.
13
14
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
15
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
16
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
17
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
18
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
**************************************************************************************************/
20
21
#include "prop/minisat/core/Solver.h"
22
23
#include <math.h>
24
25
#include <iostream>
26
#include <unordered_set>
27
28
#include "base/check.h"
29
#include "base/output.h"
30
#include "options/base_options.h"
31
#include "options/main_options.h"
32
#include "options/prop_options.h"
33
#include "options/smt_options.h"
34
#include "proof/clause_id.h"
35
#include "prop/minisat/minisat.h"
36
#include "prop/minisat/mtl/Sort.h"
37
#include "prop/theory_proxy.h"
38
39
using namespace cvc5::prop;
40
41
namespace cvc5 {
42
namespace Minisat {
43
44
namespace {
45
/*
46
 * Returns true if the solver should add all clauses at the current assertion
47
 * level.
48
 *
49
 * FIXME: This is a workaround. Currently, our resolution proofs do not
50
 * handle clauses with a lower-than-assertion-level correctly because the
51
 * resolution proofs get removed when popping the context but the SAT solver
52
 * keeps using them.
53
 */
54
5170968
bool assertionLevelOnly()
55
{
56
10249407
  return (options::produceProofs() || options::unsatCores())
57
5263507
         && options::incrementalSolving();
58
}
59
60
//=================================================================================================
61
// Helper functions for decision tree tracing
62
63
// Writes to Trace macro for decision tree tracing
64
static inline void dtviewDecisionHelper(size_t level,
65
                                        const Node& node,
66
                                        const char* decisiontype)
67
{
68
  Trace("dtview") << std::string(level - (options::incrementalSolving() ? 1 : 0), '*')
69
                  << " " << node << " :" << decisiontype << "-DECISION:" << std::endl;
70
}
71
72
// Writes to Trace macro for propagation tracing
73
static inline void dtviewPropagationHeaderHelper(size_t level)
74
{
75
  Trace("dtview::prop") << std::string(level + 1 - (options::incrementalSolving() ? 1 : 0),
76
                                       '*')
77
                        << " /Propagations/" << std::endl;
78
}
79
80
// Writes to Trace macro for propagation tracing
81
static inline void dtviewBoolPropagationHelper(size_t level,
82
                                               Lit& l,
83
                                               cvc5::prop::TheoryProxy* proxy)
84
{
85
  Trace("dtview::prop") << std::string(
86
      level + 1 - (options::incrementalSolving() ? 1 : 0), ' ')
87
                        << ":BOOL-PROP: "
88
                        << proxy->getNode(MinisatSatSolver::toSatLiteral(l))
89
                        << std::endl;
90
}
91
92
// Writes to Trace macro for conflict tracing
93
static inline void dtviewPropConflictHelper(size_t level,
94
                                            Clause& confl,
95
                                            cvc5::prop::TheoryProxy* proxy)
96
{
97
  Trace("dtview::conflict")
98
      << std::string(level + 1 - (options::incrementalSolving() ? 1 : 0), ' ')
99
      << ":PROP-CONFLICT: (or";
100
  for (int i = 0; i < confl.size(); i++)
101
  {
102
    Trace("dtview::conflict")
103
        << " " << proxy->getNode(MinisatSatSolver::toSatLiteral(confl[i]));
104
  }
105
  Trace("dtview::conflict") << ")" << std::endl;
106
}
107
108
}  // namespace
109
110
//=================================================================================================
111
// Options:
112
113
static const char* _cat = "CORE";
114
115
7582
static DoubleOption  opt_var_decay         (_cat, "var-decay",   "The variable activity decay factor",            0.95,     DoubleRange(0, false, 1, false));
116
7582
static DoubleOption  opt_clause_decay      (_cat, "cla-decay",   "The clause activity decay factor",              0.999,    DoubleRange(0, false, 1, false));
117
7582
static DoubleOption  opt_random_var_freq   (_cat, "rnd-freq",    "The frequency with which the decision heuristic tries to choose a random variable", 0, DoubleRange(0, true, 1, true));
118
7582
static DoubleOption  opt_random_seed       (_cat, "rnd-seed",    "Used by the random variable selection",         91648253, DoubleRange(0, false, HUGE_VAL, false));
119
7582
static IntOption     opt_ccmin_mode        (_cat, "ccmin-mode",  "Controls conflict clause minimization (0=none, 1=basic, 2=deep)", 2, IntRange(0, 2));
120
7582
static IntOption     opt_phase_saving      (_cat, "phase-saving", "Controls the level of phase saving (0=none, 1=limited, 2=full)", 2, IntRange(0, 2));
121
7582
static BoolOption    opt_rnd_init_act      (_cat, "rnd-init",    "Randomize the initial activity", false);
122
7582
static BoolOption    opt_luby_restart      (_cat, "luby",        "Use the Luby restart sequence", true);
123
7582
static IntOption     opt_restart_first     (_cat, "rfirst",      "The base restart interval", 25, IntRange(1, INT32_MAX));
124
7582
static DoubleOption  opt_restart_inc       (_cat, "rinc",        "Restart interval increase factor", 3, DoubleRange(1, false, HUGE_VAL, false));
125
7582
static DoubleOption  opt_garbage_frac      (_cat, "gc-frac",     "The fraction of wasted memory allowed before a garbage collection is triggered",  0.20, DoubleRange(0, false, HUGE_VAL, false));
126
127
//=================================================================================================
128
// Proof declarations
129
CRef Solver::TCRef_Undef = CRef_Undef;
130
CRef Solver::TCRef_Lazy = CRef_Lazy;
131
132
class ScopedBool
133
{
134
  bool& d_watch;
135
  bool d_oldValue;
136
137
 public:
138
2227240
  ScopedBool(bool& watch, bool newValue) : d_watch(watch), d_oldValue(watch)
139
  {
140
2227240
    watch = newValue;
141
2227240
  }
142
2227240
  ~ScopedBool() { d_watch = d_oldValue; }
143
};
144
145
//=================================================================================================
146
// Constructor/Destructor:
147
148
6328
Solver::Solver(cvc5::prop::TheoryProxy* proxy,
149
               cvc5::context::Context* context,
150
               cvc5::context::UserContext* userContext,
151
               ProofNodeManager* pnm,
152
6328
               bool enableIncremental)
153
    : d_proxy(proxy),
154
      d_context(context),
155
      assertionLevel(0),
156
      d_pfManager(nullptr),
157
      d_enable_incremental(enableIncremental),
158
      minisat_busy(false)
159
      // Parameters (user settable):
160
      //
161
      ,
162
      verbosity(0),
163
      var_decay(opt_var_decay),
164
      clause_decay(opt_clause_decay),
165
      random_var_freq(opt_random_var_freq),
166
      random_seed(opt_random_seed),
167
      luby_restart(opt_luby_restart),
168
      ccmin_mode(opt_ccmin_mode),
169
      phase_saving(opt_phase_saving),
170
      rnd_pol(false),
171
      rnd_init_act(opt_rnd_init_act),
172
      garbage_frac(opt_garbage_frac),
173
      restart_first(opt_restart_first),
174
      restart_inc(opt_restart_inc)
175
176
      // Parameters (the rest):
177
      //
178
      ,
179
      learntsize_factor(1),
180
      learntsize_inc(1.5)
181
182
      // Parameters (experimental):
183
      //
184
      ,
185
      learntsize_adjust_start_confl(100),
186
      learntsize_adjust_inc(1.5)
187
188
      // Statistics: (formerly in 'SolverStats')
189
      //
190
      ,
191
      solves(0),
192
      starts(0),
193
      decisions(0),
194
      rnd_decisions(0),
195
      propagations(0),
196
      conflicts(0),
197
      resources_consumed(0),
198
      dec_vars(0),
199
      clauses_literals(0),
200
      learnts_literals(0),
201
      max_literals(0),
202
      tot_literals(0)
203
204
      ,
205
      ok(true),
206
      cla_inc(1),
207
      var_inc(1),
208
12656
      watches(WatcherDeleted(ca)),
209
      qhead(0),
210
      simpDB_assigns(-1),
211
      simpDB_props(0),
212
12656
      order_heap(VarOrderLt(activity)),
213
      progress_estimate(0),
214
6328
      remove_satisfied(!enableIncremental)
215
216
      // Resource constraints:
217
      //
218
      ,
219
      conflict_budget(-1),
220
      propagation_budget(-1),
221
37968
      asynch_interrupt(false)
222
{
223
6328
  if (pnm)
224
  {
225
128
    d_pfManager.reset(
226
64
        new SatProofManager(this, proxy->getCnfStream(), userContext, pnm));
227
  }
228
229
  // Create the constant variables
230
6328
  varTrue = newVar(true, false, false);
231
6328
  varFalse = newVar(false, false, false);
232
233
  // Assert the constants
234
6328
  uncheckedEnqueue(mkLit(varTrue, false));
235
6328
  uncheckedEnqueue(mkLit(varFalse, true));
236
6328
}
237
238
239
6325
Solver::~Solver()
240
{
241
6325
}
242
243
244
//=================================================================================================
245
// Minor methods:
246
247
248
// Creates a new SAT variable in the solver. If 'decision_var' is cleared, variable will not be
249
// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
250
//
251
477839
Var Solver::newVar(bool sign, bool dvar, bool isTheoryAtom, bool preRegister, bool canErase)
252
{
253
477839
    int v = nVars();
254
255
477839
    watches  .init(mkLit(v, false));
256
477839
    watches  .init(mkLit(v, true ));
257
477839
    assigns  .push(l_Undef);
258
477839
    vardata  .push(VarData(CRef_Undef, -1, -1, assertionLevel, -1));
259
477839
    activity .push(rnd_init_act ? drand(random_seed) * 0.00001 : 0);
260
477839
    seen     .push(0);
261
477839
    polarity .push(sign);
262
477839
    decision .push();
263
477839
    trail    .capacity(v+1);
264
    // push whether it corresponds to a theory atom
265
477839
    theory.push(isTheoryAtom);
266
267
477839
    setDecisionVar(v, dvar);
268
269
477839
    Debug("minisat") << "new var " << v << std::endl;
270
271
    // If the variable is introduced at non-zero level, we need to reintroduce it on backtracks
272
477839
    if (preRegister)
273
    {
274
570146
      Debug("minisat") << "  To register at level " << decisionLevel()
275
285073
                       << std::endl;
276
285073
      variables_to_register.push(VarIntroInfo(v, decisionLevel()));
277
    }
278
279
477839
    return v;
280
}
281
282
3245
void Solver::resizeVars(int newSize) {
283
3245
  Assert(d_enable_incremental);
284
3245
  Assert(decisionLevel() == 0);
285
3245
  Assert(newSize >= 2) << "always keep true/false";
286
3245
  if (newSize < nVars()) {
287
2155
    int shrinkSize = nVars() - newSize;
288
289
    // Resize watches up to the negated last literal
290
2155
    watches.resizeTo(mkLit(newSize-1, true));
291
292
    // Resize all info arrays
293
2155
    assigns.shrink(shrinkSize);
294
2155
    vardata.shrink(shrinkSize);
295
2155
    activity.shrink(shrinkSize);
296
2155
    seen.shrink(shrinkSize);
297
2155
    polarity.shrink(shrinkSize);
298
2155
    decision.shrink(shrinkSize);
299
2155
    theory.shrink(shrinkSize);
300
  }
301
302
3245
  if (Debug.isOn("minisat::pop")) {
303
    for (int i = 0; i < trail.size(); ++ i) {
304
      Assert(var(trail[i]) < nVars());
305
    }
306
  }
307
3245
}
308
309
35950731
CRef Solver::reason(Var x) {
310
35950731
  Trace("pf::sat") << "Solver::reason(" << x << ")" << std::endl;
311
312
  // If we already have a reason, just return it
313
35950731
  if (vardata[x].d_reason != CRef_Lazy)
314
  {
315
35922210
    if (Trace.isOn("pf::sat"))
316
    {
317
