GCC Code Coverage Report
Directory: . Exec Total Coverage
File: src/theory/uf/ho_extension.cpp Lines: 192 248 77.4 %
Date: 2021-11-07 Branches: 402 1036 38.8 %

Line Exec Source
1
/******************************************************************************
2
 * Top contributors (to current version):
3
 *   Andrew Reynolds, Gereon Kremer, Mathias Preiner
4
 *
5
 * This file is part of the cvc5 project.
6
 *
7
 * Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
8
 * in the top-level source directory and their institutional affiliations.
9
 * All rights reserved.  See the file COPYING in the top-level source
10
 * directory for licensing information.
11
 * ****************************************************************************
12
 *
13
 * Implementation of the higher-order extension of TheoryUF.
14
 */
15
16
#include "theory/uf/ho_extension.h"
17
18
#include "expr/node_algorithm.h"
19
#include "expr/skolem_manager.h"
20
#include "options/uf_options.h"
21
#include "theory/theory_model.h"
22
#include "theory/uf/theory_uf_rewriter.h"
23
24
using namespace std;
25
using namespace cvc5::kind;
26
27
namespace cvc5 {
28
namespace theory {
29
namespace uf {
30
31
238
HoExtension::HoExtension(Env& env,
32
                         TheoryState& state,
33
238
                         TheoryInferenceManager& im)
34
    : EnvObj(env),
35
      d_state(state),
36
      d_im(im),
37
238
      d_extensionality(userContext()),
38
476
      d_uf_std_skolem(userContext())
39
{
40
238
  d_true = NodeManager::currentNM()->mkConst(true);
41
238
}
42
43
744
Node HoExtension::ppRewrite(Node node)
44
{
45
  // convert HO_APPLY to APPLY_UF if fully applied
46
744
  if (node.getKind() == HO_APPLY)
47
  {
48
328
    if (node[0].getType().getNumChildren() == 2)
49
    {
50
119
      Trace("uf-ho") << "uf-ho : expanding definition : " << node << std::endl;
51
238
      Node ret = getApplyUfForHoApply(node);
52
238
      Trace("uf-ho") << "uf-ho : ppRewrite : " << node << " to " << ret
53
119
                     << std::endl;
54
119
      return ret;
55
    }
56
  }
57
625
  return node;
58
}
59
60
361
Node HoExtension::getExtensionalityDeq(TNode deq, bool isCached)
61
{
62
361
  Assert(deq.getKind() == NOT && deq[0].getKind() == EQUAL);
63
361
  Assert(deq[0][0].getType().isFunction());
64
361
  if (isCached)
65
  {
66
276
    std::map<Node, Node>::iterator it = d_extensionality_deq.find(deq);
67
276
    if (it != d_extensionality_deq.end())
68
    {
69
      return it->second;
70
    }
71
  }
72
722
  TypeNode tn = deq[0][0].getType();
73
722
  std::vector<TypeNode> argTypes = tn.getArgTypes();
74
722
  std::vector<Node> skolems;
75
361
  NodeManager* nm = NodeManager::currentNM();
76
361
  SkolemManager* sm = nm->getSkolemManager();
77
770
  for (unsigned i = 0, nargs = argTypes.size(); i < nargs; i++)
78
  {
79
    Node k = sm->mkDummySkolem(
80
818
        "k", argTypes[i], "skolem created for extensionality.");
81
409
    skolems.push_back(k);
82
  }
83
722
  Node t[2];
84
1083
  for (unsigned i = 0; i < 2; i++)
85
  {
86
1444
    std::vector<Node> children;
87
1444
    Node curr = deq[0][i];
88
1868
    while (curr.getKind() == HO_APPLY)
89
    {
90
573
      children.push_back(curr[1]);
91
573
      curr = curr[0];
92
    }
93
722
    children.push_back(curr);
94
722
    std::reverse(children.begin(), children.end());
95
722
    children.insert(children.end(), skolems.begin(), skolems.end());
