GCC Code Coverage Report
Directory: . Exec Total Coverage
File: src/theory/strings/solver_state.cpp Lines: 100 104 96.2 %
Date: 2021-11-05 Branches: 154 332 46.4 %

Line Exec Source
1
/******************************************************************************
2
 * Top contributors (to current version):
3
 *   Andrew Reynolds, Tianyi Liang, Mathias Preiner
4
 *
5
 * This file is part of the cvc5 project.
6
 *
7
 * Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
8
 * in the top-level source directory and their institutional affiliations.
9
 * All rights reserved.  See the file COPYING in the top-level source
10
 * directory for licensing information.
11
 * ****************************************************************************
12
 *
13
 * Implementation of the solver state of the theory of strings.
14
 */
15
16
#include "theory/strings/solver_state.h"
17
18
#include "theory/rewriter.h"
19
#include "theory/strings/theory_strings_utils.h"
20
#include "theory/strings/word.h"
21
#include "util/rational.h"
22
23
using namespace std;
24
using namespace cvc5::context;
25
using namespace cvc5::kind;
26
27
namespace cvc5 {
28
namespace theory {
29
namespace strings {
30
31
15271
SolverState::SolverState(Env& env, Valuation& v)
32
    : TheoryState(env, v),
33
      d_eeDisequalities(env.getContext()),
34
      d_pendingConflictSet(env.getContext(), false),
35
15271
      d_pendingConflict(InferenceId::UNKNOWN)
36
{
37
15271
  d_zero = NodeManager::currentNM()->mkConst(Rational(0));
38
15271
  d_false = NodeManager::currentNM()->mkConst(false);
39
15271
}
40
41
30532
SolverState::~SolverState()
42
{
43
71507
  for (std::pair<const Node, EqcInfo*>& it : d_eqcInfo)
44
  {
45
56241
    delete it.second;
46
  }
47
15266
}
48
49
13992
const context::CDList<Node>& SolverState::getDisequalityList() const
50
{
51
13992
  return d_eeDisequalities;
52
}
53
54
104170
void SolverState::addDisequality(TNode t1, TNode t2)
55
{
56
104170
  d_eeDisequalities.push_back(t1.eqNode(t2));
57
104170
}
58
59
2520300
EqcInfo* SolverState::getOrMakeEqcInfo(Node eqc, bool doMake)
60
{
61
2520300
  std::map<Node, EqcInfo*>::iterator eqc_i = d_eqcInfo.find(eqc);
62
2520300
  if (eqc_i != d_eqcInfo.end())
63
  {
64
1782421
    return eqc_i->second;
65
  }
66
737879
  if (doMake)
67
  {
68
56241
    EqcInfo* ei = new EqcInfo(d_env.getContext());
69
56241
    d_eqcInfo[eqc] = ei;
70
56241
    return ei;
71
  }
72
681638
  return nullptr;
73
}
74
75
TheoryModel* SolverState::getModel() { return d_valuation.getModel(); }
76
77
1147628
Node SolverState::getLengthExp(Node t, std::vector<Node>& exp, Node te)
78
{
79
1147628
  Assert(areEqual(t, te));
80
2295256
  Node lt = utils::mkNLength(te);
81
1147628
  if (hasTerm(lt))
82
  {
83
    // use own length if it exists, leads to shorter explanation
84
1145180
    return lt;
85
  }
86
2448
  EqcInfo* ei = getOrMakeEqcInfo(t, false);
87
4896
  Node lengthTerm = ei ? ei->d_lengthTerm : Node::null();
88
2448
  if (lengthTerm.isNull())
89
  {
90
    // typically shouldnt be necessary
91
2406
    lengthTerm = t;
92
  }
93
  else
94
  {
95
42
    lengthTerm = lengthTerm[0];
96
  }
97
4896
  Debug("strings") << "SolverState::getLengthTerm " << t << " is " << lengthTerm
98
2448
                   << std::endl;
99
2448
  if (te != lengthTerm)
100
  {
101
42
    exp.push_back(te.eqNode(lengthTerm));
102
  }
103
  return Rewriter::rewrite(
104
2448
      NodeManager::currentNM()->mkNode(STRING_LENGTH, lengthTerm));
105
}
106
107
1147624
Node SolverState::getLength(Node t, std::vector<Node>& exp)
108
{
109
1147624
  return getLengthExp(t, exp, t);
110
}
111
112
17354
Node SolverState::explainNonEmpty(Node s)
113
{
114
17354
  Assert(s.getType().isStringLike());
115
34708
  Node emp = Word::mkEmptyWord(s.getType());
116
17354