      Trace("pf::sat") << "  Solver::reason: " << vardata[x].d_reason << ", ";
318
      if (vardata[x].d_reason == CRef_Undef)
319
      {
320
        Trace("pf::sat") << "CRef_Undef";
321
      }
322
      else
323
      {
324
        for (unsigned i = 0, size = ca[vardata[x].d_reason].size(); i < size;
325
             ++i)
326
        {
327
          Trace("pf::sat") << ca[vardata[x].d_reason][i] << " ";
328
        }
329
      }
330
      Trace("pf::sat") << "\n";
331
    }
332
35922210
    return vardata[x].d_reason;
333
  }
334
  // What's the literal we are trying to explain
335
28521
  Lit l = mkLit(x, value(x) != l_True);
336
337
  // Get the explanation from the theory
338
57042
  SatClause explanation_cl;
339
  // FIXME: at some point return a tag with the theory that spawned you
340
28521
  d_proxy->explainPropagation(MinisatSatSolver::toSatLiteral(l),
341
                              explanation_cl);
342
57042
  vec<Lit> explanation;
343
28521
  MinisatSatSolver::toMinisatClause(explanation_cl, explanation);
344
345
57042
  Trace("pf::sat") << "Solver::reason: explanation_cl = " << explanation_cl
346
28521
                   << std::endl;
347
348
  // Sort the literals by trail index level
349
28521
  lemma_lt lt(*this);
350
28521
  sort(explanation, lt);
351
28521
  Assert(explanation[0] == l);
352
353
  // Compute the assertion level for this clause
354
28521
  int explLevel = 0;
355
28521
  if (assertionLevelOnly())
356
  {
357
268
    explLevel = assertionLevel;
358
    }
359
    else
360
    {
361
      int i, j;
362
28253
      Lit prev = lit_Undef;
363
193899
      for (i = 0, j = 0; i < explanation.size(); ++i)
364
      {
365
        // This clause is valid theory propagation, so its level is the level of
366
        // the top literal
367
165646
        explLevel = std::max(explLevel, intro_level(var(explanation[i])));
368
369
165646
        Assert(value(explanation[i]) != l_Undef);
370
165646
        Assert(i == 0
371
               || trail_index(var(explanation[0]))
372
                      > trail_index(var(explanation[i])));
373
374
        // Always keep the first literal
375
193899
        if (i == 0)
376
        {
377
28253
          prev = explanation[j++] = explanation[i];
378
28253
          continue;
379
        }
380
        // Ignore duplicate literals
381
137393
        if (explanation[i] == prev)
382
        {
383
          continue;
384
        }
385
        // Ignore zero level literals
386
274786
        if (level(var(explanation[i])) == 0
387
137393
            && user_level(var(explanation[i]) == 0))
388
        {
389
          continue;
390
        }
391
        // Keep this literal
392
137393
        prev = explanation[j++] = explanation[i];
393
      }
394
28253
      explanation.shrink(i - j);
395
396
28253
      Trace("pf::sat") << "Solver::reason: explanation = ";
397
193899
      for (int k = 0; k < explanation.size(); ++k)
398
      {
399
165646
        Trace("pf::sat") << explanation[k] << " ";
400
      }
401
28253
      Trace("pf::sat") << std::endl;
402
403
      // We need an explanation clause so we add a fake literal
404
28253
      if (j == 1)
405
      {
406
        // Add not TRUE to the clause
407
        explanation.push(mkLit(varTrue, true));
408
      }
409
    }
410
411
    // Construct the reason
412
28521
    CRef real_reason = ca.alloc(explLevel, explanation, true);
413
28521
    vardata[x] = VarData(real_reason, level(x), user_level(x), intro_level(x), trail_index(x));
414
28521
    clauses_removable.push(real_reason);
415
28521
    attachClause(real_reason);
416
417
28521
    return real_reason;
418
}
419
420
1403093
bool Solver::addClause_(vec<Lit>& ps, bool removable, ClauseId& id)
421
{
422
1403093
    if (!ok) return false;
423
424
    // Check if clause is satisfied and remove false/duplicate literals:
425
1403093
    sort(ps);
426
    Lit p; int i, j;
427
428
    // Which user-level to assert this clause at
429
1403093
    int clauseLevel = (removable && !assertionLevelOnly()) ? 0 : assertionLevel;
430
431
    // Check the clause for tautologies and similar
432
1403093
    int falseLiteralsCount = 0;
433
6012096
    for (i = j = 0, p = lit_Undef; i < ps.size(); i++) {
434
      // Update the level
435
9468068
      clauseLevel = assertionLevelOnly()
436
9431162
                        ? assertionLevel
437
9431162
                        : std::max(clauseLevel, intro_level(var(ps[i])));
438
      // Tautologies are ignored
439
4734034
      if (ps[i] == ~p) {
440
9560
        id = ClauseIdUndef;
441
        // Clause can be ignored
442
9560
        return true;
443
      }
444
      // Clauses with 0-level true literals are also ignored
445
4724474
      if (value(ps[i]) == l_True && level(var(ps[i])) == 0 && user_level(var(ps[i])) == 0) {
446
115471
        id = ClauseIdUndef;
447
115471
        return true;
448
      }
449
      // Ignore repeated literals
450
4609003
      if (ps[i] == p) {
451
15980
        continue;
452
      }
453
      // If a literal is false at 0 level (both sat and user level) we also
454
      // ignore it, unless we are tracking the SAT solver's reasoning
455
4593023
      if (value(ps[i]) == l_False) {
456
5209095
        if (!options::unsatCores() && !needProof() && level(var(ps[i])) == 0
457
2549530
            && user_level(var(ps[i])) == 0)
458
        {
459
785922
          continue;
460
        }
461
        else
462
        {
463
          // If we decide to keep it, we count it into the false literals
464
957185
          falseLiteralsCount++;
465
        }
466
      }
467
      // This literal is a keeper
468
3807101
      ps[j++] = p = ps[i];
469
    }
470
471
    // Fit to size
472
1278062
    ps.shrink(i - j);
473
474
    // If we are in solve_ or propagate
475
1278062
    if (minisat_busy)
476
    {
477
474009
      Trace("pf::sat") << "Add clause adding a new lemma: ";
478
2072956
      for (int k = 0; k < ps.size(); ++k) {
479
1598947
        Trace("pf::sat") << ps[k] << " ";
480
      }
481
474009
      Trace("pf::sat") << std::endl;
482
483
474009
      lemmas.push();
484
474009
      ps.copyTo(lemmas.last());
485
474009
      lemmas_removable.push(removable);
486
    } else {
487
804053
      Assert(decisionLevel() == 0);
488
489
      // If all false, we're in conflict
490
804053
      if (ps.size() == falseLiteralsCount) {
491
880
        if (options::unsatCores() || needProof())
492
        {
493
          // Take care of false units here; otherwise, we need to
494
          // construct the clause below to give to the proof manager
495
          // as the final conflict.
496
31
          if(falseLiteralsCount == 1) {
497
29
            if (needProof())
498
            {
499
29
              d_pfManager->finalizeProof(ps[0], true);
500
            }
501
55905
            return ok = false;
502
          }
503
        }
504
        else
505
        {
506
849
          return ok = false;
507
        }
508
      }
509
510
803175
      CRef cr = CRef_Undef;
511
512
      // If not unit, add the clause
513
803175
      if (ps.size() > 1) {
514
515
749804
        lemma_lt lt(*this);
516
749804
        sort(ps, lt);
517
518
749804
        cr = ca.alloc(clauseLevel, ps, false);
519
749804
        clauses_persistent.push(cr);
520
749804
        attachClause(cr);
521
522
749804
        if (options::unsatCores() || needProof())
523
        {
524
13150
          if (ps.size() == falseLiteralsCount)
525
          {
526
2
            if (needProof())
527
            {
528
2
              d_pfManager->finalizeProof(ca[cr], true);
529
            }
530
2
            return ok = false;
531
          }
532
        }
533
      }
534
535
      // Check if it propagates
536
803173
      if (ps.size() == falseLiteralsCount + 1) {
537
54996
        if(assigns[var(ps[0])] == l_Undef) {
538
53089
          Assert(assigns[var(ps[0])] != l_False);
539
53089
          uncheckedEnqueue(ps[0], cr);
540
106178
          Debug("cores") << "i'm registering a unit clause, maybe input"
541
53089
                         << std::endl;
542
53089
          if (ps.size() == 1)
543
          {
544
            // We need to do this so that the closedness check, if being done,
545
            // goes through when we have unit assumptions whose literal has
546
            // already been registered, as the ProofCnfStream will not register
547
            // them and as they are not the result of propagation will be left
548
            // hanging in assumptions accumulator
549
51988
            if (needProof())
550
            {
551
185
              d_pfManager->registerSatLitAssumption(ps[0]);
552
            }
553
          }
554
53089
          CRef confl = propagate(CHECK_WITHOUT_THEORY);
555
53089
          if(! (ok = (confl == CRef_Undef)) ) {
556
25
            if (needProof())
557
            {
558
              if (ca[confl].size() == 1)
559
              {
560
                d_pfManager->finalizeProof(ca[confl][0]);
561
              }
562
              else
563
              {
564
                d_pfManager->finalizeProof(ca[confl]);
565
              }
566
            }
567
          }
568
53089
          return ok;
569
        } else {
570
1907
          return ok;
571
        }
572
      }
573
    }
574
575
1222186
    return true;
576
}
577
578
579
1451153
void Solver::attachClause(CRef cr) {
580
1451153
    const Clause& c = ca[cr];
581
1451153
    if (Debug.isOn("minisat"))
582
    {
583
      Debug("minisat") << "Solver::attachClause(" << c << "): ";
584
      for (unsigned i = 0, size = c.size(); i < size; ++i)
585
      {
586
        Debug("minisat") << c[i] << " ";
587
      }
588
      Debug("minisat") << ", level " << c.level() << "\n";
589
    }
590
1451153
    Assert(c.size() > 1);
591
1451153
    watches[~c[0]].push(Watcher(cr, c[1]));
592
1451153
    watches[~c[1]].push(Watcher(cr, c[0]));
593
1451153
    if (c.removable()) learnts_literals += c.size();
594
1140985
    else            clauses_literals += c.size();
595
1451153
}
596
597
598
631044
void Solver::detachClause(CRef cr, bool strict) {
599
631044
    const Clause& c = ca[cr];
600
631044
    Debug("minisat") << "Solver::detachClause(" << c << ")" << std::endl;
601
631044
    if (Debug.isOn("minisat"))
602
    {
603
      Debug("minisat") << "Solver::detachClause(" << c << "), CRef " << cr
604
                       << ", clause ";
605
      for (unsigned i = 0, size = c.size(); i < size; ++i)
606
      {
607
        Debug("minisat") << c[i] << " ";
608
      }
609
610
      Debug("minisat") << "\n";
611
    }
612
631044
    Assert(c.size() > 1);
613
614
631044
    if (strict){
615
89050
        remove(watches[~c[0]], Watcher(cr, c[1]));
616
89050
        remove(watches[~c[1]], Watcher(cr, c[0]));
617
    }else{
618
        // Lazy detaching: (NOTE! Must clean all watcher lists before garbage collecting this clause)
619
541994
        watches.smudge(~c[0]);
620
541994
        watches.smudge(~c[1]);
621
    }
622
623
631044
    if (c.removable()) learnts_literals -= c.size();
624
456928
    else            clauses_literals -= c.size(); }
625
626
627
541994
void Solver::removeClause(CRef cr) {
628
541994
    Clause& c = ca[cr];
629
541994
    if (Debug.isOn("minisat"))
630
    {
631
      Debug("minisat") << "Solver::removeClause(" << c << "), CRef " << cr
632
                       << ", clause ";
633
      for (unsigned i = 0, size = c.size(); i < size; ++i)
634
      {
635
        Debug("minisat") << c[i] << " ";
636
      }
637
      Debug("minisat") << "\n";
638
    }
639
541994
    detachClause(cr);
640
    // Don't leave pointers to free'd memory!
