GCC Code Coverage Report
Directory: . Exec Total Coverage
File: src/theory/bags/inference_generator.h Lines: 1 1 100.0 %
Date: 2021-11-07 Branches: 0 0 0.0 %

Line Exec Source
1
/******************************************************************************
2
 * Top contributors (to current version):
3
 *   Mudathir Mohamed, Andrew Reynolds, Gereon Kremer
4
 *
5
 * This file is part of the cvc5 project.
6
 *
7
 * Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
8
 * in the top-level source directory and their institutional affiliations.
9
 * All rights reserved.  See the file COPYING in the top-level source
10
 * directory for licensing information.
11
 * ****************************************************************************
12
 *
13
 * Inference generator utility.
14
 */
15
16
#include "cvc5_private.h"
17
18
#ifndef CVC5__THEORY__BAGS__INFERENCE_GENERATOR_H
19
#define CVC5__THEORY__BAGS__INFERENCE_GENERATOR_H
20
21
#include "expr/node.h"
22
#include "infer_info.h"
23
24
namespace cvc5 {
25
namespace theory {
26
namespace bags {
27
28
class InferenceManager;
29
class SolverState;
30
31
/**
32
 * An inference generator class. This class is used by the core solver to
33
 * generate lemmas
34
 */
35
30536
class InferenceGenerator
36
{
37
 public:
38
  InferenceGenerator(SolverState* state, InferenceManager* im);
39
40
  /**
41
   * @param A is a bag of type (Bag E)
42
   * @param e is a node of type E
43
   * @return an inference that represents the following implication
44
   * (=>
45
   *   true
46
   *   (>= (bag.count e A) 0)
47
   */
48
  InferInfo nonNegativeCount(Node n, Node e);
49
50
  /**
51
   * @param n is (bag x c) of type (Bag E)
52
   * @param e is a node of type E
53
   * @return an inference that represents the following cases:
54
   * 1- e, x are in the same equivalent class, then we infer:
55
   *    (= (bag.count e skolem) (ite (>= c 1) c 0)))
56
   * 2- e, x are known to be disequal, then we infer:
57
   *    (= (bag.count e skolem) 0))
58
   * 3- if neither holds, we infer:
59
   *    (= (bag.count e skolem) (ite (and (= e x) (>= c 1)) c 0)))
60
   * where skolem = (bag x c) is a fresh variable
61
   */
62
  InferInfo mkBag(Node n, Node e);
63
  /**
64
   * @param n is (= A B) where A, B are bags of type (Bag E), and
65
   * (not (= A B)) is an assertion in the equality engine
66
   * @return an inference that represents the following implication
67
   * (=>
68
   *   (not (= A B))
69
   *   (not (= (count e A) (count e B))))
70
   *   where e is a fresh skolem of type E.
71
   */
72
  InferInfo bagDisequality(Node n);
73
  /**
74
   * @param n is (as emptybag (Bag E))
75
   * @param e is a node of Type E
76
   * @return an inference that represents the following implication
77
   * (=>
78
   *   true
79
   *   (= 0 (count e skolem)))
80
   *   where skolem = (as emptybag (Bag String))
81
   */
82
  InferInfo empty(Node n, Node e);
83
  /**
84
   * @param n is (union_disjoint A B) where A, B are bags of type (Bag E)
85
   * @param e is a node of Type E
86
   * @return an inference that represents the following implication
87
   * (=>
88
   *   true
89
   *   (= (count e skolem)
90
   *      (+ (count e A) (count e B))))
91
   *  where skolem is a fresh variable equals (union_disjoint A B)
92
   */
93
  InferInfo unionDisjoint(Node n, Node e);
94
  /**
95
   * @param n is (union_disjoint A B) where A, B are bags of type (Bag E)
96
   * @param e is a node of Type E
97
   * @return an inference that represents the following implication
98
   * (=>
99
   *   true
100
   *   (=
101
   *     (count e skolem)
102
   *     (ite
103
   *       (> (count e A) (count e B))
104
   *       (count e A)
105
   *       (count e B)))))
106
   * where skolem is a fresh variable equals (union_max A B)
107
   */
108
  InferInfo unionMax(Node n, Node e);
109
  /**
110
   * @param n is (intersection_min A B) where A, B are bags of type (Bag E)
111
   * @param e is a node of Type E
112
   * @return an inference that represents the following implication
113
   * (=>
114
   *   true
115
   *   (=
116
   *     (count e skolem)
117
   *     (ite(
118
   *       (< (count e A) (count e B))
119
   *       (count e A)
120
   *       (count e B)))))
121
   * where skolem is a fresh variable equals (intersection_min A B)
122
   */
123
  InferInfo intersection(Node n, Node e);
124
  /**
125
   * @param n is (difference_subtract A B) where A, B are bags of type (Bag E)
