GCC Code Coverage Report
Directory: . Exec Total Coverage
File: src/theory/quantifiers/sygus_inst.cpp Lines: 213 258 82.6 %
Date: 2021-11-06 Branches: 370 998 37.1 %

Line Exec Source
1
/******************************************************************************
2
 * Top contributors (to current version):
3
 *   Mathias Preiner, Andrew Reynolds, Aina Niemetz
4
 *
5
 * This file is part of the cvc5 project.
6
 *
7
 * Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
8
 * in the top-level source directory and their institutional affiliations.
9
 * All rights reserved.  See the file COPYING in the top-level source
10
 * directory for licensing information.
11
 * ****************************************************************************
12
 *
13
 * SyGuS instantiator class.
14
 */
15
16
#include "theory/quantifiers/sygus_inst.h"
17
18
#include <sstream>
19
#include <unordered_set>
20
21
#include "expr/node_algorithm.h"
22
#include "expr/skolem_manager.h"
23
#include "options/quantifiers_options.h"
24
#include "theory/bv/theory_bv_utils.h"
25
#include "theory/datatypes/sygus_datatype_utils.h"
26
#include "theory/quantifiers/first_order_model.h"
27
#include "theory/quantifiers/sygus/sygus_enumerator.h"
28
#include "theory/quantifiers/sygus/sygus_grammar_cons.h"
29
#include "theory/quantifiers/sygus/synth_engine.h"
30
#include "theory/quantifiers/term_util.h"
31
#include "theory/rewriter.h"
32
33
namespace cvc5 {
34
namespace theory {
35
namespace quantifiers {
36
37
namespace {
38
39
/**
40
 * Collect maximal ground terms with type tn in node n.
41
 *
42
 * @param n: Node to traverse.
43
 * @param tn: Collects only terms with type tn.
44
 * @param terms: Collected terms.
45
 * @param cache: Caches visited nodes.
46
 * @param skip_quant: Do not traverse quantified formulas (skip quantifiers).
47
 */
48
50
void getMaxGroundTerms(TNode n,
49
                       TypeNode tn,
50
                       std::unordered_set<Node>& terms,
51
                       std::unordered_set<TNode>& cache,
52
                       bool skip_quant = false)
53
{
54
100
  if (options::sygusInstTermSel() != options::SygusInstTermSelMode::MAX
55
50
      && options::sygusInstTermSel() != options::SygusInstTermSelMode::BOTH)
56
  {
57
50
    return;
58
  }
59
60
  Trace("sygus-inst-term") << "Find maximal terms with type " << tn
61
                           << " in: " << n << std::endl;
62
63
  Node cur;
64
  std::vector<TNode> visit;
65
66
  visit.push_back(n);
67
  do
68
  {
69
    cur = visit.back();
70
    visit.pop_back();
71
72
    if (cache.find(cur) != cache.end())
73
    {
74
      continue;
75
    }
76
    cache.insert(cur);
77
78
    if (expr::hasBoundVar(cur) || cur.getType() != tn)
79
    {
80
      if (!skip_quant || cur.getKind() != kind::FORALL)
81
      {
82
        visit.insert(visit.end(), cur.begin(), cur.end());
83
      }
84
    }
85
    else
86
    {
87
      terms.insert(cur);
88
      Trace("sygus-inst-term") << "  found: " << cur << std::endl;
89
    }
90
  } while (!visit.empty());
91
}
92
93
/*
94
 * Collect minimal ground terms with type tn in node n.
95
 *
96
 * @param n: Node to traverse.
97
 * @param tn: Collects only terms with type tn.
98
 * @param terms: Collected terms.
99
 * @param cache: Caches visited nodes and flags indicating whether a minimal
100
 *               term was already found in a subterm.
101
 * @param skip_quant: Do not traverse quantified formulas (skip quantifiers).