641
541994
    if (locked(c))
642
    {
643
      // a locked clause c is one whose first literal c[0] is true and is
644
      // propagated by c itself, i.e. vardata[var(c[0])].d_reason == c. Because
645
      // of this if we need to justify the propagation of c[0], via
646
      // Solver::reason, if it appears in a resolution chain built lazily we
647
      // will be unable to do so after the step below. Thus we eagerly justify
648
      // this propagation here.
649
9750
      if (needProof())
650
      {
651
344
        Trace("pf::sat")
652
172
            << "Solver::removeClause: eagerly compute propagation of " << c[0]
653
172
            << "\n";
654
172
        d_pfManager->startResChain(c);
655
1122
        for (unsigned i = 1, size = c.size(); i < size; ++i)
656
        {
657
950
          d_pfManager->addResolutionStep(c[i]);
658
        }
659
172
        d_pfManager->endResChain(c[0]);
660
      }
661
9750
      vardata[var(c[0])].d_reason = CRef_Undef;
662
    }
663
541994
    c.mark(1);
664
541994
    ca.free(cr);
665
541994
}
666
667
668
319955
bool Solver::satisfied(const Clause& c) const {
669
5613182
    for (int i = 0; i < c.size(); i++)
670
5325784
        if (value(c[i]) == l_True)
671
32557
            return true;
672
287398
    return false; }
673
674
675
// Revert to the state at given level (keeping all assignment at 'level' but not beyond).
676
//
677
330561
void Solver::cancelUntil(int level) {
678
330561
    Debug("minisat") << "minisat::cancelUntil(" << level << ")" << std::endl;
679
680
330561
    if (decisionLevel() > level){
681
        // Pop the SMT context
682
2124216
        for (int l = trail_lim.size() - level; l > 0; --l) {
683
1865315
          d_context->pop();
684
        }
685
36368935
        for (int c = trail.size()-1; c >= trail_lim[level]; c--){
686
36110034
            Var      x  = var(trail[c]);
687
36110034
            assigns [x] = l_Undef;
688
36110034
            vardata[x].d_trail_index = -1;
689
72220068
            if ((phase_saving > 1 ||
690
                 ((phase_saving == 1) && c > trail_lim.last())
691
72220068
                 ) && ((polarity[x] & 0x2) == 0)) {
692
35482635
              polarity[x] = sign(trail[c]);
693
            }
694
36110034
            insertVarOrder(x);
695
        }
696
258901
        qhead = trail_lim[level];
697
258901
        trail.shrink(trail.size() - trail_lim[level]);
698
258901
        trail_lim.shrink(trail_lim.size() - level);
699
258901
        flipped.shrink(flipped.size() - level);
700
701
        // Register variables that have not been registered yet
702
258901
        int currentLevel = decisionLevel();
703
456331
        for (int i = variables_to_register.size() - 1;
704
456331
             i >= 0 && variables_to_register[i].d_level > currentLevel;
705
             --i)
706
        {
707
197430
          variables_to_register[i].d_level = currentLevel;
708
394860
          d_proxy->variableNotify(
709
197430
              MinisatSatSolver::toSatVariable(variables_to_register[i].d_var));
710
        }
711
    }
712
330561
}
713
714
9338
void Solver::resetTrail() { cancelUntil(0); }
715
716
//=================================================================================================
717
// Major methods:
718
719
720
1904621
Lit Solver::pickBranchLit()
721
{
722
    Lit nextLit;
723
724
    // Theory requests
725
1904619
    nextLit =
726
1904621
        MinisatSatSolver::toMinisatLit(d_proxy->getNextTheoryDecisionRequest());
727
1918619
    while (nextLit != lit_Undef) {
728
44404
      if(value(var(nextLit)) == l_Undef) {
729
74808
        Debug("theoryDecision")
730
37404
            << "getNextTheoryDecisionRequest(): now deciding on " << nextLit
731
37404
            << std::endl;
732
37404
        decisions++;
733
734
        // org-mode tracing -- theory decision
735
37404
        if (Trace.isOn("dtview"))
736
        {
737
          dtviewDecisionHelper(
738
              d_context->getLevel(),
739
              d_proxy->getNode(MinisatSatSolver::toSatLiteral(nextLit)),
740
              "THEORY");
741
        }
742
743
37404
        if (Trace.isOn("dtview::prop"))
744
        {
745
          dtviewPropagationHeaderHelper(d_context->getLevel());
746
        }
747
748
37404
        return nextLit;
749
      } else {
750
14000
        Debug("theoryDecision")
751
7000
            << "getNextTheoryDecisionRequest(): would decide on " << nextLit
752
7000
            << " but it already has an assignment" << std::endl;
753
      }
754
7000
      nextLit = MinisatSatSolver::toMinisatLit(
755
7000
          d_proxy->getNextTheoryDecisionRequest());
756
    }
757
3734430
    Debug("theoryDecision")
758
1867215
        << "getNextTheoryDecisionRequest(): decide on another literal"
759
1867215
        << std::endl;
760
761
    // DE requests
762
1867215
    bool stopSearch = false;
763
1867215
    nextLit = MinisatSatSolver::toMinisatLit(
764
1867215
        d_proxy->getNextDecisionEngineRequest(stopSearch));
765
1867215
    if(stopSearch) {
766
36734
      return lit_Undef;
767
    }
768
1830481
    if(nextLit != lit_Undef) {
769
777104
      Assert(value(var(nextLit)) == l_Undef)
770
          << "literal to decide already has value";
771
777104
      decisions++;
772
777104
      Var next = var(nextLit);
773
777104
      if(polarity[next] & 0x2) {
774
149500
        nextLit = mkLit(next, polarity[next] & 0x1);
775
      }
776
777
      // org-mode tracing -- decision engine decision
778
777104
      if (Trace.isOn("dtview"))
779
      {
780
        dtviewDecisionHelper(
781
            d_context->getLevel(),
782
            d_proxy->getNode(MinisatSatSolver::toSatLiteral(nextLit)),
783
            "DE");
784
      }
785
786
777104
      if (Trace.isOn("dtview::prop"))
787
      {
788
        dtviewPropagationHeaderHelper(d_context->getLevel());
789
      }
790
791
777104
      return nextLit;
792
    }
793
794
1053377
    Var next = var_Undef;
795
796
    // Random decision:
797
1053377
    if (drand(random_seed) < random_var_freq && !order_heap.empty()){
798
        next = order_heap[irand(random_seed,order_heap.size())];
799
        if (value(next) == l_Undef && decision[next])
800
            rnd_decisions++; }
801
802
    // Activity based decision:
803
7022855
    while (next >= nVars() || next == var_Undef || value(next) != l_Undef || !decision[next]) {
804
2996884
        if (order_heap.empty()){
805
12145
            next = var_Undef;
806
12145
            break;
807
        }else {
808
2984739
            next = order_heap.removeMin();
809
        }
810
811
2984739
        if(!decision[next]) continue;
812
        // Check with decision engine about relevancy
813
5944174
        if (d_proxy->isDecisionRelevant(MinisatSatSolver::toSatVariable(next))
814
2972087
            == false)
815
        {
816
          next = var_Undef;
817
        }
818
    }
819
820
1053377
    if(next == var_Undef) {
821
12145
      return lit_Undef;
822
    } else {
823
1041232
      decisions++;
824
      // Check with decision engine if it can tell polarity
825
      lbool dec_pol = MinisatSatSolver::toMinisatlbool(
826
1041232
          d_proxy->getDecisionPolarity(MinisatSatSolver::toSatVariable(next)));
827
      Lit decisionLit;
828
1041232
      if(dec_pol != l_Undef) {
829
        Assert(dec_pol == l_True || dec_pol == l_False);
830
        decisionLit = mkLit(next, (dec_pol == l_True));
831
      }
832
      else
833
      {
834
        // If it can't use internal heuristic to do that
835
1041232
        decisionLit = mkLit(
836
1041232
            next, rnd_pol ? drand(random_seed) < 0.5 : (polarity[next] & 0x1));
837
      }
838
839
      // org-mode tracing -- decision engine decision
840
1041232
      if (Trace.isOn("dtview"))
841
      {
842
        dtviewDecisionHelper(
843
            d_context->getLevel(),
844
            d_proxy->getNode(MinisatSatSolver::toSatLiteral(decisionLit)),
845
            "DE");
846
      }
847
848
1041232
      if (Trace.isOn("dtview::prop"))
849
      {
850
        dtviewPropagationHeaderHelper(d_context->getLevel());
851
      }
852
853
1041232
      return decisionLit;
854
    }
855
}
856
857
858
/*_________________________________________________________________________________________________
859
|
860
|  analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&)  ->  [void]
861
|
862
|  Description:
863
|    Analyze conflict and produce a reason clause.
864
|
865
|    Pre-conditions:
866
|      * 'out_learnt' is assumed to be cleared.
867
|      * Current decision level must be greater than root level.