  if (areDisequal(s, emp))
117
  {
118
7480
    return s.eqNode(emp).negate();
119
  }
120
19748
  Node sLen = utils::mkNLength(s);
121
9874
  if (areDisequal(sLen, d_zero))
122
  {
123
9863
    return sLen.eqNode(d_zero).negate();
124
  }
125
11
  return Node::null();
126
}
127
128
948512
bool SolverState::isEqualEmptyWord(Node s, Node& emps)
129
{
130
1897024
  Node sr = getRepresentative(s);
131
948512
  if (sr.isConst())
132
  {
133
247358
    if (Word::getLength(sr) == 0)
134
    {
135
34302
      emps = sr;
136
34302
      return true;
137
    }
138
  }
139
914210
  return false;
140
}
141
142
796
void SolverState::setPendingMergeConflict(Node conf, InferenceId id)
143
{
144
796
  if (d_pendingConflictSet.get())
145
  {
146
    // already set conflict
147
62
    return;
148
  }
149
1468
  InferInfo iiPrefixConf(id);
150
734
  iiPrefixConf.d_conc = d_false;
151
734
  utils::flattenOp(AND, conf, iiPrefixConf.d_premises);
152
734
  setPendingConflict(iiPrefixConf);
153
}
154
155
734
void SolverState::setPendingConflict(InferInfo& ii)
156
{
157
734
  if (!d_pendingConflictSet.get())
158
  {
159
734
    d_pendingConflict = ii;
160
734
    d_pendingConflictSet.set(true);
161
  }
162
734
}
163
164
1071941
bool SolverState::hasPendingConflict() const { return d_pendingConflictSet; }
165
166
617
bool SolverState::getPendingConflict(InferInfo& ii) const
167
{
168
617
  if (d_pendingConflictSet)
169
  {
170
617
    ii = d_pendingConflict;
171
617
    return true;
172
  }
173
  return false;
174
}
175
176
8430
std::pair<bool, Node> SolverState::entailmentCheck(options::TheoryOfMode mode,
177
                                                   TNode lit)
178
{
179
8430
  return d_valuation.entailmentCheck(mode, lit);
180
}
181
182
25069
void SolverState::separateByLength(
183
    const std::vector<Node>& n,
184
    std::map<TypeNode, std::vector<std::vector<Node>>>& cols,
185
    std::map<TypeNode, std::vector<Node>>& lts)
186
{
187
25069
  unsigned leqc_counter = 0;
188
  // map (length, type) to an equivalence class identifier
189
50138
  std::map<std::pair<Node, TypeNode>, unsigned> eqc_to_leqc;
190
  // backwards map
191
50138
  std::map<unsigned, std::pair<Node, TypeNode>> leqc_to_eqc;
192
  // Collection of eqc for each identifier. Notice that some identifiers may
193
  // not have an associated length in the mappings above, if the length of
194
  // an equivalence class is unknown.
195
50138
  std::map<unsigned, std::vector<Node> > eqc_to_strings;
196
105172
  for (const Node& eqc : n)
197
  {
198
80103
    Assert(d_ee->getRepresentative(eqc) == eqc);
199
160206
    TypeNode tnEqc = eqc.getType();
200
80103
    EqcInfo* ei = getOrMakeEqcInfo(eqc, false);
201
160206
    Node lt = ei ? ei->d_lengthTerm : Node::null();
202
80103
    if (!lt.isNull())
203
    {
204
160206
      Node r = d_ee->getRepresentative(lt);
205
160206
      std::pair<Node, TypeNode> lkey(r, tnEqc);
206
80103
      if (eqc_to_leqc.find(lkey) == eqc_to_leqc.end())
207
      {
208
50729
        eqc_to_leqc[lkey] = leqc_counter;
209
50729
        leqc_to_eqc[leqc_counter] = lkey;
210
50729
        leqc_counter++;
211
      }
212
80103
      eqc_to_strings[eqc_to_leqc[lkey]].push_back(eqc);
213
    }
214
    else
215
    {
216
      eqc_to_strings[leqc_counter].push_back(eqc);
217
      leqc_counter++;
218
    }
219
  }
220
75798
  for (const std::pair<const unsigned, std::vector<Node> >& p : eqc_to_strings)
221
  {
222
50729
    Assert(!p.second.empty());
223
    // get the type of the collection
224
101458
    TypeNode stn = p.second[0].getType();
225
50729
    cols[stn].emplace_back(p.second.begin(), p.second.end());
226
50729
    lts[stn].push_back(leqc_to_eqc[p.first].first);
227
  }
228
25069
}
229
230
}  // namespace strings
231
}  // namespace theory
232
31125
}  // namespace cvc5