102
 */
103
50
void getMinGroundTerms(TNode n,
104
                       TypeNode tn,
105
                       std::unordered_set<Node>& terms,
106
                       std::unordered_map<TNode, std::pair<bool, bool>>& cache,
107
                       bool skip_quant = false)
108
{
109
100
  if (options::sygusInstTermSel() != options::SygusInstTermSelMode::MIN
110
50
      && options::sygusInstTermSel() != options::SygusInstTermSelMode::BOTH)
111
  {
112
    return;
113
  }
114
115
100
  Trace("sygus-inst-term") << "Find minimal terms with type " << tn
116
50
                           << " in: " << n << std::endl;
117
118
100
  Node cur;
119
100
  std::vector<TNode> visit;
120
121
50
  visit.push_back(n);
122
80213
  do
123
  {
124
80263
    cur = visit.back();
125
80263
    visit.pop_back();
126
127
80263
    auto it = cache.find(cur);
128
80263
    if (it == cache.end())
129
    {
130
10778
      cache.emplace(cur, std::make_pair(false, false));
131
5389
      if (!skip_quant || cur.getKind() != kind::FORALL)
132
      {
133
5389
        visit.push_back(cur);
134
5389
        visit.insert(visit.end(), cur.begin(), cur.end());
135
      }
136
    }
137
    /* up-traversal */
138
74874
    else if (!it->second.first)
139
    {
140
5389
      bool found_min_term = false;
141
142
      /* Check if we found a minimal term in one of the children. */
143
25116
      for (const Node& c : cur)
144
      {
145
23452
        found_min_term |= cache[c].second;
146
23452
        if (found_min_term) break;
147
      }
148
149
      /* If we haven't found a minimal term yet, add this term if it has the
150
       * right type. */
151
5389
      if (cur.getType() == tn && !expr::hasBoundVar(cur) && !found_min_term)
152
      {
153
161
        terms.insert(cur);
154
161
        found_min_term = true;
155
161
        Trace("sygus-inst-term") << "  found: " << cur << std::endl;
156
      }
157
158
5389
      it->second.first = true;
159
5389
      it->second.second = found_min_term;
160
    }
161
80263
  } while (!visit.empty());
162
}
163
164
/*
165
 * Add special values for a given type.
166
 *
167
 * @param tn: The type node.
168
 * @param extra_cons: A map of TypeNode to constants, which are added in
169
 *                    addition to the default grammar.
170
 */
171
132
void addSpecialValues(const TypeNode& tn,
172
                      std::map<TypeNode, std::unordered_set<Node>>& extra_cons)
173
{
174
132
  if (tn.isBitVector())
175
  {
176
6
    uint32_t size = tn.getBitVectorSize();
177
6
    extra_cons[tn].insert(bv::utils::mkOnes(size));
178
6
    extra_cons[tn].insert(bv::utils::mkMinSigned(size));
179
6
    extra_cons[tn].insert(bv::utils::mkMaxSigned(size));
180
  }
181
132
}
182
183
}  // namespace
184
185
34
SygusInst::SygusInst(Env& env,
186
                     QuantifiersState& qs,
187
                     QuantifiersInferenceManager& qim,
188
                     QuantifiersRegistry& qr,
189
34
                     TermRegistry& tr)
190
    : QuantifiersModule(env, qs, qim, qr, tr),
191
34
      d_ce_lemma_added(userContext()),
192
34
      d_global_terms(userContext()),
193
102
      d_notified_assertions(userContext())
194
{
195
34
}
196
197
468
bool SygusInst::needsCheck(Theory::Effort e)
198
{
199
468
  return e >= Theory::EFFORT_LAST_CALL;
200
}
201
202
93
QuantifiersModule::QEffort SygusInst::needsModel(Theory::Effort e)
203
{
204
93
  return QEFFORT_STANDARD;
205
}
206
207
93
void SygusInst::reset_round(Theory::Effort e)
208
{
209
93
  d_active_quant.clear();
210
93
  d_inactive_quant.clear();
211
212
93
  FirstOrderModel* model = d_treg.getModel();
213
93
  uint32_t nasserted = model->getNumAssertedQuantifiers();
214
215
213
  for (uint32_t i = 0; i < nasserted; ++i)
216
  {
217
240
    Node q = model->getAssertedQuantifier(i);
218
219
120
    if (model->isQuantifierActive(q))
220
    {
221
97
      d_active_quant.insert(q);
222
194
      Node lit = getCeLiteral(q);
223
224
      bool value;
225
97
      if (d_qstate.getValuation().hasSatValue(lit, value))
226
      {
227
97
        if (!value)
228
        {