868
|
869
|    Post-conditions:
870
|      * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
871
|      * If out_learnt.size() > 1 then 'out_learnt[1]' has the greatest decision level of the
872
|        rest of literals. There may be others from the same level though.
873
|      * returns the maximal level of the resolved clauses
874
|
875
|________________________________________________________________________________________________@*/
876
164266
int Solver::analyze(CRef confl, vec<Lit>& out_learnt, int& out_btlevel)
877
{
878
328532
  Trace("pf::sat") << "Solver::analyze: starting with " << confl
879
164266
                   << " with decision level " << decisionLevel() << "\n";
880
881
164266
  int pathC = 0;
882
164266
  Lit p = lit_Undef;
883
884
  // Generate conflict clause:
885
  //
886
164266
  out_learnt.push();  // (leave room for the asserting literal)
887
164266
  int index = trail.size() - 1;
888
889
164266
  int max_resolution_level = 0;  // Maximal level of the resolved clauses
890
891
164266
    if (needProof())
892
    {
893
32
      d_pfManager->startResChain(ca[confl]);
894
    }
895
4768599
    do{
896
4932865
      Assert(confl != CRef_Undef);  // (otherwise should be UIP)
897
898
      {
899
        // ! IMPORTANT !
900
        // It is not safe to use c after this block of code because
901
        // resolveOutUnit() below may lead to clauses being allocated, which
902
        // in turn may lead to reallocations that invalidate c.
903
4932865
        Clause& c = ca[confl];
904
4932865
        max_resolution_level = std::max(max_resolution_level, c.level());
905
906
4932865
        if (c.removable()) claBumpActivity(c);
907
      }
908
909
4932865
        if (Trace.isOn("pf::sat"))
910
        {
911
          Trace("pf::sat") << "Solver::analyze: conflict clause ";
912
          for (unsigned i = 0, size = ca[confl].size(); i < size; ++i)
913
          {
914
            Trace("pf::sat") << ca[confl][i] << " ";
915
          }
916
          Trace("pf::sat") << "\n";
917
        }
918
919
4932865
        Trace("pf::sat") << cvc5::push;
920
21410405
        for (int j = (p == lit_Undef) ? 0 : 1, size = ca[confl].size();
921
21410405
             j < size;
922
             j++)
923
        {
924
16477540
          Lit q = ca[confl][j];
925
926
32955080
          Trace("pf::sat") << "Lit " << q
927
32955080
                           << " seen/level: " << (seen[var(q)] ? 1 : 0) << " / "
928
16477540
                           << level(var(q)) << "\n";
929
16477540
          if (!seen[var(q)] && level(var(q)) > 0)
930
          {
931
10276179
            varBumpActivity(var(q));
932
10276179
            seen[var(q)] = 1;
933
10276179
            if (level(var(q)) >= decisionLevel())
934
4932865
              pathC++;
935
            else
936
5343314
              out_learnt.push(q);
937
          }
938
          else
939
          {
940
            // We could be resolving a literal propagated by a clause/theory
941
            // using information from a higher level
942
6201361
            if (!seen[var(q)] && level(var(q)) == 0)
943
            {
944
225110
              max_resolution_level =
945
450220
                  std::max(max_resolution_level, user_level(var(q)));
946
            }
947
948
            // FIXME: can we do it lazily if we actually need the proof?
949
6201361
            if (level(var(q)) == 0 && needProof())
950
            {
951
856
              d_pfManager->addResolutionStep(q);
952
            }
953
          }
954
        }
955
4932865
        Trace("pf::sat") << cvc5::pop;
956
957
        // Select next clause to look at:
958
26784915
        while (!seen[var(trail[index--])]);
959
4932865
        p     = trail[index+1];
960
4932865
        confl = reason(var(p));
961
4932865
        seen[var(p)] = 0;
962
4932865
        pathC--;
963
964
4932865
        if (pathC > 0 && confl != CRef_Undef && needProof())
965
        {
966
162
          d_pfManager->addResolutionStep(ca[confl], p);
967
        }
968
969
4932865
    } while (pathC > 0);
970
164266
    out_learnt[0] = ~p;
971
164266
    if (Debug.isOn("newproof::sat"))
972
    {
973
      Debug("newproof::sat") << "finished with learnt clause ";
974
      for (unsigned i = 0, size = out_learnt.size(); i < size; ++i)
975
      {
976
        prop::SatLiteral satLit = toSatLiteral<Minisat::Solver>(out_learnt[i]);
977
        Debug("newproof::sat") << satLit << " ";
978
      }
979
      Debug("newproof::sat") << "\n";
980
    }
981
982
    // Simplify conflict clause:
983
    int i, j;
984
164266
    out_learnt.copyTo(analyze_toclear);
985
164266
    if (ccmin_mode == 2){
986
164266
        uint32_t abstract_level = 0;
987
5507580
        for (i = 1; i < out_learnt.size(); i++)
988
5343314
            abstract_level |= abstractLevel(var(out_learnt[i])); // (maintain an abstraction of levels involved in conflict)
989
990
5507580
        for (i = j = 1; i < out_learnt.size(); i++) {
991
5343314
            if (reason(var(out_learnt[i])) == CRef_Undef) {
992
1177459
                out_learnt[j++] = out_learnt[i];
993
            } else {
994
              // Check if the literal is redundant
995
4165855
              if (!litRedundant(out_learnt[i], abstract_level)) {
996
                // Literal is not redundant
997
2407679
                out_learnt[j++] = out_learnt[i];
998
              } else {
999
1758176
                if (needProof())
1000
                {
1001
112
                  Debug("newproof::sat")
1002
56
                      << "Solver::analyze: redundant lit "
1003
56
                      << toSatLiteral<Minisat::Solver>(out_learnt[i]) << "\n";
1004
56
                  d_pfManager->addResolutionStep(out_learnt[i], true);
1005
                }
1006
                // Literal is redundant, to be safe, mark the level as current assertion level
1007
                // TODO: maybe optimize
1008
1758176
                max_resolution_level = std::max(max_resolution_level, user_level(var(out_learnt[i])));
1009
              }
1010
            }
1011
        }
1012
1013
    }else if (ccmin_mode == 1){
1014
        Unreachable();
1015
        for (i = j = 1; i < out_learnt.size(); i++){
1016
            Var x = var(out_learnt[i]);
1017
1018
            if (reason(x) == CRef_Undef)
1019
                out_learnt[j++] = out_learnt[i];
1020
            else{
1021
                Clause& c = ca[reason(var(out_learnt[i]))];
1022
                for (int k = 1; k < c.size(); k++)
1023
                    if (!seen[var(c[k])] && level(var(c[k])) > 0){
1024
                        out_learnt[j++] = out_learnt[i];
1025
                        break; }
1026
            }
1027
        }
1028
    }else
1029
        i = j = out_learnt.size();
1030
1031
164266
    max_literals += out_learnt.size();
1032
164266
    out_learnt.shrink(i - j);
1033
164266
    tot_literals += out_learnt.size();
1034
1035
    // Find correct backtrack level:
1036
    //
1037
164266
    if (out_learnt.size() == 1)
1038
3681
        out_btlevel = 0;
1039
    else{
1040
160585
        int max_i = 1;
1041
        // Find the first literal assigned at the next-highest level:
1042
3585138
        for (int k = 2; k < out_learnt.size(); k++)
1043
3424553
          if (level(var(out_learnt[k])) > level(var(out_learnt[max_i])))
1044
243467
            max_i = k;
1045
        // Swap-in this literal at index 1:
1046
160585
        Lit p2 = out_learnt[max_i];
1047
160585
        out_learnt[max_i] = out_learnt[1];
1048
160585
        out_learnt[1] = p2;
1049
160585
        out_btlevel = level(var(p2));
1050
    }
1051
1052
7387310
    for (int k = 0; k < analyze_toclear.size(); k++)
1053
7223044
      seen[var(analyze_toclear[k])] = 0;  // ('seen[]' is now cleared)
1054
1055
    // Return the maximal resolution level
1056
164266
    return max_resolution_level;
1057
}
1058
1059
1060
// Check if 'p' can be removed. 'abstract_levels' is used to abort early if the algorithm is
1061
// visiting literals at levels that cannot be removed later.
1062
4165855
bool Solver::litRedundant(Lit p, uint32_t abstract_levels)
1063
{
1064
4165855
    analyze_stack.clear(); analyze_stack.push(p);
1065
4165855
    int top = analyze_toclear.size();
1066
24147695
    while (analyze_stack.size() > 0){
1067
12398599
        CRef c_reason = reason(var(analyze_stack.last()));
1068
12398599
        Assert(c_reason != CRef_Undef);
1069
12398599
        Clause& c = ca[c_reason];
1070
12398599
        int c_size = c.size();
1071
12398599
        analyze_stack.pop();
1072
1073
        // Since calling reason might relocate to resize, c is not necesserily the right reference, we must
1074
        // use the allocator each time
1075
33097137
        for (int i = 1; i < c_size; i++){
1076
23106217
          Lit p2 = ca[c_reason][i];
1077
23106217
          if (!seen[var(p2)] && level(var(p2)) > 0)
1078
          {
1079
26482944
            if (reason(var(p2)) != CRef_Undef
1080
13241472
                && (abstractLevel(var(p2)) & abstract_levels) != 0)
1081
            {
1082
10833793
              seen[var(p2)] = 1;
1083
10833793
              analyze_stack.push(p2);
1084
10833793
              analyze_toclear.push(p2);
1085
            }
1086
            else
1087
            {
1088
11526008
              for (int j = top; j < analyze_toclear.size(); j++)
1089
9118329
                seen[var(analyze_toclear[j])] = 0;
1090
2407679
              analyze_toclear.shrink(analyze_toclear.size() - top);
1091
2407679
              return false;
1092
            }
1093
          }
1094
        }
1095
    }
1096
1097
1758176
    return true;
1098
}
1099
1100
1101
/*_________________________________________________________________________________________________
1102
|
1103
|  analyzeFinal : (p : Lit)  ->  [void]
1104
|
1105
|  Description:
1106
|    Specialized analysis procedure to express the final conflict in terms of assumptions.
1107
|    Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
1108
|    stores the result in 'out_conflict'.