96
722
    t[i] = nm->mkNode(APPLY_UF, children);
97
  }
98
722
  Node conc = t[0].eqNode(t[1]).negate();
99
361
  if (isCached)
100
  {
101
276
    d_extensionality_deq[deq] = conc;
102
  }
103
361
  return conc;
104
}
105
106
3829
unsigned HoExtension::applyExtensionality(TNode deq)
107
{
108
3829
  Assert(deq.getKind() == NOT && deq[0].getKind() == EQUAL);
109
3829
  Assert(deq[0][0].getType().isFunction());
110
  // apply extensionality
111
3829
  if (d_extensionality.find(deq) == d_extensionality.end())
112
  {
113
276
    d_extensionality.insert(deq);
114
552
    Node conc = getExtensionalityDeq(deq);
115
552
    Node lem = NodeManager::currentNM()->mkNode(OR, deq[0], conc);
116
552
    Trace("uf-ho-lemma") << "uf-ho-lemma : extensionality : " << lem
117
276
                         << std::endl;
118
276
    d_im.lemma(lem, InferenceId::UF_HO_EXTENSIONALITY);
119
276
    return 1;
120
  }
121
3553
  return 0;
122
}
123
124
119
Node HoExtension::getApplyUfForHoApply(Node node)
125
{
126
119
  Assert(node[0].getType().getNumChildren() == 2);
127
238
  std::vector<TNode> args;
128
238
  Node f = TheoryUfRewriter::decomposeHoApply(node, args, true);
129
238
  Node new_f = f;
130
119
  NodeManager* nm = NodeManager::currentNM();
131
119
  SkolemManager* sm = nm->getSkolemManager();
132
119
  if (!TheoryUfRewriter::canUseAsApplyUfOperator(f))
133
  {
134
    NodeNodeMap::const_iterator itus = d_uf_std_skolem.find(f);
135
    if (itus == d_uf_std_skolem.end())
136
    {
137
      std::unordered_set<Node> fvs;
138
      expr::getFreeVariables(f, fvs);
139
      Node lem;
140
      if (!fvs.empty())
141
      {
142
        std::vector<TypeNode> newTypes;
143
        std::vector<Node> vs;
144
        std::vector<Node> nvs;
145
        for (const Node& v : fvs)
146
        {
147
          TypeNode vt = v.getType();
148
          newTypes.push_back(vt);
149
          Node nv = nm->mkBoundVar(vt);
150
          vs.push_back(v);
151
          nvs.push_back(nv);
152
        }
153
        TypeNode ft = f.getType();
154
        std::vector<TypeNode> argTypes = ft.getArgTypes();
155
        TypeNode rangeType = ft.getRangeType();
156
157
        newTypes.insert(newTypes.end(), argTypes.begin(), argTypes.end());
158
        TypeNode nft = nm->mkFunctionType(newTypes, rangeType);
159
        new_f = sm->mkDummySkolem("app_uf", nft);
160
        for (const Node& v : vs)
161
        {
162
          new_f = nm->mkNode(HO_APPLY, new_f, v);
163
        }
164
        Assert(new_f.getType() == f.getType());
165
        Node eq = new_f.eqNode(f);
166
        Node seq = eq.substitute(vs.begin(), vs.end(), nvs.begin(), nvs.end());
167
        lem = nm->mkNode(
168
            FORALL, nm->mkNode(BOUND_VAR_LIST, nvs), seq);
169
      }
170
      else
171
      {
172
        // introduce skolem to make a standard APPLY_UF
173
        new_f = sm->mkDummySkolem("app_uf", f.getType());
174
        lem = new_f.eqNode(f);
175
      }
176
      Trace("uf-ho-lemma")
177
          << "uf-ho-lemma : Skolem definition for apply-conversion : " << lem
178
          << std::endl;
179
      d_im.lemma(lem, InferenceId::UF_HO_APP_CONV_SKOLEM);
180
      d_uf_std_skolem[f] = new_f;
181
    }
182
    else
183
    {
184
      new_f = (*itus).second;
185
    }
186
    // unroll the HO_APPLY, adding to the first argument position
187
    // Note arguments in the vector args begin at position 1.