229
2
          if (!d_qstate.getValuation().isDecision(lit))
230
          {
231
2
            model->setQuantifierActive(q, false);
232
2
            d_active_quant.erase(q);
233
2
            d_inactive_quant.insert(q);
234
2
            Trace("sygus-inst") << "Set inactive: " << q << std::endl;
235
          }
236
        }
237
      }
238
    }
239
  }
240
93
}
241
242
192
void SygusInst::check(Theory::Effort e, QEffort quant_e)
243
{
244
192
  Trace("sygus-inst") << "Check " << e << ", " << quant_e << std::endl;
245
246
192
  if (quant_e != QEFFORT_STANDARD) return;
247
248
93
  FirstOrderModel* model = d_treg.getModel();
249
93
  Instantiate* inst = d_qim.getInstantiate();
250
93
  TermDbSygus* db = d_treg.getTermDatabaseSygus();
251
186
  SygusExplain syexplain(db);
252
93
  NodeManager* nm = NodeManager::currentNM();
253
93
  options::SygusInstMode mode = options::sygusInstMode();
254
255
188
  for (const Node& q : d_active_quant)
256
  {
257
95
    const std::vector<Node>& inst_constants = d_inst_constants.at(q);
258
95
    const std::vector<Node>& dt_evals = d_var_eval.at(q);
259
95
    Assert(inst_constants.size() == dt_evals.size());
260
95
    Assert(inst_constants.size() == q[0].getNumChildren());
261
262
190
    std::vector<Node> terms, values, eval_unfold_lemmas;
263
853
    for (size_t i = 0, size = q[0].getNumChildren(); i < size; ++i)
264
    {
265
1516
      Node dt_var = inst_constants[i];
266
1516
      Node dt_eval = dt_evals[i];
267
1516
      Node value = model->getValue(dt_var);
268
1516
      Node t = datatypes::utils::sygusToBuiltin(value);
269
758
      terms.push_back(t);
270
758
      values.push_back(value);
271
272
1516
      std::vector<Node> exp;
273
758
      syexplain.getExplanationForEquality(dt_var, value, exp);
274
1516
      Node lem;
275
758
      if (exp.empty())
276
      {
277
        lem = dt_eval.eqNode(t);
278
      }
279
      else
280
      {
281
2274
        lem = nm->mkNode(kind::IMPLIES,
282
1516
                         exp.size() == 1 ? exp[0] : nm->mkNode(kind::AND, exp),
283
1516
                         dt_eval.eqNode(t));
284
      }
285
758
      eval_unfold_lemmas.push_back(lem);
286
    }
287
288
95
    if (mode == options::SygusInstMode::PRIORITY_INST)
289
    {
290
190
      if (!inst->addInstantiation(q,
291
                                  terms,
292
                                  InferenceId::QUANTIFIERS_INST_SYQI,
293
190
                                  nm->mkNode(kind::SEXPR, values)))
294
      {
295
49
        sendEvalUnfoldLemmas(eval_unfold_lemmas);
296
      }
297
    }
298
    else if (mode == options::SygusInstMode::PRIORITY_EVAL)
299
    {
300
      if (!sendEvalUnfoldLemmas(eval_unfold_lemmas))
301
      {
302
        inst->addInstantiation(q,
303
                               terms,
304
                               InferenceId::QUANTIFIERS_INST_SYQI,
305
                               nm->mkNode(kind::SEXPR, values));
306
      }
307
    }
308
    else
309
    {
310
      Assert(mode == options::SygusInstMode::INTERLEAVE);
311
      inst->addInstantiation(q,
312
                             terms,
313
                             InferenceId::QUANTIFIERS_INST_SYQI,
314
                             nm->mkNode(kind::SEXPR, values));
315
      sendEvalUnfoldLemmas(eval_unfold_lemmas);
316
    }
317
  }
318
}
319
320
49
bool SygusInst::sendEvalUnfoldLemmas(const std::vector<Node>& lemmas)
321
{
322
49
  bool added_lemma = false;
323
485
  for (const Node& lem : lemmas)
324
  {
325
436
    Trace("sygus-inst") << "Evaluation unfolding: " << lem << std::endl;
326
436
    added_lemma |=
327
872
        d_qim.addPendingLemma(lem, InferenceId::QUANTIFIERS_SYQI_EVAL_UNFOLD);
328
  }
329
49
  return added_lemma;
330
}
331
332
2
bool SygusInst::checkCompleteFor(Node q)
333
{
334
2
  return d_inactive_quant.find(q) != d_inactive_quant.end();
335
}
336
337
44
void SygusInst::registerQuantifier(Node q)
338
{
339
44
  Assert(d_ce_lemmas.find(q) == d_ce_lemmas.end());
340
341
44
  Trace("sygus-inst") << "Register " << q << std::endl;
342
343
88