1109
|________________________________________________________________________________________________@*/
1110
62
void Solver::analyzeFinal(Lit p, vec<Lit>& out_conflict)
1111
{
1112
62
    out_conflict.clear();
1113
62
    out_conflict.push(p);
1114
1115
62
    if (decisionLevel() == 0)
1116
14
        return;
1117
1118
48
    seen[var(p)] = 1;
1119
1120
4525
    for (int i = trail.size()-1; i >= trail_lim[0]; i--){
1121
4477
        Var x = var(trail[i]);
1122
4477
        if (seen[x]){
1123
1210
            if (reason(x) == CRef_Undef){
1124
504
              Assert(level(x) > 0);
1125
504
              out_conflict.push(~trail[i]);
1126
            }else{
1127
706
                Clause& c = ca[reason(x)];
1128
2534
                for (int j = 1; j < c.size(); j++)
1129
1828
                    if (level(var(c[j])) > 0)
1130
1828
                        seen[var(c[j])] = 1;
1131
            }
1132
1210
            seen[x] = 0;
1133
        }
1134
    }
1135
1136
48
    seen[var(p)] = 0;
1137
}
1138
1139
36315400
void Solver::uncheckedEnqueue(Lit p, CRef from)
1140
{
1141
36315400
  if (Debug.isOn("minisat"))
1142
  {
1143
    Debug("minisat") << "unchecked enqueue of " << p << " ("
1144
                     << trail_index(var(p)) << ") trail size is "
1145
                     << trail.size() << " cap is " << trail.capacity()
1146
                     << ", reason is " << from << ", ";
1147
    if (from == CRef_Lazy)
1148
    {
1149
      Debug("minisat") << "CRef_Lazy";
1150
    }
1151
    else if (from == CRef_Undef)
1152
    {
1153
      Debug("minisat") << "CRef_Undef";
1154
    }
1155
    else
1156
    {
1157
      for (unsigned i = 0, size = ca[from].size(); i < size; ++i)
1158
      {
1159
        Debug("minisat") << ca[from][i] << " ";
1160
      }
1161
    }
1162
    Debug("minisat") << "\n";
1163
  }
1164
36315400
  Assert(value(p) == l_Undef);
1165
36315400
  Assert(var(p) < nVars());
1166
36315400
  assigns[var(p)] = lbool(!sign(p));
1167
36315400
  vardata[var(p)] = VarData(
1168
      from, decisionLevel(), assertionLevel, intro_level(var(p)), trail.size());
1169
36315400
  trail.push_(p);
1170
36315400
  if (theory[var(p)])
1171
  {
1172
    // Enqueue to the theory
1173
8711944
    d_proxy->enqueueTheoryLiteral(MinisatSatSolver::toSatLiteral(p));
1174
  }
1175
36315400
}
1176
1177
2218127
CRef Solver::propagate(TheoryCheckType type)
1178
{
1179
2218127
    CRef confl = CRef_Undef;
1180
2218127
    recheck = false;
1181
2218127
    theoryConflict = false;
1182
1183
4436254
    ScopedBool scoped_bool(minisat_busy, true);
1184
1185
    // Add lemmas that we're left behind
1186
2218127
    if (lemmas.size() > 0) {
1187
74
      confl = updateLemmas();
1188
74
      if (confl != CRef_Undef) {
1189
        return confl;
1190
      }
1191
    }
1192
1193
    // If this is the final check, no need for Boolean propagation and
1194
    // theory propagation
1195
2218127
    if (type == CHECK_FINAL) {
1196
      // Do the theory check
1197
52527
      theoryCheck(cvc5::theory::Theory::EFFORT_FULL);
1198
      // Pick up the theory propagated literals (there could be some,
1199
      // if new lemmas are added)
1200
52516
      propagateTheory();
1201
      // If there are lemmas (or conflicts) update them
1202
52516
      if (lemmas.size() > 0) {
1203
40520
        recheck = true;
1204
40520
        confl = updateLemmas();
1205
40520
        return confl;
1206
      } else {
1207
11996
        recheck = d_proxy->theoryNeedCheck();
1208
11996
        return confl;
1209
      }
1210
    }
1211
1212
    // Keep running until we have checked everything, we
1213
    // have no conflict and no new literals have been asserted
1214
660485
    do {
1215
        // Propagate on the clauses
1216
2826085
        confl = propagateBool();
1217
        // If no conflict, do the theory check
1218
2826085
        if (confl == CRef_Undef && type != CHECK_WITHOUT_THEORY) {
1219
            // Do the theory check
1220
2603369
            if (type == CHECK_FINAL_FAKE) {
1221
              theoryCheck(cvc5::theory::Theory::EFFORT_FULL);
1222
            } else {
1223
2603369
              theoryCheck(cvc5::theory::Theory::EFFORT_STANDARD);
1224
            }
1225
            // Pick up the theory propagated literals
1226
2603366
            propagateTheory();
1227
            // If there are lemmas (or conflicts) update them
1228
5206732
            if (lemmas.size() > 0) {
1229
115010
              confl = updateLemmas();
1230
            }
1231
        } else {
1232
          // if dumping decision tree, print the conflict
1233
222716
          if (Trace.isOn("dtview::conflict"))
1234
          {
1235
            if (confl != CRef_Undef)
1236
            {
1237
              dtviewPropConflictHelper(decisionLevel(), ca[confl], d_proxy);
1238
            }
1239
          }
1240
          // Even though in conflict, we still need to discharge the lemmas
1241
222716
          if (lemmas.size() > 0) {
1242
            // Remember the trail size
1243
            int oldLevel = decisionLevel();
1244
            // Update the lemmas
1245
            CRef lemmaConflict = updateLemmas();
1246
            // If we get a conflict, we prefer it since it's earlier in the trail
1247
            if (lemmaConflict != CRef_Undef) {
1248
              // Lemma conflict takes precedence, since it's earlier in the trail
1249
              confl = lemmaConflict;
1250
            } else {
1251
              // Otherwise, the Boolean conflict is canceled in the case we popped the trail
1252
              if (oldLevel > decisionLevel()) {
1253
                confl = CRef_Undef;
1254
              }
1255
            }
1256
          }
1257
        }
1258
2826082
    } while (confl == CRef_Undef && qhead < trail.size());
1259
2165597
    return confl;
1260
}
1261
1262
2655882
void Solver::propagateTheory() {
1263
5311764
  SatClause propagatedLiteralsClause;
1264
  // Doesn't actually call propagate(); that's done in theoryCheck() now that combination
1265
  // is online.  This just incorporates those propagations previously discovered.
1266
2655882
  d_proxy->theoryPropagate(propagatedLiteralsClause);
1267
1268
5311764
  vec<Lit> propagatedLiterals;
1269
2655882
  MinisatSatSolver::toMinisatClause(propagatedLiteralsClause, propagatedLiterals);
1270
1271
2655882
  int oldTrailSize = trail.size();
1272
2655882
  Debug("minisat") << "old trail size is " << oldTrailSize << ", propagating " << propagatedLiterals.size() << " lits..." << std::endl;
1273
7623554
  for (unsigned i = 0, i_end = propagatedLiterals.size(); i < i_end; ++ i) {
1274
4967672
    Debug("minisat") << "Theory propagated: " << propagatedLiterals[i] << std::endl;
1275
    // multiple theories can propagate the same literal
1276
4967672
    Lit p = propagatedLiterals[i];
1277
4967672
    if (value(p) == l_Undef) {
1278
2531966
      uncheckedEnqueue(p, CRef_Lazy);
1279
    } else {
1280
2435706
      if (value(p) == l_False) {
1281
44914
        Debug("minisat") << "Conflict in theory propagation" << std::endl;
1282
89828
        SatClause explanation_cl;
1283
44914
        d_proxy->explainPropagation(MinisatSatSolver::toSatLiteral(p),
1284
                                    explanation_cl);
1285
89828
        vec<Lit> explanation;
1286
44914
        MinisatSatSolver::toMinisatClause(explanation_cl, explanation);
1287
        ClauseId id; // FIXME: mark it as explanation here somehow?
1288
44914
        addClause(explanation, true, id);
1289
      }
1290
    }
1291
  }
1292
2655882
}
1293
1294
/*_________________________________________________________________________________________________
1295
|
1296
|  theoryCheck: [void]  ->  [Clause*]
1297
|
1298
|  Description:
1299
|    Checks all enqueued theory facts for satisfiability. If a conflict arises, the conflicting
1300
|    clause is returned, otherwise NULL.
1301
|
1302
|    Note: the propagation queue might be NOT empty
1303
|________________________________________________________________________________________________@*/
1304
2655896
void Solver::theoryCheck(cvc5::theory::Theory::Effort effort)
1305
{
1306
2655896
  d_proxy->theoryCheck(effort);
1307
2655882
}
1308
1309
/*_________________________________________________________________________________________________
1310
|
1311
|  propagateBool : [void]  ->  [Clause*]
1312
|
1313
|  Description:
1314
|    Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
1315
|    otherwise CRef_Undef.
1316
|
1317
|    Post-conditions:
1318
|      * the propagation queue is empty, even if there was a conflict.
1319
|________________________________________________________________________________________________@*/
1320
2826085
CRef Solver::propagateBool()
1321
{
1322
2826085
    CRef    confl     = CRef_Undef;
1323
2826085
    int     num_props = 0;
1324
2826085
    watches.cleanAll();
1325
1326
68579451
    while (qhead < trail.size()){
1327
32876683
        Lit            p   = trail[qhead++];     // 'p' is enqueued fact to propagate.
1328
32876683
        vec<Watcher>&  ws  = watches[p];
1329
        Watcher        *i, *j, *end;
1330
32876683
        num_props++;
1331
1332
        // if propagation tracing enabled, print boolean propagation
1333
32876683
        if (Trace.isOn("dtview::prop"))
1334
        {
1335
          dtviewBoolPropagationHelper(decisionLevel(), p, d_proxy);
1336
        }
1337
1338
493912034
        for (i = j = (Watcher*)ws, end = i + ws.size();  i != end;){
1339
            // Try to avoid inspecting the clause:
1340
461035351
            Lit blocker = i->blocker;
1341
747109910
            if (value(blocker) == l_True){
1342
874804859
                *j++ = *i++; continue; }
1343
1344
            // Make sure the false literal is data[1]:
1345
174960792
            CRef     cr        = i->cref;
1346
174960792
            Clause&  c         = ca[cr];
1347
174960792
            Lit      false_lit = ~p;
1348
174960792
            if (c[0] == false_lit)
1349
61158427
                c[0] = c[1], c[1] = false_lit;
1350
174960792
            Assert(c[1] == false_lit);
1351
174960792
            i++;
1352
1353
            // If 0th watch is true, then clause is already satisfied.
1354
174960792
            Lit     first = c[0];
1355
174960792
            Watcher w     = Watcher(cr, first);
1356
191541974
            if (first != blocker && value(first) == l_True){
1357
33162364
                *j++ = w; continue; }
1358
1359
            // Look for new watch:
1360
158379610
            Assert(c.size() >= 2);
1361
558865627
            for (int k = 2; k < c.size(); k++)
1362
527202170
                if (value(c[k]) != l_False){
1363
126716153
                    c[1] = c[k]; c[k] = false_lit;
1364
126716153
                    watches[~c[1]].push(w);
1365
126716153
                    goto NextClause; }
1366
1367
            // Did not find watch -- clause is unit under assignment:
1368
31663457
            *j++ = w;
1369
31663457
            if (value(first) == l_False){
1370
131139
                confl = cr;
1371
131139
                qhead = trail.size();
1372
                // Copy the remaining watches:
1373
4669617
                while (i < end)
1374
2269239
                    *j++ = *i++;
1375
            }else
1376
31532318
                uncheckedEnqueue(first, cr);
1377
1378
158379610
        NextClause:;
1379
        }
1380
32876683
        ws.shrink(i - j);
1381
    }
1382
2826085
    propagations += num_props;
1383
2826085
    simpDB_props -= num_props;
1384
1385
2826085
    return confl;
1386
}
1387
1388
1389
/*_________________________________________________________________________________________________
1390
|
1391
|  reduceDB : ()  ->  [void]
1392
|
1393
|  Description:
1394
|    Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
1395
|    clauses are clauses that are reason to some assignment. Binary clauses are never removed.