126
   * @param e is a node of Type E
127
   * @return an inference that represents the following implication
128
   * (=>
129
   *   true
130
   *   (=
131
   *     (count e skolem)
132
   *     (ite
133
   *       (>= (count e A) (count e B))
134
   *       (- (count e A) (count e B))
135
   *       0))))
136
   * where skolem is a fresh variable equals (difference_subtract A B)
137
   */
138
  InferInfo differenceSubtract(Node n, Node e);
139
  /**
140
   * @param n is (difference_remove A B) where A, B are bags of type (Bag E)
141
   * @param e is a node of Type E
142
   * @return an inference that represents the following implication
143
   * (=>
144
   *   true
145
   *   (=
146
   *     (count e skolem)
147
   *     (ite
148
   *       (<= (count e B) 0)
149
   *       (count e A)
150
   *       0))))
151
   * where skolem is a fresh variable equals (difference_remove A B)
152
   */
153
  InferInfo differenceRemove(Node n, Node e);
154
  /**
155
   * @param n is (duplicate_removal A) where A is a bag of type (Bag E)
156
   * @param e is a node of Type E
157
   * @return an inference that represents the following implication
158
   * (=>
159
   *   true
160
   *   (=
161
   *    (count e skolem)
162
   *    (ite (>= (count e A) 1) 1 0))))
163
   * where skolem is a fresh variable equals (duplicate_removal A)
164
   */
165
  InferInfo duplicateRemoval(Node n, Node e);
166
  /**
167
   * @param n is (bag.map f A) where f is a function (-> E T), A a bag of type
168
   * (Bag E)
169
   * @param e is a node of Type E
170
   * @return an inference that represents the following implication
171
   * (and
172
   *   (= (sum 0) 0)
173
   *   (= (sum preImageSize) (bag.count e skolem))
174
   *   (>= preImageSize 0)
175
   *   (forall ((i Int))
176
   *          (let ((uf_i (uf i)))
177
   *            (let ((count_uf_i (bag.count uf_i A)))
178
   *              (=>
179
   *               (and (>= i 1) (<= i preImageSize))
180
   *               (and
181
   *                 (= (f uf_i) e)
182
   *                 (>= count_uf_i 1)
183
   *                 (= (sum i) (+ (sum (- i 1)) count_uf_i))
184
   *                 (forall ((j Int))
185
   *                   (or
186
   *                     (not (and (< i j) (<= j preImageSize)))
187
   *                     (not (= (uf i) (uf j)))) )
188
   *                 ))))))
189
   * where uf: Int -> E is an uninterpreted function from integers to the
190
   * type of the elements of A
191
   * preImageSize is the cardinality of the distinct elements in A that are
192
   * mapped to e by function f (i.e., preimage of {e})
193
   * sum: Int -> Int is a function that aggregates the multiplicities of the
194
   * preimage of e,
195
   * and skolem is a fresh variable equals (bag.map f A))
196
   */
197
  std::tuple<InferInfo, Node, Node> mapDownwards(Node n, Node e);
198
199
  /**
200
   * @param n is (bag.map f A) where f is a function (-> E T), A a bag of type
201
   * (Bag E)
202
   * @param uf is an uninterpreted function Int -> E
203
   * @param preImageSize is the cardinality of the distinct elements in A that
204
   * are mapped to y by function f (i.e., preimage of {y})
205
   * @param y is an element of type T
206
   * @param e is an element of type E
207
   * @return an inference that represents the following implication
208
   * (=>
209
   *   (>= (bag.count x A) 1)
210
   *   (or
211
   *     (not (= (f x) y)
212
   *     (and
213
   *       (>= skolem 1)
214
   *       (<= skolem preImageSize)
215
   *       (= (uf skolem) x)))))
216
   * where skolem is a fresh variable
217
   */
218
  InferInfo mapUpwards(Node n, Node uf, Node preImageSize, Node y, Node x);
219
220
  /**
221
   * @param element of type T
222
   * @param bag of type (bag T)
223
   * @return  a count term (bag.count element bag)
224
   */
225
  Node getMultiplicityTerm(Node element, Node bag);
226
227
 private:
228
  /** generate skolem variable for node n and add it to inferInfo */
229
  Node getSkolem(Node& n, InferInfo& inferInfo);
230
231
  NodeManager* d_nm;
232
  SkolemManager* d_sm;
233
  SolverState* d_state;
234
  /** Pointer to the inference manager */
235
  InferenceManager* d_im;
236
  /** Commonly used constants */
237
  Node d_true;
238
  Node d_zero;
239
  Node d_one;
240
};
241
242
}  // namespace bags
243
}  // namespace theory
244
}  // namespace cvc5
245
246
#endif /* CVC5__THEORY__BAGS__INFERENCE_GENERATOR_H */