  std::map<TypeNode, std::unordered_set<Node>> extra_cons;
344
88
  std::map<TypeNode, std::unordered_set<Node>> exclude_cons;
345
88
  std::map<TypeNode, std::unordered_set<Node>> include_cons;
346
88
  std::unordered_set<Node> term_irrelevant;
347
348
  /* Collect relevant local ground terms for each variable type. */
349
88
  if (options::sygusInstScope() == options::SygusInstScope::IN
350
44
      || options::sygusInstScope() == options::SygusInstScope::BOTH)
351
  {
352
88
    std::unordered_map<TypeNode, std::unordered_set<Node>> relevant_terms;
353
176
    for (const Node& var : q[0])
354
    {
355
264
      TypeNode tn = var.getType();
356
357
      /* Collect relevant ground terms for type tn. */
358
132
      if (relevant_terms.find(tn) == relevant_terms.end())
359
      {
360
100
        std::unordered_set<Node> terms;
361
100
        std::unordered_set<TNode> cache_max;
362
100
        std::unordered_map<TNode, std::pair<bool, bool>> cache_min;
363
364
50
        getMinGroundTerms(q, tn, terms, cache_min);
365
50
        getMaxGroundTerms(q, tn, terms, cache_max);
366
50
        relevant_terms.emplace(tn, terms);
367
      }
368
369
      /* Add relevant ground terms to grammar. */
370
132
      auto& terms = relevant_terms[tn];
371
629
      for (const auto& t : terms)
372
      {
373
994
        TypeNode ttn = t.getType();
374
497
        extra_cons[ttn].insert(t);
375
497
        Trace("sygus-inst") << "Adding (local) extra cons: " << t << std::endl;
376
      }
377
    }
378
  }
379
380
  /* Collect relevant global ground terms for each variable type. */
381
88
  if (options::sygusInstScope() == options::SygusInstScope::OUT
382
44
      || options::sygusInstScope() == options::SygusInstScope::BOTH)
383
  {
384
    for (const Node& var : q[0])
385
    {
386
      TypeNode tn = var.getType();
387
388
      /* Collect relevant ground terms for type tn. */
389
      if (d_global_terms.find(tn) == d_global_terms.end())
390
      {
391
        std::unordered_set<Node> terms;
392
        std::unordered_set<TNode> cache_max;
393
        std::unordered_map<TNode, std::pair<bool, bool>> cache_min;
394
395
        for (const Node& a : d_notified_assertions)
396
        {
397
          getMinGroundTerms(a, tn, terms, cache_min, true);
398
          getMaxGroundTerms(a, tn, terms, cache_max, true);
399
        }
400
        d_global_terms.insert(tn, terms);
401
      }
402
403
      /* Add relevant ground terms to grammar. */
404
      auto it = d_global_terms.find(tn);
405
      if (it != d_global_terms.end())
406
      {
407
        for (const auto& t : (*it).second)
408
        {
409
          TypeNode ttn = t.getType();
410
          extra_cons[ttn].insert(t);
411
          Trace("sygus-inst")
412
              << "Adding (global) extra cons: " << t << std::endl;
413
        }
414
      }
415
    }
416
  }
417
418
  /* Construct grammar for each bound variable of 'q'. */
419
44
  Trace("sygus-inst") << "Process variables of " << q << std::endl;
420
88
  std::vector<TypeNode> types;
421
176
  for (const Node& var : q[0])
422
  {
423
132
    addSpecialValues(var.getType(), extra_cons);
424
264
    TypeNode tn = CegGrammarConstructor::mkSygusDefaultType(var.getType(),
425
264
                                                            Node(),
426
264
                                                            var.toString(),
427
                                                            extra_cons,
428
                                                            exclude_cons,
429
                                                            include_cons,
430
264
                                                            term_irrelevant);
431
132
    types.push_back(tn);
432
433
264
    Trace("sygus-inst") << "Construct (default) datatype for " << var
434
132
                        << std::endl
435
132
                        << tn << std::endl;
436
  }
437
438
44
  registerCeLemma(q, types);
439
44
}
440
441
/* Construct grammars for all bound variables of quantifier 'q'. Currently,
442
 * we use the default grammar of the variable's type.