1396
|________________________________________________________________________________________________@*/
1397
struct reduceDB_lt {
1398
    ClauseAllocator& ca;
1399
2347
    reduceDB_lt(ClauseAllocator& ca_) : ca(ca_) {}
1400
3547084
    bool operator () (CRef x, CRef y) {
1401
3547084
        return ca[x].size() > 2 && (ca[y].size() == 2 || ca[x].activity() < ca[y].activity()); }
1402
};
1403
2347
void Solver::reduceDB()
1404
{
1405
    int     i, j;
1406
2347
    double  extra_lim = cla_inc / clauses_removable.size();    // Remove any clause below this activity
1407
1408
2347
    sort(clauses_removable, reduceDB_lt(ca));
1409
    // Don't delete binary or locked clauses. From the rest, delete clauses from the first half
1410
    // and clauses with activity smaller than 'extra_lim':
1411
344117
    for (i = j = 0; i < clauses_removable.size(); i++){
1412
341770
        Clause& c = ca[clauses_removable[i]];
1413
341770
        if (c.size() > 2 && !locked(c) && (i < clauses_removable.size() / 2 || c.activity() < extra_lim))
1414
136344
            removeClause(clauses_removable[i]);
1415
        else
1416
205426
            clauses_removable[j++] = clauses_removable[i];
1417
    }
1418
2347
    clauses_removable.shrink(i - j);
1419
2347
    checkGarbage();
1420
2347
}
1421
1422
1423
12060
void Solver::removeSatisfied(vec<CRef>& cs)
1424
{
1425
    int i, j;
1426
332015
    for (i = j = 0; i < cs.size(); i++){
1427
319955
        Clause& c = ca[cs[i]];
1428
319955
        if (satisfied(c)) {
1429
32557
          removeClause(cs[i]);
1430
        }
1431
        else
1432
        {
1433
287398
          cs[j++] = cs[i];
1434
        }
1435
    }
1436
12060
    cs.shrink(i - j);
1437
12060
}
1438
1439
6490
void Solver::removeClausesAboveLevel(vec<CRef>& cs, int level)
1440
{
1441
    int i, j;
1442
436530
    for (i = j = 0; i < cs.size(); i++){
1443
430040
        Clause& c = ca[cs[i]];
1444
430040
        if (c.level() > level) {
1445
119603
          Assert(!locked(c));
1446
119603
          removeClause(cs[i]);
1447
        } else {
1448
310437
            cs[j++] = cs[i];
1449
        }
1450
    }
1451
6490
    cs.shrink(i - j);
1452
6490
}
1453
1454
12060
void Solver::rebuildOrderHeap()
1455
{
1456
24120
    vec<Var> vs;
1457
1405429
    for (Var v = 0; v < nVars(); v++)
1458
1393369
        if (decision[v] && value(v) == l_Undef)
1459
894580
            vs.push(v);
1460
12060
    order_heap.build(vs);
1461
12060
}
1462
1463
1464
/*_________________________________________________________________________________________________
1465
|
1466
|  simplify : [void]  ->  [bool]
1467
|
1468
|  Description:
1469
|    Simplify the clause database according to the current top-level assigment. Currently, the only
1470
|    thing done here is the removal of satisfied clauses, but more things can be put here.
1471
|________________________________________________________________________________________________@*/
1472
29698
bool Solver::simplify()
1473
{
1474
29698
  Assert(decisionLevel() == 0);
1475
1476
29698
  if (!ok || propagate(CHECK_WITHOUT_THEORY) != CRef_Undef) return ok = false;
1477
1478
29463
  if (nAssigns() == simpDB_assigns || (simpDB_props > 0)) return true;
1479
1480
  // Remove satisfied clauses:
1481
12060
  removeSatisfied(clauses_removable);
1482
12060
  if (remove_satisfied)  // Can be turned off.
1483
    removeSatisfied(clauses_persistent);
1484
12060
  checkGarbage();
1485
12060
  rebuildOrderHeap();
1486
1487
12060
  simpDB_assigns = nAssigns();
1488
12060
  simpDB_props =
1489
12060
      clauses_literals + learnts_literals;  // (shouldn't depend on stats
1490
                                            // really, but it will do for now)
1491
1492
12060
  return true;
1493
}
1494
1495
1496
/*_________________________________________________________________________________________________
1497
|
1498
|  search : (nof_conflicts : int) (params : const SearchParams&)  ->  [lbool]
1499
|
1500
|  Description:
1501
|    Search for a model the specified number of conflicts.
1502
|    NOTE! Use negative value for 'nof_conflicts' indicate infinity.
1503
|
1504
|  Output:
1505
|    'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If
1506
|    all variables are decision variables, this means that the clause set is satisfiable. 'l_False'
1507
|    if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached.
1508
|________________________________________________________________________________________________@*/
1509
9602
lbool Solver::search(int nof_conflicts)
1510
{
1511
9602
  Assert(ok);
1512
  int backtrack_level;
1513
9602
  int conflictC = 0;
1514
19204
  vec<Lit> learnt_clause;
1515
9602
  starts++;
1516
1517
9602
  TheoryCheckType check_type = CHECK_WITH_THEORY;
1518
  for (;;)
1519
  {
1520
    // Propagate and call the theory solvers
1521
2126522
    CRef confl = propagate(check_type);
1522
2126508
    Assert(lemmas.size() == 0);
1523
1524
2126508
    if (confl != CRef_Undef)
1525
    {
1526
166813
      conflicts++;
1527
166813
      conflictC++;
1528
1529
166813
      if (decisionLevel() == 0)
1530
      {
1531
2547
        if (needProof())
1532
        {
1533
8
          if (confl == CRef_Lazy)
1534
          {
1535
            d_pfManager->finalizeProof();
1536
          }
1537
          else
1538
          {
1539
8
            d_pfManager->finalizeProof(ca[confl]);
1540
          }
1541
        }
1542
2547
        return l_False;
1543
      }
1544
1545
      // Analyze the conflict
1546
164266
      learnt_clause.clear();
1547
164266
      int max_level = analyze(confl, learnt_clause, backtrack_level);
1548
164266
      cancelUntil(backtrack_level);
1549
1550
      // Assert the conflict clause and the asserting literal
1551
164266
      if (learnt_clause.size() == 1)
1552
      {
1553
3681
        uncheckedEnqueue(learnt_clause[0]);
1554
3681
        if (needProof())
1555
        {
1556
10
          d_pfManager->endResChain(learnt_clause[0]);
1557
        }
1558
      }
1559
      else
1560
      {
1561
160585
        CRef cr = ca.alloc(assertionLevelOnly() ? assertionLevel : max_level,
1562
                           learnt_clause,
1563
160585
                           true);
1564
160585
        clauses_removable.push(cr);
1565
160585
        attachClause(cr);
1566
160585
        claBumpActivity(ca[cr]);
1567
160585
        uncheckedEnqueue(learnt_clause[0], cr);
1568
160585
        if (needProof())
1569
        {
1570
22
          d_pfManager->endResChain(ca[cr]);
1571
        }
1572
      }
1573
1574
164266
      varDecayActivity();
1575
164266
      claDecayActivity();
1576
1577
164266
      if (--learntsize_adjust_cnt == 0)
1578
      {
1579
256
        learntsize_adjust_confl *= learntsize_adjust_inc;
1580
256
        learntsize_adjust_cnt = (int)learntsize_adjust_confl;
1581
256
        max_learnts *= learntsize_inc;
1582
1583
256
        if (verbosity >= 1)
1584
          printf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |\n",
1585
                 (int)conflicts,
1586
                 (int)dec_vars
1587
                     - (trail_lim.size() == 0 ? trail.size() : trail_lim[0]),
1588
                 nClauses(),
1589
                 (int)clauses_literals,
1590
                 (int)max_learnts,
1591
                 nLearnts(),
1592
                 (double)learnts_literals / nLearnts(),
1593
                 progressEstimate() * 100);
1594
      }
1595
1596
164266
      if (theoryConflict && options::sat_refine_conflicts())
1597
      {
1598
        check_type = CHECK_FINAL_FAKE;
1599
      }
1600
      else
1601
      {
1602
164266
        check_type = CHECK_WITH_THEORY;
1603
      }
1604
    }
1605
    else
1606
    {
1607
      // If this was a final check, we are satisfiable
1608
1959695
      if (check_type == CHECK_FINAL)
1609
      {
1610
        // Note that we are done making decisions when there are no pending decisions
1611
        // on assumptions, and the decision engine indicates it is done.