188
    while (new_f.getKind() == HO_APPLY)
189
    {
190
      args.insert(args.begin() + 1, new_f[1]);
191
      new_f = new_f[0];
192
    }
193
  }
194
119
  Assert(TheoryUfRewriter::canUseAsApplyUfOperator(new_f));
195
119
  args[0] = new_f;
196
119
  Node ret = nm->mkNode(APPLY_UF, args);
197
119
  Assert(ret.getType() == node.getType());
198
238
  return ret;
199
}
200
201
1297
unsigned HoExtension::checkExtensionality(TheoryModel* m)
202
{
203
  // if we are in collect model info, we require looking at the model's
204
  // equality engine, so that we only consider "relevant" (see
205
  // Theory::computeRelevantTerms) function terms.
206
  eq::EqualityEngine* ee =
207
1297
      m != nullptr ? m->getEqualityEngine() : d_state.getEqualityEngine();
208
1297
  NodeManager* nm = NodeManager::currentNM();
209
1297
  unsigned num_lemmas = 0;
210
1297
  bool isCollectModel = (m != nullptr);
211
2594
  Trace("uf-ho") << "HoExtension::checkExtensionality, collectModel="
212
1297
                 << isCollectModel << "..." << std::endl;
213
2594
  std::map<TypeNode, std::vector<Node> > func_eqcs;
214
1297
  eq::EqClassesIterator eqcs_i = eq::EqClassesIterator(ee);
215
1297
  bool hasFunctions = false;
216
42113
  while (!eqcs_i.isFinished())
217
  {
218
40816
    Node eqc = (*eqcs_i);
219
40816
    TypeNode tn = eqc.getType();
220
20408
    if (tn.isFunction())
221
    {
222
3164
      hasFunctions = true;
223
      // if during collect model, must have an infinite type
224
      // if not during collect model, must have a finite type
225
3164
      if (d_env.isFiniteType(tn) != isCollectModel)
226
      {
227
1481
        func_eqcs[tn].push_back(eqc);
228
2962
        Trace("uf-ho-debug")
229
1481
            << "  func eqc : " << tn << " : " << eqc << std::endl;
230
      }
231
    }
232
20408
    ++eqcs_i;
233
  }
234
1297
  if (!options::ufHoExt())
235
  {
236
    // we are not applying extensionality, thus we are incomplete if functions
237
    // are present
238
    if (hasFunctions)
239
    {
240
      d_im.setIncomplete(IncompleteId::UF_HO_EXT_DISABLED);
241
    }
242
    return 0;
243
  }
244
245
2389
  for (std::map<TypeNode, std::vector<Node> >::iterator itf = func_eqcs.begin();
246
2389
       itf != func_eqcs.end();
247
       ++itf)
248
  {
249
2573
    for (unsigned j = 0, sizej = itf->second.size(); j < sizej; j++)
250
    {
251
2370
      for (unsigned k = (j + 1), sizek = itf->second.size(); k < sizek; k++)
252
      {
253
        // if these equivalence classes are not explicitly disequal, do
254
        // extensionality to ensure distinctness. Notice that we always use
255
        // the (local) equality engine for this check via the state, since the
256
        // model's equality engine does not store any disequalities. This is
257
        // an optimization to introduce fewer equalities during model
258
        // construction, since we know such disequalities have already been
259
        // witness via assertions.
260
889
        if (!d_state.areDisequal(itf->second[j], itf->second[k]))
261
        {
262
570
          Node deq = rewrite(itf->second[j].eqNode(itf->second[k]).negate());
263
          // either add to model, or add lemma
264
285
          if (isCollectModel)
265
          {
266
            // Add extentionality disequality to the model.
267
            // It is important that we construct new (unconstrained) variables
268
            // k here, so that we do not generate any inconsistencies.