443
 */
444
44
void SygusInst::preRegisterQuantifier(Node q)
445
{
446
44
  Trace("sygus-inst") << "preRegister " << q << std::endl;
447
44
  addCeLemma(q);
448
44
}
449
450
32
void SygusInst::ppNotifyAssertions(const std::vector<Node>& assertions)
451
{
452
112
  for (const Node& a : assertions)
453
  {
454
80
    d_notified_assertions.insert(a);
455
  }
456
32
}
457
458
/*****************************************************************************/
459
/* private methods                                                           */
460
/*****************************************************************************/
461
462
141
Node SygusInst::getCeLiteral(Node q)
463
{
464
141
  auto it = d_ce_lits.find(q);
465
141
  if (it != d_ce_lits.end())
466
  {
467
97
    return it->second;
468
  }
469
470
44
  NodeManager* nm = NodeManager::currentNM();
471
44
  SkolemManager* sm = nm->getSkolemManager();
472
88
  Node sk = sm->mkDummySkolem("CeLiteral", nm->booleanType());
473
88
  Node lit = d_qstate.getValuation().ensureLiteral(sk);
474
44
  d_ce_lits[q] = lit;
475
44
  return lit;
476
}
477
478
44
void SygusInst::registerCeLemma(Node q, std::vector<TypeNode>& types)
479
{
480
44
  Assert(q[0].getNumChildren() == types.size());
481
44
  Assert(d_ce_lemmas.find(q) == d_ce_lemmas.end());
482
44
  Assert(d_inst_constants.find(q) == d_inst_constants.end());
483
44
  Assert(d_var_eval.find(q) == d_var_eval.end());
484
485
44
  Trace("sygus-inst") << "Register CE Lemma for " << q << std::endl;
486
487
  /* Generate counterexample lemma for 'q'. */
488
44
  NodeManager* nm = NodeManager::currentNM();
489
44
  TermDbSygus* db = d_treg.getTermDatabaseSygus();
490
491
  /* For each variable x_i of \forall x_i . P[x_i], create a fresh datatype
492
   * instantiation constant ic_i with type types[i] and wrap each ic_i in
493
   * DT_SYGUS_EVAL(ic_i), which will be used to instantiate x_i. */
494
88
  std::vector<Node> evals;
495
88
  std::vector<Node> inst_constants;
496
176
  for (size_t i = 0, size = types.size(); i < size; ++i)
497
  {
498
264
    TypeNode tn = types[i];
499
264
    TNode var = q[0][i];
500
501
    /* Create the instantiation constant and set attribute accordingly. */
502
264
    Node ic = nm->mkInstConstant(tn);
503
    InstConstantAttribute ica;
504
132
    ic.setAttribute(ica, q);
505
132
    Trace("sygus-inst") << "Create " << ic << " for " << var << std::endl;
506
507
132
    db->registerEnumerator(ic, ic, nullptr, ROLE_ENUM_MULTI_SOLUTION);
508
509
264
    std::vector<Node> args = {ic};
510
264
    Node svl = tn.getDType().getSygusVarList();
511
132
    if (!svl.isNull())
512
    {
513
      args.insert(args.end(), svl.begin(), svl.end());
514
    }
515
264
    Node eval = nm->mkNode(kind::DT_SYGUS_EVAL, args);
516
517
132
    inst_constants.push_back(ic);
518
132
    evals.push_back(eval);
519
  }
520
521
44
  d_inst_constants.emplace(q, inst_constants);
522
44
  d_var_eval.emplace(q, evals);
523
524
88
  Node lit = getCeLiteral(q);
525
44
  d_qim.addPendingPhaseRequirement(lit, true);
526
527
  /* The decision strategy for quantified formula 'q' ensures that its
528
   * counterexample literal is decided on first. It is user-context dependent.
529
   */
530
44
  Assert(d_dstrat.find(q) == d_dstrat.end());
531
  DecisionStrategy* ds = new DecisionStrategySingleton(
532
44
      d_env, "CeLiteral", lit, d_qstate.getValuation());
533
534
44
  d_dstrat[q].reset(ds);
535
44
  d_qim.getDecisionManager()->registerStrategy(
536
      DecisionManager::STRAT_QUANT_CEGQI_FEASIBLE, ds);
537
538
  /* Add counterexample lemma (lit => ~P[x_i/eval_i]) */
539
  Node body =
540
88
      q[1].substitute(q[0].begin(), q[0].end(), evals.begin(), evals.end());
541
88
  Node lem = nm->mkNode(kind::OR, lit.negate(), body.negate());
542
543
44
  d_ce_lemmas.emplace(std::make_pair(q, lem));
544
44
  Trace("sygus-inst") << "Register CE Lemma: " << lem << std::endl;
545
44
}
546
547
44
void SygusInst::addCeLemma(Node q)
548
{
549
44
  Assert(d_ce_lemmas.find(q) != d_ce_lemmas.end());
550
551
  /* Already added in previous contexts. */
552
44
  if (d_ce_lemma_added.find(q) != d_ce_lemma_added.end()) return;
553
554
88
  Node lem = d_ce_lemmas[q];
555
44
  d_qim.addPendingLemma(lem, InferenceId::QUANTIFIERS_SYQI_CEX);
556
44
  d_ce_lemma_added.insert(q);
557
44
  Trace("sygus-inst") << "Add CE Lemma: " << lem << std::endl;
558
}
559
560
}  // namespace quantifiers
561
}  // namespace theory
562
31137
}  // namespace cvc5