1612
46152
        bool decisionEngineDone = (decisionLevel() >= assumptions.size())
1613
46152
                                  && d_proxy->isDecisionEngineDone();
1614
        // Unless a lemma has added more stuff to the queues
1615
129143
        if (!decisionEngineDone
1616
46152
            && (!order_heap.empty() || qhead < trail.size()))
1617
        {
1618
36839
          check_type = CHECK_WITH_THEORY;
1619
126205
          continue;
1620
        }
1621
9313
        else if (recheck)
1622
        {
1623
          // There some additional stuff added, so we go for another
1624
          // full-check
1625
3648
          continue;
1626
        }
1627
        else
1628
        {
1629
          // Yes, we're truly satisfiable
1630
5665
          return l_True;
1631
        }
1632
      }
1633
1913543
      else if (check_type == CHECK_FINAL_FAKE)
1634
      {
1635
        check_type = CHECK_WITH_THEORY;
1636
      }
1637
1638
3827086
      if ((nof_conflicts >= 0 && conflictC >= nof_conflicts)
1639
3825774
          || !withinBudget(Resource::SatConflictStep))
1640
      {
1641
        // Reached bound on number of conflicts:
1642
1312
        progress_estimate = progressEstimate();
1643
1312
        cancelUntil(0);
1644
        // [mdeters] notify theory engine of restarts for deferred
1645
        // theory processing
1646
1312
        d_proxy->notifyRestart();
1647
1312
        return l_Undef;
1648
      }
1649
1650
      // Simplify the set of problem clauses:
1651
1912231
      if (decisionLevel() == 0 && !simplify())
1652
      {
1653
        return l_False;
1654
      }
1655
1656
1912231
      if (clauses_removable.size() - nAssigns() >= max_learnts)
1657
      {
1658
        // Reduce the set of learnt clauses:
1659
2347
        reduceDB();
1660
      }
1661
1662
1912231
      Lit next = lit_Undef;
1663
1916465
      while (decisionLevel() < assumptions.size())
1664
      {
1665
        // Perform user provided assumption:
1666
9727
        Lit p = assumptions[decisionLevel()];
1667
9727
        if (value(p) == l_True)
1668
        {
1669
          // Dummy decision level:
1670
2117
          newDecisionLevel();
1671
        }
1672
7610
        else if (value(p) == l_False)
1673
        {
1674
62
          analyzeFinal(~p, d_conflict);
1675
62
          return l_False;
1676
        }
1677
        else
1678
        {
1679
7548
          next = p;
1680
7548
          break;
1681
        }
1682
      }
1683
1684
1912169
      if (next == lit_Undef)
1685
      {
1686
        // New variable decision:
1687
1904621
        next = pickBranchLit();
1688
1689
1953498
        if (next == lit_Undef)
1690
        {
1691
          // We need to do a full theory check to confirm
1692
97758
          Debug("minisat::search")
1693
48879
              << "Doing a full theory check..." << std::endl;
1694
48879
          check_type = CHECK_FINAL;
1695
48879
          continue;
1696
        }
1697
      }
1698
1699
      // Increase decision level and enqueue 'next'
1700
1863288
      newDecisionLevel();
1701
1863288
      uncheckedEnqueue(next);
1702
    }
1703
2116920
  }
1704
}
1705
1706
1707
1312
double Solver::progressEstimate() const
1708
{
1709
1312
    double  progress = 0;
1710
1312
    double  F = 1.0 / nVars();
1711
1712
22059
    for (int i = 0; i <= decisionLevel(); i++){
1713
20747
        int beg = i == 0 ? 0 : trail_lim[i - 1];
1714
20747
        int end = i == decisionLevel() ? trail.size() : trail_lim[i];
1715
20747
        progress += pow(F, i) * (end - beg);
1716
    }
1717
1718
1312
    return progress / nVars();
1719
}
1720
1721
/*
1722
  Finite subsequences of the Luby-sequence:
1723
1724
  0: 1
1725
  1: 1 1 2
1726
  2: 1 1 2 1 1 2 4
1727
  3: 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8
1728
  ...
1729
1730
1731
 */
1732
1733
9602
static double luby(double y, int x){
1734
1735
    // Find the finite subsequence that contains index 'x', and the
1736
    // size of that subsequence:
1737
    int size, seq;
1738
9602
    for (size = 1, seq = 0; size < x+1; seq++, size = 2*size+1);
1739
1740
15712
    while (size-1 != x){
1741
3055
        size = (size-1)>>1;
1742
3055
        seq--;
1743
3055
        x = x % size;
1744
    }
1745
1746
9602
    return pow(y, seq);
1747
}
1748
1749
// NOTE: assumptions passed in member-variable 'assumptions'.
1750
9113
lbool Solver::solve_()
1751
{
1752
9113
    Debug("minisat") << "nvars = " << nVars() << std::endl;
1753
1754
18226
    ScopedBool scoped_bool(minisat_busy, true);
1755
1756
9113
    Assert(decisionLevel() == 0);
1757
1758
9113
    model.clear();
1759
9113
    d_conflict.clear();
1760
9113
    if (!ok){
1761
823
      minisat_busy = false;
1762
823
      return l_False;
1763
    }
1764
1765
8290
    solves++;
1766
1767
8290
    max_learnts               = nClauses() * learntsize_factor;
1768
8290
    learntsize_adjust_confl   = learntsize_adjust_start_confl;
1769
8290
    learntsize_adjust_cnt     = (int)learntsize_adjust_confl;
1770
8290
    lbool   status            = l_Undef;
1771
1772
8290
    if (verbosity >= 1){
1773
1
        printf("============================[ Search Statistics ]==============================\n");
1774
1
        printf("| Conflicts |          ORIGINAL         |          LEARNT          | Progress |\n");
1775
1
        printf("|           |    Vars  Clauses Literals |    Limit  Clauses Lit/Cl |          |\n");
1776
1
        printf("===============================================================================\n");
1777
    }
1778
1779
    // Search:
1780
8290
    int curr_restarts = 0;
1781
27462
    while (status == l_Undef){
1782
9602
        double rest_base = luby_restart ? luby(restart_inc, curr_restarts) : pow(restart_inc, curr_restarts);
1783
9602
        status = search(rest_base * restart_first);
1784
9586
        if (!withinBudget(Resource::SatConflictStep))
1785
          break;  // FIXME add restart option?
1786
9586
        curr_restarts++;
1787
    }
1788
1789
8274
    if (!withinBudget(Resource::SatConflictStep))
1790
      status = l_Undef;
1791
1792
8274
    if (verbosity >= 1)
1793
1
        printf("===============================================================================\n");
1794
1795
1796
8274
    if (status == l_True){
1797
        // Extend & copy model:
1798
5665
        model.growTo(nVars());
1799
461944
        for (int i = 0; i < nVars(); i++) {
1800
456279
          model[i] = value(i);
1801
456279
          Debug("minisat") << i << " = " << model[i] << std::endl;
1802
        }
1803
    }
1804
2609
    else if (status == l_False && d_conflict.size() == 0)
1805
2547
      ok = false;
1806
1807
8274
    return status;
1808
}
1809
1810
//=================================================================================================
1811
// Writing CNF to DIMACS:
1812
//
1813
// FIXME: this needs to be rewritten completely.
1814
1815
static Var mapVar(Var x, vec<Var>& map, Var& max)
1816
{
1817
    if (map.size() <= x || map[x] == -1){
1818
        map.growTo(x+1, -1);
1819
        map[x] = max++;
1820
    }
1821
    return map[x];
1822
}
1823
1824
1825
void Solver::toDimacs(FILE* f, Clause& c, vec<Var>& map, Var& max)
1826
{
1827
    if (satisfied(c)) return;
1828
1829
    for (int i = 0; i < c.size(); i++)
1830
        if (value(c[i]) != l_False)
1831
            fprintf(f, "%s%d ", sign(c[i]) ? "-" : "", mapVar(var(c[i]), map, max)+1);
1832
    fprintf(f, "0\n");
1833
}
1834
1835
1836
void Solver::toDimacs(const char *file, const vec<Lit>& assumps)
1837
{
1838
    FILE* f = fopen(file, "wr");
1839
    if (f == NULL)
1840
        fprintf(stderr, "could not open file %s\n", file), exit(1);
1841
    toDimacs(f, assumps);
1842
    fclose(f);
1843
}
1844
1845
1846
void Solver::toDimacs(FILE* f, const vec<Lit>& assumps)
1847
{
1848
    // Handle case when solver is in contradictory state:
1849
    if (!ok){
1850
        fprintf(f, "p cnf 1 2\n1 0\n-1 0\n");
1851
        return; }
1852
1853
    vec<Var> map; Var max = 0;
1854
1855
    // Cannot use removeClauses here because it is not safe
1856
    // to deallocate them at this point. Could be improved.
1857
    int cnt = 0;
1858
    for (int i = 0; i < clauses_persistent.size(); i++)
1859
        if (!satisfied(ca[clauses_persistent[i]]))
1860
            cnt++;
1861
1862
    for (int i = 0; i < clauses_persistent.size(); i++)
1863
        if (!satisfied(ca[clauses_persistent[i]])){
1864
            Clause& c = ca[clauses_persistent[i]];
1865
            for (int j = 0; j < c.size(); j++)
1866
                if (value(c[j]) != l_False)
1867
                    mapVar(var(c[j]), map, max);
1868
        }
1869
1870
    // Assumptions are added as unit clauses:
1871
    cnt += assumptions.size();
1872
1873
    fprintf(f, "p cnf %d %d\n", max, cnt);
1874
1875
    for (int i = 0; i < assumptions.size(); i++){
1876
      Assert(value(assumptions[i]) != l_False);
1877
      fprintf(f,
1878
              "%s%d 0\n",
1879
              sign(assumptions[i]) ? "-" : "",
1880
              mapVar(var(assumptions[i]), map, max) + 1);
1881
    }
1882
1883
    for (int i = 0; i < clauses_persistent.size(); i++)
1884
        toDimacs(f, ca[clauses_persistent[i]], map, max);
1885
1886
    if (verbosity > 0)
1887
        printf("Wrote %d clauses with %d variables.\n", cnt, max);
1888
}
1889
1890
1891
//=================================================================================================
1892
// Garbage Collection methods:
1893
1894
1844
void Solver::relocAll(ClauseAllocator& to)
1895
{
1896
    // All watchers:
1897
    //
1898
    // for (int i = 0; i < watches.size(); i++)
1899
1844
    watches.cleanAll();
1900
510510
    for (int v = 0; v < nVars(); v++)
1901
1525998
        for (int s = 0; s < 2; s++){
1902
1017332
            Lit p = mkLit(v, s);
1903
            // printf(" >>> RELOCING: %s%d\n", sign(p)?"-":"", var(p)+1);
1904
1017332
            vec<Watcher>& ws = watches[p];
1905
2546932
            for (int j = 0; j < ws.size(); j++)
1906
            {
1907
1529600
              ca.reloc(ws[j].cref, to);
1908
            }
1909
        }
1910
1911
    // All reasons:
1912
    //
1913
158929
    for (int i = 0; i < trail.size(); i++){
1914
157085
        Var v = var(trail[i]);
1915
1916
314170
        if (hasReasonClause(v)
1917
157085
            && (ca[reason(v)].reloced() || locked(ca[reason(v)])))
1918
        {
1919
31499
          ca.reloc(vardata[v].d_reason, to);
1920
        }
1921
    }
1922
    // All learnt:
1923
    //
1924
137697
    for (int i = 0; i < clauses_removable.size(); i++)
1925
    {
1926
135853
      ca.reloc(clauses_removable[i], to);
1927
    }
1928
    // All original:
1929
    //
1930
630791