269
170
            Node edeq = getExtensionalityDeq(deq, false);
270
85
            Assert(edeq.getKind() == NOT && edeq[0].getKind() == EQUAL);
271
            // introducing terms, must add required constraints, e.g. to
272
            // force equalities between APPLY_UF and HO_APPLY terms
273
255
            for (unsigned r = 0; r < 2; r++)
274
            {
275
170
              if (!collectModelInfoHoTerm(edeq[0][r], m))
276
              {
277
                return 1;
278
              }
279
            }
280
170
            Trace("uf-ho-debug")
281
85
                << "Add extensionality deq to model : " << edeq << std::endl;
282
85
            if (!m->assertEquality(edeq[0][0], edeq[0][1], false))
283
            {
284
              Node eq = edeq[0][0].eqNode(edeq[0][1]);
285
              Node lem = nm->mkNode(OR, deq.negate(), eq);
286
              Trace("uf-ho") << "HoExtension: cmi extensionality lemma " << lem
287
                             << std::endl;
288
              d_im.lemma(lem, InferenceId::UF_HO_MODEL_EXTENSIONALITY);
289
              return 1;
290
            }
291
          }
292
          else
293
          {
294
            // apply extensionality lemma
295
200
            num_lemmas += applyExtensionality(deq);
296
          }
297
        }
298
      }
299
    }
300
  }
301
1297
  return num_lemmas;
302
}
303
304
682239
unsigned HoExtension::applyAppCompletion(TNode n)
305
{
306
682239
  Assert(n.getKind() == APPLY_UF);
307
308
682239
  eq::EqualityEngine* ee = d_state.getEqualityEngine();
309
  // must expand into APPLY_HO version if not there already
310
1364478
  Node ret = TheoryUfRewriter::getHoApplyForApplyUf(n);
311
682239
  if (!ee->hasTerm(ret) || !ee->areEqual(ret, n))
312
  {
313
25570
    Node eq = n.eqNode(ret);
314
25570
    Trace("uf-ho-lemma") << "uf-ho-lemma : infer, by apply-expand : " << eq
315
12785
                         << std::endl;
316
25570
    d_im.assertInternalFact(eq,
317
                            true,
318
                            InferenceId::UF_HO_APP_ENCODE,
319
                            PfRule::HO_APP_ENCODE,
320
                            {},
321
12785
                            {n});
322
12785
    return 1;
323
  }
324
1338908
  Trace("uf-ho-debug") << "    ...already have " << ret << " == " << n << "."
325
669454
                       << std::endl;
326
669454
  return 0;
327
}
328
329
13717
unsigned HoExtension::checkAppCompletion()
330
{
331
13717
  Trace("uf-ho") << "HoExtension::checkApplyCompletion..." << std::endl;
332
  // compute the operators that are relevant (those for which an HO_APPLY exist)
333
27434
  std::set<TNode> rlvOp;
334
13717
  eq::EqualityEngine* ee = d_state.getEqualityEngine();
335
13717
  eq::EqClassesIterator eqcs_i = eq::EqClassesIterator(ee);
336
27434
  std::map<TNode, std::vector<Node> > apply_uf;
337
79037
  while (!eqcs_i.isFinished())
338
  {
339
78105
    Node eqc = (*eqcs_i);
340
90890
    Trace("uf-ho-debug") << "  apply completion : visit eqc " << eqc
341
45445
                         << std::endl;
342
45445
    eq::EqClassIterator eqc_i = eq::EqClassIterator(eqc, ee);
343
5197007
    while (!eqc_i.isFinished())
344
    {
345
5164347
      Node n = *eqc_i;
346
2588566
      if (n.getKind() == APPLY_UF || n.getKind() == HO_APPLY)
347
      {
348
1600524
        int curr_sum = 0;
349
3188263
        std::map<TNode, bool> curr_rops;
350
1600524
        if (n.getKind() == APPLY_UF)
351
        {
352
1848877
          TNode rop = ee->getRepresentative(n.getOperator());
353
928336
          if (rlvOp.find(rop) != rlvOp.end())
354
          {
355
            // try if its operator is relevant
356
370912
            curr_sum = applyAppCompletion(n);
357
370912
            if (curr_sum > 0)
358
            {
359
7795
              return curr_sum;
360
            }
361
          }
362
          else
363
          {
364
            // add to pending list
365
557424
            apply_uf[rop].push_back(n);
366
          }
367
          // Arguments are also relevant operators.
368
          // It might be possible include fewer terms here, see #1115.
