Difference between revisions of "Sets"

From CVC4
Jump to: navigation, search
Line 135: Line 135:
 
|-
 
|-
 
|  
 
|  
| <code>X: '''SET OF INT''';</code>
+
| <code>X: '''SET OF [INT, INT]''';</code>
| <code>(declare-fun X () '''(Set Int)''')</code>
+
| <code> -- </code>
| <code>em.'''mkSetType'''( em.integerType() );</code>
+
| <code> -- </code>
 
|-
 
|-
| Union
+
| TRANSPOSE
 
| <code>X '''<nowiki>|</nowiki>''' Y</code>
 
| <code>X '''<nowiki>|</nowiki>''' Y</code>
 
| <code>('''union''' X Y)</code>
 
| <code>('''union''' X Y)</code>
Line 174: Line 174:
 
| <code>em.mkConst('''EmptySet'''(em.mkSetType(em.integerType())));</code>
 
| <code>em.mkConst('''EmptySet'''(em.mkSetType(em.integerType())));</code>
 
|-
 
|-
| Singleton set
 
| <code>'''{1}'''</code>
 
| <code>('''singleton''' 1)</code>
 
| <code>em.mkExpr('''kind::SINGLETON''', oneExpr);</code>
 
|-
 
| Cardinality
 
| <code>'''<nowiki>CARD</nowiki>'''( X )</code>
 
| <code>('''card''' X)</code>
 
| <code>em.mkExpr('''kind::CARD''', X);</code>
 
|-
 
| Insert/finite sets
 
| <code>'''{1, 2, 3, 4}'''</code>
 
| <code>('''insert''' 1 2 3 (singleton 4))</code>
 
| <code>em.mkExpr('''kind::INSERT''', c1, c2, c3, sgl4);</code>
 
|-
 
| Complement
 
| <code>'''<nowiki>~</nowiki>''' X</code>
 
| <code>('''complement''' X)</code>
 
| <code>em.mkExpr('''kind::COMPLEMENT''', X);</code>
 
|-
 
| Universe set
 
| UNIVERSE :: <Type Ascription>
 
| (as univset <Type Ascription>)
 
| mkUniqueVar(CVC4::SetType setType,kind::UNIVERSE_SET)
 
|-
 
 
 
(Coming soon)
 

Revision as of 13:55, 21 March 2017

As of July 2014 (CVC4 v1.4), we include support for theory of finite sets. The simplest way to get a sense of the syntax is to look at an example:


For reference, below is a short summary of the sorts, constants, functions and predicates.

CVC language SMTLIB language C++ API
Logic string Not needed append "FS" for finite sets append "FS" for finite sets
(set-logic QF_UFLIAFS) smt.setLogic("QF_UFLIAFS");
Sort SET OF <Element Sort> (Set <Element Sort>) CVC4::ExprManager::mkSetType(CVC4::Type elementType)
X: SET OF INT; (declare-fun X () (Set Int)) em.mkSetType( em.integerType() );
Union X | Y (union X Y) em.mkExpr(kind::UNION, X, Y);
Intersection X & Y (intersection X Y) em.mkExpr(kind::INTERSECTION, X, Y);
Set subtraction X Y (setminus X Y) em.mkExpr(kind::SETMINUS, X, Y);
Membership x IS_IN X (member x X) em.mkExpr(kind::MEMBER, x, X);
Subset X <= Y (subset X Y) em.mkExpr(kind::SUBSET, X, Y);
Empty set {} :: <Type Ascription> (as emptyset <Type Ascription>) CVC4::EmptySet(CVC4::SetType setType)
{} :: SET OF INT (as emptyset (Set Int)) em.mkConst(EmptySet(em.mkSetType(em.integerType())));
Singleton set {1} (singleton 1) em.mkExpr(kind::SINGLETON, oneExpr);
Cardinality CARD( X ) (card X) em.mkExpr(kind::CARD, X);
Insert/finite sets {1, 2, 3, 4} (insert 1 2 3 (singleton 4)) em.mkExpr(kind::INSERT, c1, c2, c3, sgl4);
Complement ~ X (complement X) em.mkExpr(kind::COMPLEMENT, X);
Universe set UNIVERSE :: <Type Ascription> (as univset <Type Ascription>) mkUniqueVar(CVC4::SetType setType,kind::UNIVERSE_SET)
UNIVERSE :: SET OF INT (as univset (Set Int)) em.mkUniqueVar(em.mkSetType(em.integerType()),kind::UNIVERSE_SET);


Operator precedence for CVC language: & | IS_IN <= =. For example, A - B | A & C <= D is read as ( A - ( B | (A & C) ) ) <= D.


Relations

CVC language SMTLIB language C++ API
Logic string Not needed append "FS" for finite sets append "FS" for finite sets
(set-logic QF_UFLIAFS) smt.setLogic("QF_UFLIAFS");
Sort SET OF [Element Sort] -- --
X: SET OF [INT, INT]; -- --
TRANSPOSE X | Y (union X Y) em.mkExpr(kind::UNION, X, Y);
Intersection X & Y (intersection X Y) em.mkExpr(kind::INTERSECTION, X, Y);
Set subtraction X Y (setminus X Y) em.mkExpr(kind::SETMINUS, X, Y);
Membership x IS_IN X (member x X) em.mkExpr(kind::MEMBER, x, X);
Subset X <= Y (subset X Y) em.mkExpr(kind::SUBSET, X, Y);
Empty set {} :: <Type Ascription> (as emptyset <Type Ascription>) CVC4::EmptySet(CVC4::SetType setType)
{} :: SET OF INT (as emptyset (Set Int)) em.mkConst(EmptySet(em.mkSetType(em.integerType())));