    for (int i = 0; i < clauses_persistent.size(); i++)
1931
    {
1932
628947
      ca.reloc(clauses_persistent[i], to);
1933
    }
1934
1844
}
1935
1936
1937
void Solver::garbageCollect()
1938
{
1939
    // Initialize the next region to a size corresponding to the estimated utilization degree. This
1940
    // is not precise but should avoid some unnecessary reallocations for the new region:
1941
    ClauseAllocator to(ca.size() - ca.wasted());
1942
1943
    relocAll(to);
1944
    if (verbosity >= 2)
1945
        printf("|  Garbage collection:   %12d bytes => %12d bytes             |\n",
1946
               ca.size()*ClauseAllocator::Unit_Size, to.size()*ClauseAllocator::Unit_Size);
1947
    to.moveTo(ca);
1948
}
1949
1950
3245
void Solver::push()
1951
{
1952
3245
  Assert(d_enable_incremental);
1953
3245
  Assert(decisionLevel() == 0);
1954
1955
3245
  ++assertionLevel;
1956
3245
  Debug("minisat") << "in user push, increasing assertion level to " << assertionLevel << std::endl;
1957
3245
  trail_ok.push(ok);
1958
3245
  assigns_lim.push(assigns.size());
1959
1960
3245
  d_context->push();  // SAT context for cvc5
1961
1962
3245
  Debug("minisat") << "MINISAT PUSH assertionLevel is " << assertionLevel << ", trail.size is " << trail.size() << std::endl;
1963
3245
}
1964
1965
3245
void Solver::pop()
1966
{
1967
3245
  Assert(d_enable_incremental);
1968
1969
3245
  Assert(decisionLevel() == 0);
1970
1971
  // Pop the trail below the user level
1972
3245
  --assertionLevel;
1973
6490
  Debug("minisat") << "in user pop, decreasing assertion level to "
1974
3245
                   << assertionLevel << "\n"
1975
3245
                   << cvc5::push;
1976
  while (true) {
1977
40132
    Debug("minisat") << "== unassigning " << trail.last() << std::endl;
1978
40132
    Var      x  = var(trail.last());
1979
40132
    if (user_level(x) > assertionLevel) {
1980
36887
      assigns[x] = l_Undef;
1981
36887
      vardata[x] = VarData(CRef_Undef, -1, -1, intro_level(x), -1);
1982
36887
      if(phase_saving >= 1 && (polarity[x] & 0x2) == 0)
1983
36032
        polarity[x] = sign(trail.last());
1984
36887
      insertVarOrder(x);
1985
36887
      trail.pop();
1986
    } else {
1987
3245
      break;
1988
    }
1989
36887
  }
1990
1991
  // The head should be at the trail top
1992
3245
  qhead = trail.size();
1993
1994
  // Remove the clauses
1995
3245
  removeClausesAboveLevel(clauses_persistent, assertionLevel);
1996
3245
  removeClausesAboveLevel(clauses_removable, assertionLevel);
1997
3245
  Debug("minisat") << cvc5::pop;
1998
  // Pop the SAT context to notify everyone
1999
3245
  d_context->pop();  // SAT context for cvc5
2000
2001
6490
  Debug("minisat") << "MINISAT POP assertionLevel is " << assertionLevel
2002
3245
                   << ", trail.size is " << trail.size() << "\n";
2003
  // Pop the created variables
2004
3245
  resizeVars(assigns_lim.last());
2005
3245
  assigns_lim.pop();
2006
3245
  variables_to_register.clear();
2007
2008
  // Pop the OK
2009
3245
  ok = trail_ok.last();
2010
3245
  trail_ok.pop();
2011
3245
}
2012
2013
155604
CRef Solver::updateLemmas() {
2014
2015
155604
  Debug("minisat::lemmas") << "Solver::updateLemmas() begin" << std::endl;
2016
2017
  // Avoid adding lemmas indefinitely without resource-out
2018
155604
  d_proxy->spendResource(Resource::LemmaStep);
2019
2020
155604
  CRef conflict = CRef_Undef;
2021
2022
  // Decision level to backtrack to
2023
155604
  int backtrackLevel = decisionLevel();
2024
2025
  // We use this comparison operator
2026
155604
  lemma_lt lt(*this);
2027
2028
  // Check for propagation and level to backtrack to
2029
155604
  int i = 0;
2030
466894
  while (i < lemmas.size()) {
2031
    // We need this loop as when we backtrack, due to registration more lemmas could be added
2032
1103609
    for (; i < lemmas.size(); ++ i)
2033
    {
2034
      // The current lemma
2035
473982
      vec<Lit>& lemma = lemmas[i];
2036
2037
473982
      Trace("pf::sat") << "Solver::updateLemmas: working on lemma: ";
2038
2072890
      for (int k = 0; k < lemma.size(); ++k) {
2039
1598908
        Trace("pf::sat") << lemma[k] << " ";
2040
      }
2041
473982
      Trace("pf::sat") << std::endl;
2042
2043
      // If it's an empty lemma, we have a conflict at zero level
2044
475224
      if (lemma.size() == 0) {
2045
1242
        Assert(!options::unsatCores() && !needProof());
2046
1242
        conflict = CRef_Lazy;
2047
1242
        backtrackLevel = 0;
2048
1242
        Debug("minisat::lemmas") << "Solver::updateLemmas(): found empty clause" << std::endl;
2049
1242
        continue;
2050
      }
2051
      // Sort the lemma to be able to attach
2052
472740
      sort(lemma, lt);
2053
      // See if the lemma propagates something
2054
472740
      if (lemma.size() == 1 || value(lemma[1]) == l_False) {
2055
250120
        Debug("minisat::lemmas") << "found unit " << lemma.size() << std::endl;
2056
        // This lemma propagates, see which level we need to backtrack to
2057
250120
        int currentBacktrackLevel = lemma.size() == 1 ? 0 : level(var(lemma[1]));
2058
        // Even if the first literal is true, we should propagate it at this level (unless it's set at a lower level)
2059
250120
        if (value(lemma[0]) != l_True || level(var(lemma[0])) > currentBacktrackLevel) {
2060
240970
          if (currentBacktrackLevel < backtrackLevel) {
2061
93729
            backtrackLevel = currentBacktrackLevel;
2062
          }
2063
        }
2064
      }
2065
    }
2066
2067
    // Pop so that propagation would be current
2068
155645
    Debug("minisat::lemmas") << "Solver::updateLemmas(): backtracking to " << backtrackLevel << " from " << decisionLevel() << std::endl;
2069
155645
    cancelUntil(backtrackLevel);
2070
  }
2071
2072
  // Last index in the trail
2073
155604
  int backtrack_index = trail.size();
2074
2075
  // Attach all the clauses and enqueue all the propagations
2076
629586
  for (int j = 0; j < lemmas.size(); ++j)
2077
  {
2078
    // The current lemma
2079
473982
    vec<Lit>& lemma = lemmas[j];
2080
473982
    bool removable = lemmas_removable[j];
2081
2082
    // Attach it if non-unit
2083
473982
    CRef lemma_ref = CRef_Undef;
2084
473982
    if (lemma.size() > 1) {
2085
      // If the lemmas is removable, we can compute its level by the level
2086
423193
      int clauseLevel = assertionLevel;
2087
423193
      if (removable && !assertionLevelOnly())
2088
      {
2089
120942
        clauseLevel = 0;
2090
866158
        for (int k = 0; k < lemma.size(); ++k)
2091
        {
2092
745216
          clauseLevel = std::max(clauseLevel, intro_level(var(lemma[k])));
2093
        }
2094
      }
2095
2096
423193
      lemma_ref = ca.alloc(clauseLevel, lemma, removable);
2097
423193
      if (removable) {
2098
121062
        clauses_removable.push(lemma_ref);
2099
      } else {
2100
302131
        clauses_persistent.push(lemma_ref);
2101
      }
2102
423193
      attachClause(lemma_ref);
2103
    }
2104
2105
    // If the lemma is propagating enqueue its literal (or set the conflict)
2106
473982
    if (conflict == CRef_Undef && value(lemma[0]) != l_True) {
2107
427326
      if (lemma.size() == 1 || (value(lemma[1]) == l_False && trail_index(var(lemma[1])) < backtrack_index)) {
2108
383696
        Trace("pf::sat") << "Solver::updateLemmas: unit theory lemma: "
2109
191848
                         << lemma[0] << std::endl;
2110
191848
        if (value(lemma[0]) == l_False) {
2111
          // We have a conflict
2112
34547
          if (lemma.size() > 1) {
2113
34027
            Debug("minisat::lemmas") << "Solver::updateLemmas(): conflict" << std::endl;
2114
34027
            conflict = lemma_ref;
2115
          } else {
2116
520
            Debug("minisat::lemmas") << "Solver::updateLemmas(): unit conflict or empty clause" << std::endl;
2117
520
            conflict = CRef_Lazy;
2118
520
            if (needProof())
2119
            {
2120
              d_pfManager->storeUnitConflict(lemma[0]);
2121
            }
2122
          }
2123
        } else {
2124
157301
          Debug("minisat::lemmas") << "lemma size is " << lemma.size() << std::endl;
2125
157301
          Debug("minisat::lemmas") << "lemma ref is " << lemma_ref << std::endl;
2126
157301
          uncheckedEnqueue(lemma[0], lemma_ref);
2127
        }
2128
      }
2129
    }
2130
  }
2131
2132
  // Clear the lemmas
2133
155604
  lemmas.clear();
2134
155604
  lemmas_removable.clear();
2135
2136
155604
  if (conflict != CRef_Undef) {
2137
35702
    theoryConflict = true;
2138
  }
2139
2140
155604
  Debug("minisat::lemmas") << "Solver::updateLemmas() end" << std::endl;
2141
2142
155604
  return conflict;
2143
}
2144
2145
2966039
void ClauseAllocator::reloc(CRef& cr, ClauseAllocator& to)
2146
{
2147
2966039
  Debug("minisat") << "ClauseAllocator::reloc: cr " << cr << std::endl;
2148
  // FIXME what is this CRef_lazy
2149
2966039
  if (cr == CRef_Lazy) return;
2150
2151
2966039
  Clause& c = operator[](cr);
2152
2966039
  if (c.reloced()) { cr = c.relocation(); return; }
2153
2154
765561
  cr = to.alloc(c.level(), c, c.removable());
2155
765561
  c.relocate(cr);
2156
  // Copy extra data-fields:
2157
  // (This could be cleaned-up. Generalize Clause-constructor to be applicable here instead?)
2158
765561
  to[cr].mark(c.mark());
2159
765561
  if (to[cr].removable())         to[cr].activity() = c.activity();
2160
629708
  else if (to[cr].has_extra()) to[cr].calcAbstraction();
2161
}
2162
2163
1930091
inline bool Solver::withinBudget(Resource r) const
2164
{
2165
1930091
  Assert(d_proxy);
2166
  // spendResource sets async_interrupt or throws UnsafeInterruptException
2167
  // depending on whether hard-limit is enabled
2168
1930091
  d_proxy->spendResource(r);
2169
2170
1930091
  bool within_budget =
2171
3860182
      !asynch_interrupt && (conflict_budget < 0 || conflicts < conflict_budget)
2172
3860182
      && (propagation_budget < 0 || propagations < propagation_budget);
2173
1930091
  return within_budget;
2174
}
2175
2176
128
SatProofManager* Solver::getProofManager()
2177
{
2178
128
  return isProofEnabled() ? d_pfManager.get() : nullptr;
2179
}
2180
2181
43
std::shared_ptr<ProofNode> Solver::getProof()
2182
{
2183
43
  return isProofEnabled() ? d_pfManager->getProof() : nullptr;
2184
}
2185
2186
9607075
bool Solver::isProofEnabled() const { return d_pfManager != nullptr; }
2187
2188
9606904
bool Solver::needProof() const
2189
{
2190
9606904
  return isProofEnabled()
2191
1534
         && options::unsatCoresMode() != options::UnsatCoresMode::ASSUMPTIONS
2192
9608438
         && options::unsatCoresMode() != options::UnsatCoresMode::PP_ONLY;
2193
}
2194
2195
}  // namespace Minisat
2196
22746
}  // namespace cvc5