369
2755431
          for (unsigned k = 0; k < n.getNumChildren(); k++)
370
          {
371
1834890
            if (n[k].getType().isFunction())
372
            {
373
63706
              TNode rop2 = ee->getRepresentative(n[k]);
374
31853
              curr_rops[rop2] = true;
375
            }
376
          }
377
        }
378
        else
379
        {
380
672188
          Assert(n.getKind() == HO_APPLY);
381
1344376
          TNode rop = ee->getRepresentative(n[0]);
382
672188
          curr_rops[rop] = true;
383
        }
384
2291708
        for (std::map<TNode, bool>::iterator itc = curr_rops.begin();
385
2291708
             itc != curr_rops.end();
386
             ++itc)
387
        {
388
1402948
          TNode rop = itc->first;
389
703969
          if (rlvOp.find(rop) == rlvOp.end())
390
          {
391
47036
            rlvOp.insert(rop);
392
            // now, try each pending APPLY_UF for this operator
393
            std::map<TNode, std::vector<Node> >::iterator itu =
394
47036
                apply_uf.find(rop);
395
47036
            if (itu != apply_uf.end())
396
            {
397
327823
              for (unsigned j = 0, size = itu->second.size(); j < size; j++)
398
              {
399
311327
                curr_sum = applyAppCompletion(itu->second[j]);
400
311327
                if (curr_sum > 0)
401
                {
402
4990
                  return curr_sum;
403
                }
404
              }
405
            }
406
          }
407
        }
408
      }
409
2575781
      ++eqc_i;
410
    }
411
32660
    ++eqcs_i;
412
  }
413
932
  return 0;
414
}
415
416
1071
unsigned HoExtension::check()
417
{
418
1071
  Trace("uf-ho") << "HoExtension::checkHigherOrder..." << std::endl;
419
420
  // infer new facts based on apply completion until fixed point
421
  unsigned num_facts;
422
12646
  do
423
  {
424
13717
    num_facts = checkAppCompletion();
425
13717
    if (d_state.isInConflict())
426
    {
427
139
      Trace("uf-ho") << "...conflict during app-completion." << std::endl;
428
139
      return 1;
429
    }
430
13578
  } while (num_facts > 0);
431
432
932
  unsigned num_lemmas = 0;
433
434
932
  num_lemmas = checkExtensionality();
435
932
  if (num_lemmas > 0)
436
  {
437
74
    Trace("uf-ho") << "...extensionality returned " << num_lemmas << " lemmas."
438
37
                   << std::endl;
439
37
    return num_lemmas;
440
  }
441
442
895
  Trace("uf-ho") << "...finished check higher order." << std::endl;
443
444
895
  return 0;
445
}
446
447
365
bool HoExtension::collectModelInfoHo(TheoryModel* m,
448
                                     const std::set<Node>& termSet)
449
{
450
2601
  for (std::set<Node>::iterator it = termSet.begin(); it != termSet.end(); ++it)
451
  {
452
4472
    Node n = *it;
453
    // For model-building with higher-order, we require that APPLY_UF is always
454
    // expanded to HO_APPLY. That is, we always expand to a fully applicative
455
    // encoding during model construction.
456
2236
    if (!collectModelInfoHoTerm(n, m))
457
    {
458
      return false;
459
    }
460
  }
461
  // We apply an explicit extensionality technique for asserting
462
  // disequalities to the model to ensure that function values are distinct
463
  // in the curried HO_APPLY version of model construction. This is a
464
  // non-standard alternative to using a type enumerator over function
465
  // values to assign unique values.
466
365
  int addedLemmas = checkExtensionality(m);
467
365
  return addedLemmas == 0;
468
}
469
470
2406
bool HoExtension::collectModelInfoHoTerm(Node n, TheoryModel* m)
471
{
472
2406
  if (n.getKind() == APPLY_UF)
473
  {
474
2002
    Node hn = TheoryUfRewriter::getHoApplyForApplyUf(n);
475
1001
    if (!m->assertEquality(n, hn, true))
476
    {
477
      Node eq = n.eqNode(hn);
478
      Trace("uf-ho") << "HoExtension: cmi app completion lemma " << eq
479
                     << std::endl;
480
      d_im.lemma(eq, InferenceId::UF_HO_MODEL_APP_ENCODE);
481
      return false;
482
    }
483
  }
484
2406
  return true;
485
}
486
487
}  // namespace uf
488
}  // namespace theory
489
31137
}  // namespace cvc5